IRF CPU165MF

Previous Datasheet
Index
Next Data Sheet
PD - 5.028
CPU165MF
Fast IGBT
IGBT SIP MODULE
Features
•
•
•
•
1,2
Fully isolated printed circuit board mount package
Switching-loss rating includes all "tail" losses
TM
HEXFRED soft ultrafast diodes
Optimized for medium operating frequency (1 to 10kHz)
See Fig. 1 for Current vs. Frequency curve
4
5
Q1
D1
6,7
9
Product Summary
Output Current in a Typical 5.0 kHz Motor Drive
14 ARMS with TC = 90°C, TJ = 125°C, Supply Voltage 360Vdc,
Power Factor 0.8, Modulation Depth 80% (See Figure 1)
Q2
D2
11,12
Description
The IGBT technology is the key to International Rectifier's advanced line of
IMS (Insulated Metal Substrate) Power Modules. These modules are more
efficient than comparable bipolar transistor modules, while at the same time
having the simpler gate-drive requirements of the familiar power MOSFET.
This superior technology has now been coupled to a state of the art materials
system that maximizes power throughput with low thermal resistance. This
package is highly suited to motor drive applications and where space is at a
premium.
IMS-1
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
IFM
VGE
VISOL
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current, each IGBT
Continuous Collector Current, each IGBT
Pulsed Collector Current
Clamped Inductive Load Current
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Isolation Voltage, any terminal to case, 1 min.
Maximum Power Dissipation, each IGBT
Maximum Power Dissipation, each IGBT
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting torque, 6-32 or M3 screw.
Max.
Units
600
42
23
120
120
15
120
±20
2500
83
33
-40 to +150
V
A
V
VRMS
W
°C
300 (0.063 in. (1.6mm) from case)
5-7 lbf•in (0.55-0.8 N•m)
Thermal Resistance
Parameter
RθJC (IGBT)
RθJC (DIODE)
RθCS (MODULE)
Wt
Junction-to-Case, each IGBT, one IGBT in conduction
Junction-to-Case, each diode, one diode in conduction
Case-to-Sink, flat, greased surface
Weight of module
C-133
To Order
Typ.
Max.
—
—
0.1
20 (0.7)
1.5
2.0
—
—
Units
°C/W
g (oz)
Revision 1
Previous Datasheet
Index
Next Data Sheet
CPU165MF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
VCE(on)
Parameter
Collector-to-Emitter Breakdown Voltage
Temp. Coeff. of Breakdown Voltage
Collector-to-Emitter Saturation Voltage
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
Gate Threshold Voltage
Temp. Coeff. of Threshold Voltage
Forward Transconductance
Zero Gate Voltage Collector Current
VFM
Diode Forward Voltage Drop
IGES
Gate-to-Emitter Leakage Current
V(BR)CES
∆V(BR)CES/∆TJ
Min. Typ. Max. Units
600
—
—
V
— 0.62 — V/°C
—
1.3 1.5
—
1.7
—
V
—
1.4
—
3.0
—
5.5
—
-14
— mV/°C
21
30
—
S
—
— 250
µA
—
— 6500
—
1.3 1.7
V
—
1.2 1.5
—
— ±500 nA
Conditions
VGE = 0V, IC = 250µA
VGE = 0V, IC = 1.0mA
IC = 23A
VGE = 15V
IC = 42A
See Fig. 2, 5
IC = 23A, TJ = 150°C
VCE = VGE, IC = 250µA
VCE = VGE, IC = 250µA
VCE = 100V, IC = 39A
VGE = 0V, VCE = 600V
VGE = 0V, VCE = 600V, TJ = 150°C
IC = 25A
See Fig. 13
IC = 25A, TJ = 150°C
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
Cies
Coes
Cres
trr
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Irr
Diode Peak Reverse Recovery Current
Qrr
Diode Reverse Recovery Charge
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During tb
Min.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ.
84
20
51
24
50
270
210
1.1
2.1
3.2
25
49
440
410
5.8
3000
340
40
50
105
4.5
8.0
112
420
250
160
Max. Units
Conditions
100
IC = 39A
25
nC VCC = 400V
67
See Fig. 8
—
TJ = 25°C
—
ns
IC = 39A, VCC = 480V
540
VGE = 15V, RG = 5.0Ω
360
Energy losses include "tail" and
—
diode reverse recovery
—
mJ See Fig. 9, 10, 11, 18
5.4
—
TJ = 150°C,
See Fig. 9, 10, 11, 18
—
ns
IC = 39A, VCC = 480V
—
VGE = 15V, RG = 5.0Ω
—
Energy losses include "tail" and
—
mJ diode reverse recovery
—
VGE = 0V
—
pF
VCC = 30V
See Fig. 7
—
ƒ = 1.0MHz
75
ns
TJ = 25°C See Fig.
160
TJ = 125°C
14
IF = 25A
10
A
TJ = 25°C See Fig.
15
TJ = 125°C
15
V R = 200V
375
nC TJ = 25°C See Fig.
1200
TJ = 125°C
16
di/dt = 200A/µs
—
A/µs TJ = 25°C See Fig.
—
TJ = 125°C
17
Notes:
Repetitive rating; V GE=20V, pulse width
limited by max. junction temperature.
( See fig. 20 )
VCC=80%(VCES), VGE=20V, L=10µH,
RG= 5.0Ω, ( See fig. 19 )
Pulse width ≤ 80µs; duty factor ≤ 0.1%.
C-134
To Order
Pulse width 5.0µs,
single shot.
Previous Datasheet
Index
Next Data Sheet
30
9.3
20
6.2
10
3.1
TC = 90°C
TJ = 125°C
Power Factor = 0.8
Modulation Depth = 0.8
VC C = 60% of Rated Voltage
Total O utp ut P o w er (kW )
L oad C u rrent (A )
CPU165MF
0
0
0.1
1
10
100
f, F re quency (kH z)
Fig. 1 - RMS Current and Output Power, Synthesized Sine Wave
1000
TJ = 2 5°C
TJ = 25 °C
IC , Collector-to-E m itter C urrent (A )
I C , Collector-to-E m itter C urrent (A)
1000
TJ = 1 50 °C
100
10
TJ = 1 5 0°C
100
10
V G E = 15 V
2 0 µs P U L S E W ID TH
1
0.1
1
V C C = 1 00 V
5µ s P U L S E W ID TH
1
5
10
10
15
V G E , G ate -to-E m itter V olta ge (V )
V C E , C o llector-to-Em itter V oltage (V)
Fig. 3 - Typical Transfer Characteristics
Fig. 2 - Typical Output Characteristics
C-135
To Order
20
S
Previous Datasheet
Index
Next Data Sheet
CPU165MF
3.0
V G E = 1 5V
VC E , C o llector-to-E mitte r V oltage (V )
M aximum D C Collector Current (A )
70
60
50
40
30
20
10
VG E = 1 5 V
80 µs P UL S E W ID TH
I C = 78 A
2.5
2.0
I C = 39 A
1.5
I C = 20 A
1.0
0
25
50
75
100
125
-60
150
-40
-20
0
20
40
60
80
1 00 120 140 160
TC , C ase Tem perature (°C )
T C , C ase Tem perature (°C )
Fig. 5 - Collector-to-Emitter Voltage vs.
Case Temperature
Fig. 4 - Maximum Collector Current vs.
Case Temperature
T herm al Response (Z th JC )
1
D = 0 .5 0
0.2 0
0.1
0.1 0
PD M
0 .05
0.0 2
t
SIN G L E PU LS E
(TH ER M AL R ES PO N S E)
t2
N o te s:
1 . D u ty fa c to r D = t
0.0 1
0.01
0.00001
1
1
/ t
2
2 . P e a k TJ = P D M x Z th J C + T C
0.0001
0.001
0.01
0.1
1
t 1 , R ectangular Pulse D uration (sec)
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
C-136
To Order
10
Previous Datasheet
Index
Next Data Sheet
CPU165MF
7000
5000
V G E , G ate-to-Em itter V oltage (V )
6000
C , C apacitance (pF )
20
V GE = 0V,
f = 1MHz
C ies = C ge + C gc , Cce SHORTED
C res = C gc
C oes = C ce + C gc
V C E = 4 80 V
I C = 3 9A
16
Cies
12
4000
Coes
3000
2000
Cres
1000
8
4
0
1
10
0
1 00
0
30
V C E , C o llector-to-Em itter V oltage (V)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
VC C
VG E
TC
IC
90
120
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
100
= 4 80 V
= 15 V
= 25 °C
= 3 9A
T otal S w itc hing Lo sse s (m J)
Total S witching Losses (m J)
7 .5
60
Q g , Total G ate C harge (nC )
7 .0
6 .5
6 .0
R G = 2 .0 Ω
V GE = 1 5V
V CC = 48 0V
I C = 7 8A
I C = 39 A
10
I C = 2 0A
5 .5
1
0
10
20
30
40
50
-60
R G , G ate R es istance (Ω )
-20
0
20
40
60
80
100 120 140 1 60
TC , C ase Tem peratu re (°C )
W
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
-40
Fig. 10 - Typical Switching Losses vs.
Case Temperature
C-137
To Order
Previous Datasheet
Index
Next Data Sheet
CPU165MF
20
1000
= 2 .0 Ω
= 1 50°C
= 48 0V
= 15V
I C , C o lle c to r-to -E m itte r C u rre n t (A )
RG
TC
V CC
VGE
15
10
5
VGGE E= 20 V
T J = 12 5°C
S A FE O P E RA TIN G A RE A
100
10
1
0
0
20
40
60
1
80
10
100
V C E , C o lle cto r-to-E m itte r V olta g e (V )
I C , C ollecto r-to-E m itter C urrent (A )
Fig. 12 - Turn-Off SOA
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
100
Instantaneous Forward Current - I F (A)
Total Sw itching Losses (m J )
25
TJ = 150°C
TJ = 125°C
10
1
0.6
TJ = 25°C
1.0
1.4
1.8
2.2
2.6
Forward Voltage Drop - V FM (V)
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
C-138
To Order
1000
Previous Datasheet
Index
Next Data Sheet
CPU165MF
100
140
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
120
IF = 50A
80
I F = 50A
I IRRM - (A)
t rr - (ns)
100
I F = 25A
I F = 25A
10
I F = 10A
IF = 10A
60
40
20
100
1
100
1000
di f /dt - (A/µs)
1000
di f /dt - (A/µs)
Fig. 15 - Typical Recovery Current vs. dif/dt
Fig. 14 - Typical Reverse Recovery vs. dif/dt
10000
1500
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
di(rec)M/dt - (A/µs)
Q RR - (nC)
1200
900
I F = 50A
600
IF = 25A
1000
IF = 10A
I F = 25A
300
I F = 10A
0
100
IF = 50A
1000
di f /dt - (A/µs)
Fig. 16 - Typical Stored Charge vs. dif/dt
100
100
di f /dt - (A/µs)
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
C-139
To Order
1000
Previous Datasheet
Index
Next Data Sheet
CPU165MF
90% Vge
+Vge
Vce
Same type
device as
D.U.T.
Ic
90% Ic
10% Vce
Ic
5% Ic
430µF
80%
of Vce
td(off)
D.U.T.
tf
Eoff =
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
∫
t1+5µS
Vce ic dt
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
trr
GATE VOLTAGE D.U.T.
10% +Vg
Qrr =
Ic
∫
trr
id dt
tx
+Vg
tx
10% Vcc
10% Irr
Vcc
DUT VOLTAGE
AND CURRENT
Vce
Vpk
Irr
Vcc
10% Ic
90% Ic
Ipk
Ic
DIODE RECOVERY
WAVEFORMS
tr
td(on)
5% Vce
t1
∫
t2
Eon = Vce ie dt
t1
DIODE REVERSE
RECOVERY ENERGY
t2
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
∫
t4
Erec = Vd id dt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Defining Erec, trr, Qrr, Irr
Refer to Section D for the following:
Appendix D: Section D - page D-6
Fig. 18e - Macro Waveforms for Test Circuit Fig. 18a
Fig. 19 - Clamped Inductive Load Test Circuit
Fig. 20 - Pulsed Collector Current Test Circuit
Package Outline 4 - IMS-1 Package (10 pins) Section D - page D-13
C-140
To Order