Previous Datasheet Index Next Data Sheet PD - 5.023B CPV363MF Fast IGBT IGBT SIP MODULE 1 Features • • • • Fully isolated printed circuit board mount package Switching-loss rating includes all "tail" losses TM HEXFRED soft ultrafast diodes Optimized for medium operating frequency (1 to 10kHz) See Fig. 1 for Current vs. Frequency curve 3 D1 Q1 9 D3 Q3 15 4 6 D2 Q2 Product Summary 12 D5 Q5 10 D4 Q4 7 18 16 D6 Q6 13 19 Output Current in a Typical 5.0 kHz Motor Drive 7.65 ARMS per phase (2.4 kW total) with TC = 90°C, TJ = 125°C, Supply Voltage 360Vdc, Power Factor 0.8, Modulation Depth 80% (See Figure 1) Description The IGBT technology is the key to International Rectifier's advanced line of IMS (Insulated Metal Substrate) Power Modules. These modules are more efficient than comparable bipolar transistor modules, while at the same time having the simpler gate-drive requirements of the familiar power MOSFET. This superior technology has now been coupled to a state of the art materials system that maximizes power throughput with low thermal resistance. This package is highly suited to motor drive applications and where space is at a premium. IMS-2 Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM VGE VISOL PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current, each IGBT Continuous Collector Current, each IGBT Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Isolation Voltage, any terminal to case, 1 min. Maximum Power Dissipation, each IGBT Maximum Power Dissipation, each IGBT Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw. Max. Units 600 16 8.7 50 50 6.1 50 ±20 2500 36 14 -40 to +150 V A V VRMS W °C 300 (0.063 in. (1.6mm) from case) 5-7 lbf•in (0.55-0.8 N•m) Thermal Resistance Parameter RθJC (IGBT) RθJC (DIODE) RθCS (MODULE) Wt Junction-to-Case, each IGBT, one IGBT in conduction Junction-to-Case, each diode, one diode in conduction Case-to-Sink, flat, greased surface Weight of module Typ. Max. — — 0.1 20 (0.7) 3.5 5.5 — — Units °C/W g (oz) Revision 1 C-149 To Order Previous Datasheet Index Next Data Sheet CPV363MF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) VCE(on) Parameter Collector-to-Emitter Breakdown Voltage Temp. Coeff. of Breakdown Voltage Collector-to-Emitter Saturation Voltage VGE(th) ∆VGE(th)/∆TJ gfe ICES Gate Threshold Voltage Temp. Coeff. of Threshold Voltage Forward Transconductance Zero Gate Voltage Collector Current VFM Diode Forward Voltage Drop IGES Gate-to-Emitter Leakage Current V(BR)CES ∆V(BR)CES/∆TJ Min. Typ. Max. Units Conditions 600 — — V VGE = 0V, IC = 250µA — 0.69 — V/°C VGE = 0V, IC = 1.0mA — 1.5 1.6 IC = 8.7A VGE = 15V — 1.9 — V IC = 16A See Fig. 2, 5 — 1.6 — IC = 8.7A, TJ = 150°C 3.0 — 5.5 VCE = VGE, IC = 250µA — -11 — mV/°C VCE = VGE, IC = 250µA 6.0 8.0 — S VCE = 100V, IC = 8.7A — — 250 µA VGE = 0V, VCE = 600V — — 2500 VGE = 0V, VCE = 600V, TJ = 150°C — 1.4 1.7 V IC = 12A See Fig. 13 — 1.3 1.6 IC = 12A, TJ = 150°C — — ±500 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets Cies Coes Cres trr Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Irr Diode Peak Reverse Recovery Current Qrr Diode Reverse Recovery Charge di(rec)M/dt Diode Peak Rate of Fall of Recovery During tb Min. — — — — — — — — — — — — — — — — — — — — — — — — — — Typ. 23 2.4 9.2 25 21 210 300 0.44 2.0 2.4 25 21 280 550 3.4 670 100 10 42 80 3.5 5.6 80 220 180 116 Max. Units Conditions 30 IC = 16A 5.9 nC VCC = 400V 15 See Fig. 8 — TJ = 25°C — ns IC = 8.7A, VCC = 480V 300 VGE = 15V, RG = 23Ω 450 Energy losses include "tail" and — diode reverse recovery — mJ See Fig. 9, 10, 11, 18 3.2 — TJ = 150°C, See Fig. 9, 10, 11, 18 — ns IC = 8.7A, VCC = 480V — VGE = 15V, RG = 23Ω — Energy losses include "tail" and — mJ diode reverse recovery — VGE = 0V — pF VCC = 30V See Fig. 7 — ƒ = 1.0MHz 60 ns TJ = 25°C See Fig. 120 TJ = 125°C 14 IF = 12A 6.0 A TJ = 25°C See Fig. 10 TJ = 125°C 15 V R = 200V 180 nC TJ = 25°C See Fig. 600 TJ = 125°C 16 di/dt = 200A/µs — A/µs TJ = 25°C See Fig. — TJ = 125°C 17 Notes: Repetitive rating; V GE=20V, pulse width limited by max. junction temperature. ( See fig. 20 ) VCC=80%(VCES), VGE=20V, L=10µH, RG= 23Ω, ( See fig. 19 ) Pulse width ≤ 80µs; duty factor ≤ 0.1%. C-150 To Order Pulse width 5.0µs, single shot. Previous Datasheet Index Next Data Sheet 12 3.7 9 2.8 6 1.9 TC = 90°C TJ = 125°C Power Factor = 0.8 Modulation Depth = 0.8 VC C = 60% of Rated Voltage 3 0.9 Total O utpu t P ow e r (kW ) Lo ad C urrent (A ) CPV363MF S 0 0 0.1 1 10 100 f, F re quenc y (kH z) Fig. 1 - RMS Current and Output Power, Synthesized Sine Wave 10 00 IC , C ollector-to-E m itter Current (A ) I C , C ollector-to-E mitter C urrent (A ) 1000 TJ = 25 °C 100 TJ = 15 0°C 10 V G E = 1 5V 2 0µ s P U LS E W IDTH 1 1 1 00 T J = 15 0°C 10 T J = 25 °C 1 V C C = 1 00 V 5 µs P UL S E W ID TH 0.1 5 10 10 15 V G E , G ate-to-E m itter V olta g e (V ) V C E , C ollector-to-E m itter V oltage (V ) Fig. 3 - Typical Transfer Characteristics Fig. 2 - Typical Output Characteristics C-151 To Order 20 Previous Datasheet Index Next Data Sheet CPV363MF 3.5 V G E = 15 V V C E , C ollector-to-E m itter V oltage (V ) Maxim um D C Collector C urrent (A ) 40 30 20 10 VG E = 1 5 V 80 µs P UL S E W ID TH 3.0 I C = 34 A 2.5 I C = 17 A 2.0 I C = 8.5A 1.5 1.0 0 25 50 75 100 125 -60 150 T C , C ase Tem perature (°C ) -40 -20 0 20 40 60 80 1 00 120 140 160 TC , C ase Tem perature (°C ) Fig. 5 - Collector-to-Emitter Voltage vs. Case Temperature Fig. 4 - Maximum Collector Current vs. Case Temperature The rm al R espo nse (Z th JC ) 10 D = 0 .5 0 1 0.2 0 0.1 0 0 .05 PD M 0.0 2 0.0 1 0.1 t S ING L E PU LS E (TH E R MAL RE S PO N SE ) t2 N o te s : 1 . D u ty fa c to r D = t 0.01 0.00001 1 1 /t 2 2 . P e a k T J = P D M x Z thJ C + T C 0.0001 0.001 0.01 0.1 1 t 1 , R ectangular Pulse D uration (sec) Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case C-152 To Order 10 Previous Datasheet Index Next Data Sheet CPV363MF 1 4 00 20 1 2 00 V G E , G ate-to-E m itter V oltage (V) V GE = 0V, f = 1MHz C ies = C ge + C gc , Cce SHORTED C res = C gc C oes = C ce + C gc 16 1 0 00 C , C a pac itanc e (pF ) V C E = 40 0 V I C = 1 7A Cies 12 8 00 Coes 6 00 4 00 Cres 2 00 0 8 4 0 1 10 10 0 0 5 V C E , C o lle c to r-to -E m itte r V o lta g e (V ) 15 20 25 30 Q g , Total G ate C harge (nC ) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 10 VC C VG E TC IC 2.6 = 48 0V = 1 5V = 25°C = 17 A I C = 3 4A To ta l S w itc hing Lo sse s (m J) 2.7 T o ta l S w itc h in g L o s s e s (m J) 10 2.5 2.4 2.3 I C = 1 7A I C = 8.5A R G = 23 Ω V GE = 1 5V V CC = 48 0V 1 2.2 0 10 20 30 40 50 -60 60 R G , G a te R e s is ta n c e ( Ω ) -40 -20 0 20 40 60 80 1 00 120 140 160 TC , C a se T e m p e ra tu re (°C ) W Fig. 9 - Typical Switching Losses vs. Gate Resistance Fig. 10 - Typical Switching Losses vs. Case Temperature C-153 To Order Previous Datasheet Index Next Data Sheet CPV363MF 1000 = 23 Ω = 1 50°C = 48 0V = 1 5V I C , C o lle cto r-to -E m itte r C u rre n t (A ) RG TC VCC VGE 8 6 4 VGGE E= 20 V T J = 125 °C 100 S A FE O P E RA TIN G A RE A 10 1 2 0 10 20 30 1 40 10 100 V C E , C o lle cto r-to-E m itte r V olta g e (V ) I C , C o lle c to r-to -E m itte r C u rre n t (A ) Fig. 12 - Turn-Off SOA Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 100 Instantaneous Forward Current - I F (A) T o ta l S w itc h in g L o s s e s (m J ) 10 TJ = 150°C 10 TJ = 125°C TJ = 25°C 1 0.4 0.8 1.2 1.6 2.0 2.4 Forward Voltage Drop - V FM (V) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current C-154 To Order 1000 Previous Datasheet Index Next Data Sheet CPV363MF 100 160 VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C 120 I F = 24A I IRRM - (A) t rr - (ns) IF = 24A I F = 12A 80 IF = 6.0A I F = 12A 10 IF = 6.0A 40 0 100 1 100 1000 di f /dt - (A/µs) 1000 Fig. 15 - Typical Recovery Current vs. dif/dt Fig. 14 - Typical Reverse Recovery vs. dif/dt 10000 600 VR = 200V TJ = 125°C TJ = 25°C di(rec)M/dt - (A/µs) VR = 200V TJ = 125°C TJ = 25°C Q RR - (nC) 400 I F = 24A I F = 12A 200 1000 IF = 6.0A IF = 12A 100 IF = 24A IF = 6.0A 0 100 di f /dt - (A/µs) 1000 di f /dt - (A/µs) 10 100 1000 di f /dt - (A/µs) Fig. 16 - Typical Stored Charge vs. dif/dt Fig. 17 - Typical di(rec)M/dt vs. dif/dt C-155 To Order Previous Datasheet Index Next Data Sheet CPV363MF 90% Vge +Vge Vce Same type device as D.U.T. Ic 90% Ic 10% Vce Ic 5% Ic 430µF 80% of Vce td(off) D.U.T. tf Eoff = Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1 ∫ t1+5µS Vce ic dt t1 t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf trr GATE VOLTAGE D.U.T. 10% +Vg Qrr = Ic ∫ trr id dt tx +Vg tx 10% Vcc 10% Irr Vcc DUT VOLTAGE AND CURRENT Vce Vpk Irr Vcc 10% Ic 90% Ic Ipk Ic DIODE RECOVERY WAVEFORMS tr td(on) 5% Vce t1 ∫ t2 Eon = Vce ie dt t1 DIODE REVERSE RECOVERY ENERGY t2 t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, ∫ t4 Erec = Vd id dt t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr Defining Erec, trr, Qrr, Irr Refer to Section D for the following: Appendix D: Section D - page D-6 Fig. 18e - Macro Waveforms for Test Circuit Fig. 18a Fig. 19 - Clamped Inductive Load Test Circuit Fig. 20 - Pulsed Collector Current Test Circuit Package Outline 5 - IMS-2 Package (13 pins) Section D - page D-14 C-156 To Order