PD - 50054A GA250TD120U "HALF-BRIDGE" IGBT DOUBLE INT-A-PAK Ultra-FastTM Speed IGBT Features • Generation 4 IGBT technology • Standard: Optimized for minimum saturation voltage and operating frequencies up to 10kHz • Very low conduction and switching losses • HEXFRED™ antiparallel diodes with ultra- soft recovery • Industry standard package • UL approved VCES = 1200V VCE(on) typ. = 2.4V @VGE = 15V, IC = 250A Benefits • Increased operating efficiency • Direct mounting to heatsink • Performance optimized for power conversion: UPS, SMPS, Welding • Lower EMI, requires less snubbing Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C ICM ILM IFM VGE VISOL PD @ TC = 25°C PD @ TC = 85°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Pulsed Collector CurrentQ Peak Switching CurrentR Peak Diode Forward Current Gate-to-Emitter Voltage RMS Isolation Voltage, Any Terminal To Case, t = 1 min Maximum Power Dissipation Maximum Power Dissipation Operating Junction Temperature Range Storage Temperature Range Max. Units 1200 250 500 500 500 ±20 2500 1250 650 -40 to +150 -40 to +125 V A V W °C Thermal / Mechanical Characteristics Parameter RθJC RθJC RθCS www.irf.com Thermal Resistance, Junction-to-Case - IGBT Thermal Resistance, Junction-to-Case - Diode Thermal Resistance, Case-to-Sink - Module Mounting Torque, Case-to-Heatsink Mounting Torque, Case-to-Terminal 1, 2 & 3S Weight of Module Typ. Max. — — 0.1 — — 400 0.10 0.20 — 4.0 3.0 — Units °C/W N. m g 1 4/24/2000 GA250TD120U Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Collector-to-Emitter Breakdown Voltage 1200 Collector-to-Emitter Voltage — — Gate Threshold Voltage 3.0 VGE(th) ∆VGE(th)/∆T J Temperature Coeff. of Threshold Voltage — gfe Forward Transconductance T — ICES Collector-to-Emitter Leaking Current — — VFM Diode Forward Voltage - Maximum — — IGES Gate-to-Emitter Leakage Current — V(BR)CES VCE(on) Typ. Max. Units Conditions — — VGE = 0V, IC = 1mA 2.4 2.9 VGE = 15V, IC = 250A 2.1 — V VGE = 15V, IC = 250A, TJ = 125°C — 6.0 VCE = 6V, IC = 3 mA -11 — mV/°C VCE = 6V, IC = 3mA 323 — S VCE = 25V, IC = 250A — 2.0 mA VGE = 0V, VCE = 1200V — 20 VGE = 0V, VCE = 1200V, TJ = 125°C 3.0 4.0 V IF = 250A, V GE = 0V 2.9 — IF = 250A, VGE = 0V, TJ = 125°C — 500 nA VGE = ±20V Dynamic Characteristics - TJ = 125°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets Cies Coes Cres trr Irr Q rr di(rec)M/dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Energy Turn-Off Switching Energy Total Switching Energy Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak ReverseCurrent Diode Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. — — — — — — — — — — — — — — — — — Typ. Max. Units Conditions 1979 2968 VCC = 400V, VGE = 15V 334 501 nC IC = 297A 655 983 TJ = 25°C 731 — RG1 = 15Ω, RG2 = 0Ω 227 — ns IC = 250A 653 — VCC = 720V 343 — VGE = ±15V 54 — mJ See Fig.17 through Fig.21 54 — 108 162 44517 — VGE = 0V 1979 — pF VCC = 30V 383 — ƒ = 1 MHz 214 — ns IC = 250A 155 — A RG1= 15 Ω 16540 — nC RG2 = 0 Ω 1970 — A/µs VCC = 720V di/dt=1368A/µs Details of note Q through T are on the last page 2 www.irf.com GA250TD120U 140 F o r b o th : D u ty c y c le : 5 0 % TJ = 1 2 5 ° C T sink = 9 0 ° C G a te d riv e a s s p e c ifie d LOAD CURRENT (A) 120 100 P o w e r D is s ip a tio n = 175 W S q u a re w a v e : 80 60 % of ra ted vo ltag e 60 I 40 Id e a l d io d e s 20 0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 1000 100 TJ = 25 °C V = 15V 80µs PULSE WIDTH GE 1.5 2.0 2.5 3.0 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com 100 TJ = 125 °C TJ = 125 °C 10 1.0 I C , Collector-to-Emitter Current (A) I C , Collector-to-Emitter Current (A) 1000 10 TJ = 25 °C V = 25V 80µs PULSE WIDTH CE 1 5.0 6.0 7.0 8.0 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 GA250TD120U 300 4.0 V = 15V 80 us PULSE WIDTH VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) GE 250 200 150 100 50 0 25 50 75 100 125 150 I C = 500 A 3.0 I C = 250 A I C = 125 A 2.0 1.0 -60 -40 -20 TC , Case Temperature ( °C) 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Th erm al R e spo nse (ZthJC ) 1 0.1 PDM D = 0.5 0 t 1 t2 0.2 0 0.10 0 .05 0.0 2 0.0 1 0.01 0.0001 Notes: 1. Duty factor D = t SING L E PU LS E (TH ER M A L RE SP O N SE ) 0.001 0.01 1 /t 2 2. Peak TJ = PDM x Z thJC + TC 0.1 1 A 10 t 1 , R ectangu la r Pulse Du ra tion (se c) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com GA250TD120U VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc C, Capacitance (pF) 60000 Cies 40000 Coes 20000 C res 20 VGE, Gate-to-Emitter Voltage (V) 80000 VCC = 400V I C = 297A 15 10 5 0 0 1 10 0 100 500 1000 1500 2000 2500 QG , Total Gate Charge (nC) VCE , Collector-to-Emitter Voltage (V) ( ° C) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 1000 V CC = 720V V GE = 15V TJ = 125 25 ° C 180 I C = 250A Total Switching Losses (mJ) Total Switching Losses (mJ) 200 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 160 140 120 100 80 0 10 20 30 40 RG , Gate Resistance (Ohm) (Ω) RG , Gate Resistance ( Ω ) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 50 RG1 Ω;RG2 = 0 Ω = 15Ω 15Ohm G =15 VGE = 15V VCC = 720V IC = 500 A IC = 250 A 100 IC = 125 A 10 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (° C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 GA250TD120U 700 =R15Ohm G1 =15Ω;RG2 = 0 Ω =125 150 ° C = 720V = 15V VGE = 20V T J = 125 oC 600 VCE measured at terminal(Peak Voltage) I C , Collector Current (A) RG TJ VCC 200 VGE IC , Collector Current ( A ) Total Switching Losses (mJ) 250 150 100 50 500 400 300 200 100 SAFE OPERATING AREA 0 0 0 100 200 300 400 500 0 200 I C , Collector Current (A) 400 600 800 1000 1200 1400 VCE , Collector-to-Emitter Voltage (V) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Reverse Bias SOA 25000 1000 20000 QRR - ( nC) Q R R - (n C ) In sta n ta n e ou s F o rw a rd C u rre n t - I F (A ) I F = 50 0A I F = 2 50 A I F = 12 5A T = 1 2 5 °C 15000 J TJ = 2 5°C 100 10000 5000 VR = 7 2 0V T J = 12 5 °C T J = 25 °C 10 1.0 2.0 3.0 4.0 F o rw a rd V o lta ge D ro p - V FM (V ) Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current 6 0 500 800 1100 1400 d i f /dt - (A /µs) 1700 2000 Fig. 14 - Typical Stored Charge vs. dif/dt www.irf.com GA250TD120U 250 400 IF = 500A I F = 500A I = 250 A I F = 250A F 200 I F = 125A IF = 125A 200 I IR R M - ( A ) IRRM - ( A ) trr - ( ns ) t rr - (n s ) 300 150 100 100 50 VR = 7 2 0 V T J = 1 2 5 °C TJ = 2 5 ° C 0 500 800 VR = 7 2 0 V T J = 1 2 5 °C T J = 2 5 °C 1100 1400 d i f /dt - (A /µs) 1700 2000 Fig. 15 - Typical Reverse Recovery vs. dif/dt www.irf.com 0 500 800 1100 1400 1700 2000 d i f /d t - (A /µs) Fig. 16 - Typical Recovery Current vs. dif/dt 7 GA250TD120U 90% Vge +Vge Vce Ic 9 0 % Ic 10% Vce Ic 5 % Ic td (o ff) tf Eoff = ∫ Vce Ic dt t1 + 5 µ S V c e ic d t t1 Fig. 17 - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1 t2 Fig. 18 - Test Waveforms for Circuit of Fig. 17, Defining Eoff, td(off), tf G A T E V O L T A G E D .U .T . 1 0 % +V g trr Q rr = Ic ∫ trr id t Icddt tx +Vg tx 10% Vcc 1 0 % Irr V cc D UT VO LTAG E AN D CU RRE NT Vce V pk Irr Vcc 1 0 % Ic Ip k 9 0 % Ic Ic D IO D E R E C O V E R Y W A V E FO R M S tr td (o n ) 5% Vce t1 ∫ t2 ce ieIcd t dt E o n = VVce t1 t2 E re c = D IO D E R E V E R S E REC OVERY ENER GY t3 Fig. 19 - Test Waveforms for Circuit of Fig. 17, Defining Eon, td(on), tr 8 ∫ t4 VVd d idIc d t dt t3 t4 Fig. 20 - Test Waveforms for Circuit of Fig. 17, Defining Erec, trr, Qrr, Irr www.irf.com GA250TD120U V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T . V O L T A G E IN D .U .T . C U R R E N T IN D 1 t0 t1 t2 Figure 21. Macro Waveforms for Figure 17's Test Circuit L 1000V D.U.T. Vc* RL= 600V 4 X IC @25°C 0 - 600V 50V 6000µ F 100 V Figure 22. Clamped Inductive Load Test Circuit www.irf.com Figure 23. Pulsed Collector Current Test Circuit 9 GA250TD120U Notes: Q Repetitive rating; VGE = 20V, pulse width limited by max. junction temperature. R See fig. 17 S For screws M5x0.8 T Pulse width 80µs; single shot. Case Outline — DOUBLE INT-A-PAK Dimensions are shown in millimeters (inches) IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936 Data and specifications subject to change without notice. 4/00 10 www.irf.com