PHILIPS UDA1334BTS

INTEGRATED CIRCUITS
DATA SHEET
UDA1334BTS
Low power audio DAC
Preliminary specification
File under Integrated Circuits, IC01
2000 Feb 07
Philips Semiconductors
Preliminary specification
Low power audio DAC
UDA1334BTS
CONTENTS
9
LIMITING VALUES
10
HANDLING
11
THERMAL CHARACTERISTICS
12
QUALITY SPECIFICATION
13
DC CHARACTERISTICS
14
AC CHARACTERISTICS
2.0 V supply voltage
3.0 V supply voltage
Timing
11
FEATURES
1.1
1.2
1.3
1.4
General
Multiple format data interface
DAC digital sound processing
Advanced audio configuration
2
APPLICATIONS
3
GENERAL DESCRIPTION
4
ORDERING INFORMATION
14.1
14.2
14.3
5
QUICK REFERENCE DATA
15
APPLICATION INFORMATION
6
BLOCK DIAGRAM
16
PACKAGE OUTLINE
7
PINNING
17
SOLDERING
8
FUNCTIONAL DESCRIPTION
17.1
8.1
8.2
8.3
8.4
8.5
8.6
8.6.1
8.6.2
8.6.3
8.6.4
System clock
Interpolation filter
Noise shaper
Filter stream DAC
Power-on reset
Feature settings
Digital interface format select
Mute control
De-emphasis control
Power control and sampling frequency select
Introduction to soldering surface mount
packages
Reflow soldering
Wave soldering
Manual soldering
Suitability of surface mount IC packages for
wave and reflow soldering methods
2000 Feb 07
17.2
17.3
17.4
17.5
2
18
DEFINITIONS
19
LIFE SUPPORT APPLICATIONS
Philips Semiconductors
Preliminary specification
Low power audio DAC
1
1.1
UDA1334BTS
FEATURES
General
• 1.8 to 3.6 V power supply voltage
• Integrated digital filter plus DAC
• Supports sample frequencies from 8 to 100 kHz
• Automatic system clock versus sample rate detection
• Low power consumption
• No analog post filtering required for DAC
2
• Slave mode only applications
This audio DAC is excellently suitable for digital audio
portable application, such as portable MD, MP3 and
DVD players.
• Easy application
• SSOP16 package.
1.2
Multiple format data interface
3
• I2S-bus and LSB-justified format compatible
DAC digital sound processing
The UDA1334BTS has basic features such as
de-emphasis (at 44.1 kHz sampling rate) and mute.
• Digital de-emphasis for 44.1 kHz sampling rate
• Mute function.
1.4
GENERAL DESCRIPTION
The UDA1334BTS supports the I2S-bus data format with
word lengths of up to 24 bits and the LSB-justified serial
data format with word lengths of 16, 20 and 24 bits.
• 1fs input data rate.
1.3
APPLICATIONS
Advanced audio configuration
• High linearity, wide dynamic range and low distortion
• Standby or Sleep mode in which the DAC is powered
down.
4
ORDERING INFORMATION
PACKAGE
TYPE
NUMBER
NAME
DESCRIPTION
VERSION
UDA1334BTS
SSOP16
plastic shrink small outline package; 16 leads; body width 4.4 mm
SOT369-1
2000 Feb 07
3
Philips Semiconductors
Preliminary specification
Low power audio DAC
5
UDA1334BTS
QUICK REFERENCE DATA
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX. UNIT
1.8
2.0
3.6
Supplies
VDDA
DAC analog supply voltage
VDDD
digital supply voltage
IDDA
DAC analog supply current
IDDD
digital supply current
V
1.8
2.0
3.6
V
normal operating mode
−
2.3
−
mA
Sleep mode
−
125
−
µA
normal operating mode
−
1.4
−
mA
clock running
−
250
−
µA
no clock running
−
20
−
µA
−40
−
+85
°C
at 0 dB (FS) digital input; note 1
−
600
−
mV
Sleep mode
Tamb
ambient temperature
Digital-to-analog converter (VDDA = VDDD = 2.0 V)
Vo(rms)
output voltage (RMS value)
(THD + N)/S total harmonic
distortion-plus-noise to signal
ratio
S/N
αcs
signal-to-noise ratio
fs = 44.1 kHz; at 0 dB
−
−80
−
dB
fs = 44.1 kHz; at −60 dB; A-weighted
−
−37
−
dB
fs = 96 kHz; at 0 dB
−
−75
−
dB
fs = 96 kHz; at −60 dB; A-weighted
−
−35
−
dB
fs = 44.1 kHz; code = 0; A-weighted
−
97
−
dB
fs = 96 kHz; code = 0; A-weighted
−
95
−
dB
−
100
−
dB
at 0 dB (FS) digital input; note 1
−
900
−
mV
fs = 44.1 kHz; at 0 dB
−
−90
−
dB
fs = 44.1 kHz; at −60 dB; A-weighted
−
−40
−
dB
fs = 96 kHz; at 0 dB
−
−85
−
dB
fs = 96 kHz; at −60 dB; A-weighted
−
−38
−
dB
fs = 44.1 kHz; code = 0; A-weighted
−
100
−
dB
fs = 96 kHz; code = 0; A-weighted
−
98
−
dB
−
100
−
dB
at 2.0 V supply voltage
−
7.4
−
mW
at 3.0 V supply voltage
−
17
−
mW
clock running
−
0.75
−
mW
no clock running
−
0.3
−
mW
channel separation
Digital-to-analog converter (VDDA = VDDD = 3.0 V)
Vo(rms)
output voltage (RMS value)
(THD + N)/S total harmonic
distortion-plus-noise to signal
ratio
S/N
αcs
signal-to-noise ratio
channel separation
Power dissipation (at fs = 44.1 kHz)
P
power dissipation
playback mode
Sleep mode; at 2.0 V supply voltage
Note
1. The DAC output voltage scales proportionally to the power supply voltage.
2000 Feb 07
4
Philips Semiconductors
Preliminary specification
Low power audio DAC
6
UDA1334BTS
BLOCK DIAGRAM
VSSD
VDDD
handbook, full pagewidth
4
BCK
WS
DATAI
1
2
3
5
DIGITAL INTERFACE
DE-EMPHASIS
UDA1334BTS
SYSCLK
MUTE
DEEM
PCS
6
7
8
11
INTERPOLATION FILTER
9
SFOR1
SFOR0
10
NOISE SHAPER
VOUTL
DAC
14
13
15
VDDA
VSSA
Fig.1 Block diagram.
2000 Feb 07
16
DAC
5
12
Vref(DAC)
VOUTR
MGL964
Philips Semiconductors
Preliminary specification
Low power audio DAC
7
UDA1334BTS
PINNING
SYMBOL
PIN
PAD TYPE
DESCRIPTION
BCK
1
5 V tolerant digital input pad; note 1
bit clock input
WS
2
5 V tolerant digital input pad; note 1
word select input
DATAI
3
5 V tolerant digital input pad; note 1
serial data input
VDDD
4
digital supply pad
digital supply voltage
VSSD
5
digital ground pad
digital ground
SYSCLK
6
5 V tolerant digital input pad; note 1
system clock input
SFOR1
7
5 V tolerant digital input pad; note 1
serial format select 1
MUTE
8
5 V tolerant digital input pad; note 1
mute control
DEEM
9
5 V tolerant digital input pad; note 1
de-emphasis control
PCS
10
3-level input pad; note 2
power control and sampling frequency select
SFOR0
11
digital input pad; note 2
serial format select 0
Vref(DAC)
12
analog pad
DAC reference voltage
VDDA
13
analog supply pad
DAC analog supply voltage
VOUTL
14
analog output pad
DAC output left
VSSA
15
analog ground pad
DAC analog ground
VOUTR
16
analog output pad
DAC output right
Notes
1. 5 V tolerant is only supported if the power supply voltage is between 2.7 and 3.6 V. For lower power supply voltages
this is maximum 3.3 V tolerant.
2. Because of test issues these pads are not 5 V tolerant and they should be at power supply voltage level or at a
maximum of 0.5 V above that level.
handbook, halfpage
BCK 1
16 VOUTR
WS 2
15 VSSA
DATAI 3
VDDD 4
14 VOUTL
UDA1334BTS
VSSD 5
13 VDDA
12 Vref(DAC)
SYSCLK 6
11 SFOR0
SFOR1 7
10 PCS
MUTE 8
9
DEEM
MGL963
Fig.2 Pin configuration.
2000 Feb 07
6
Philips Semiconductors
Preliminary specification
Low power audio DAC
8
UDA1334BTS
Table 2
FUNCTIONAL DESCRIPTION
8.1
System clock
Example using a 12.228 MHz system clock
CLOCK MODE
SAMPLING FREQUENCY
128fs
96 kHz
192fs
64 kHz(1)
The UDA1334BTS operates in slave mode only; this
means that in all applications the system must provide the
system clock and the digital audio interface signals
(BCK and WS).
The system clock must be locked in frequency to the digital
interface signals.
The UDA1334BTS automatically detects the ratio between
the SYSCLK and WS frequencies.
256fs
48 kHz
384fs
32 kHz
512fs
24 kHz
768fs
16 kHz
Note
1. This mode can only be supported for power supply
voltages down to 2.4 V. For lower voltages, in 192fs
mode the sampling frequency should be limited to
55 kHz.
The BCK clock can be up to 64fs, or in other words the
BCK frequency is 64 times the Word Select (WS)
frequency or less: fBCK ≤ 64 × fWS.
Remarks:
8.2
1. The WS edge MUST fall on the negative edge of the
BCK at all times for proper operation of the digital I/O
data interface
The interpolation digital filter interpolates from 1fs to 64fs
by cascading FIR filters (see Table 3).
2. For LSB-justified formats it is important to have a WS
signal with a duty factor of 50%.
Table 3
The modes which are supported are given in Table 1.
Table 1
Interpolation filter
Supported sampling ranges
Interpolation filter characteristics
ITEM
CONDITION
VALUE (dB)
Pass-band ripple
0 to 0.45fs
±0.02
>0.55fs
−50
0 to 0.45fs
>114
Stop band
CLOCK MODE
SAMPLING RANGE
768fs
8 to 55 kHz
512fs
8 to 100 kHz
8.3
384fs
8 to 100 kHz
256fs
8 to 100 kHz
192fs
8 to 100 kHz(1)(2)
128fs
8 to 100 kHz(2)
The 5th-order noise shaper operates at 64fs. It shifts
in-band quantization noise to frequencies well above the
audio band. This noise shaping technique enables high
signal-to-noise ratios to be achieved. The noise shaper
output is converted into an analog signal using a
Filter Stream DAC (FSDAC).
Dynamic range
Notes
1. This mode can only be supported for power supply
voltages down to 2.4 V. For lower voltages, in
192fs mode the sampling frequency should be limited
to 55 kHz.
2. Not supported in the low sampling frequency mode.
An example is given in Table 2 for a 12.228 MHz system
clock input.
2000 Feb 07
7
Noise shaper
Philips Semiconductors
Preliminary specification
Low power audio DAC
8.4
UDA1334BTS
Filter stream DAC
8.5
The FSDAC is a semi-digital reconstruction filter that
converts the 1-bit data stream of the noise shaper to an
analog output voltage. The filter coefficients are
implemented as current sources and are summed at
virtual ground of the output operational amplifier. In this
way very high signal-to-noise performance and low clock
jitter sensitivity is achieved. No post-filter is needed due to
the inherent filter function of the DAC. On-board amplifiers
convert the FSDAC output current to an output voltage
signal capable of driving a line output.
Power-on reset
The UDA1334BTS has an internal Power-on reset circuit
(see Fig.3) which resets the test control block.
The reset time (see Fig.4) is determined by an external
capacitor which is connected between pin Vref(DAC) and
ground. The reset time should be at least 1 µs for
Vref(DAC) < 1.25 V. When VDDA is switched off, the device
will be reset again for Vref(DAC) < 0.75 V.
During the reset time the system clock should be running.
The output voltage of the FSDAC scales proportionally
with the power supply voltage.
3.0
VDDD
handbook, halfpage
(V)
1.5
0
t
handbook, halfpage
3.0 V
3.0
VDDA
VDDA 13
(V)
25 kΩ
Vref(DAC)
C1 >
10 µF
1.5
RESET
CIRCUIT
12
0
25 kΩ
t
UDA1334BTS
3.0
Vref(DAC)
MGL985
(V)
1.5
1.25
0.75
0
>1 µs
t
MGL984
Fig.3 Power-on reset circuit.
2000 Feb 07
Fig.4 Power-on reset timing.
8
Philips Semiconductors
Preliminary specification
Low power audio DAC
8.6
UDA1334BTS
8.6.4
Feature settings
The features of the UDA1334BTS can be set by control
pins SFOR1, SFOR0, MUTE, DEEM and PCS.
8.6.1
Pin PCS is a 3-level pin and is used to set the mode of the
UDA1334BTS. The definition is given in Table 7.
DIGITAL INTERFACE FORMAT SELECT
Table 7
The digital audio interface formats (see Fig.5) can be
selected via the pins SFOR1 and SFOR0 as shown in
Table 4.
Table 4
SFOR0
LOW
LOW
I2S-bus input
LOW
HIGH
LSB-justified 16 bits input
HIGH
LOW
LSB-justified 20 bits input
HIGH
HIGH
LSB-justified 24 bits input
Mute control
FUNCTION
LOW
mute off
HIGH
mute on
8.6.3
DE-EMPHASIS CONTROL
De-emphasis can be switched on for fs = 44.1 kHz by
setting pin DEEM at HIGH level. The function description
of pin DEEM is given in Table 6.
Table 6
De-emphasis control
DEEM
FUNCTION
LOW
de-emphasis off
HIGH
de-emphasis on
Remark: the de-emphasis function in only supported in
the normal operating mode, not in the low sampling
frequency mode.
2000 Feb 07
normal operating mode
MID
low sampling frequency mode
Power-down or Sleep mode
The low sampling frequency mode is required to have a
higher oversampling rate in the noise shaper in order to
improve the signal-to-noise ratio. In this mode the
oversampling ratio of the noise shaper will be 128fs instead
of 64fs.
The output signal can be soft muted by setting pin MUTE
to HIGH level as shown in Table 5.
MUTE
FUNCTION
LOW
HIGH
INPUT FORMAT
MUTE CONTROL
Table 5
PCS function definition
PCS
Data format selection
SFOR1
8.6.2
POWER CONTROL AND SAMPLING FREQUENCY
SELECT
9
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
2
>=8
3
2
3
MSB
B2
1
>=8
BCK
DATA
MSB
B2
MSB
I2S-BUS FORMAT
WS
LEFT
Philips Semiconductors
1
Low power audio DAC
handbook, full pagewidth
2000 Feb 07
RIGHT
LEFT
WS
RIGHT
16
15
1
16
B15 LSB
MSB
2
15
2
1
BCK
DATA
MSB
B2
B2
B15 LSB
LSB-JUSTIFIED FORMAT 16 BITS
10
WS
LEFT
20
RIGHT
19
18
17
16
15
1
20
B19 LSB
MSB
2
19
18
17
16
15
2
1
BCK
DATA
MSB
B2
B3
B4
B5
B6
B2
B3
B4
B5
B6
B19 LSB
LSB-JUSTIFIED FORMAT 20 BITS
WS
LEFT
24
23
22
21
20
RIGHT
19
18
17
16
15
2
1
24
B23 LSB
MSB
23
22
21
20
19
18
17
16
15
2
1
BCK
DATA
MSB
B2
B3
B4
B5
B6
B7
B8
B9
B10
B2
B3
B4
B5
B6
B7
B8
B9
B10
B23 LSB
Preliminary specification
Fig.5 Digital audio formats
UDA1334BTS
MGS752
LSB-JUSTIFIED FORMAT 24 BITS
Philips Semiconductors
Preliminary specification
Low power audio DAC
UDA1334BTS
9 LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 60134).
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
−
4.0
V
maximum crystal temperature
−
150
°C
Tstg
storage temperature
−65
+125
°C
Tamb
ambient temperature
−40
+85
°C
Ves
electrostatic handling voltage
human body model
−2000
+2000
V
machine model
−200
+200
V
output short-circuited to VSSA
−
450
mA
output short-circuited to VDDA
−
300
mA
VDD
supply voltage
Txtal(max)
Isc(DAC)
note 1
short-circuit current of DAC
note 2
Note
1. All supply connections must be made to the same power supply.
2. Short-circuit test at Tamb = 0 °C and VDDA = 3 V. DAC operation after short-circuiting cannot be warranted.
10 HANDLING
Inputs and outputs are protected against electrostatic discharge in normal handling. However, it is good practice to take
normal precautions appropriate to handling MOS devices.
11 THERMAL CHARACTERISTICS
SYMBOL
Rth(j-a)
PARAMETER
CONDITIONS
VALUE
UNIT
145
K/W
thermal resistance from junction to ambient in free air
12 QUALITY SPECIFICATION
In accordance with “SNW-FQ-611-E”.
13 DC CHARACTERISTICS
VDDD = VDDA = 2.0 V; Tamb = 25 °C; RL = 5 kΩ; all voltages with respect to ground (pins VSSA and VSSD); unless
otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Supplies
VDDA
DAC analog supply voltage note 1
1.8
2.0
3.6
V
VDDD
digital supply voltage
1.8
2.0
3.6
V
IDDA
DAC analog supply current normal operating mode
at 2.0 V supply voltage
−
2.3
−
mA
at 3.0 V supply voltage
−
3.5
−
mA
at 2.0 V supply voltage
−
125
−
µA
at 3.0 V supply voltage
−
175
−
µA
note 1
Sleep mode
2000 Feb 07
11
Philips Semiconductors
Preliminary specification
Low power audio DAC
SYMBOL
IDDD
PARAMETER
digital supply current
UDA1334BTS
CONDITIONS
MIN.
TYP.
MAX.
UNIT
normal operating mode
at 2.0 V supply voltage
−
1.4
−
mA
at 3.0 V supply voltage
−
2.1
−
mA
clock running
−
250
−
µA
no clock running
−
20
−
µA
clock running
−
375
−
µA
no clock running
−
30
−
µA
Sleep mode;
at 2.0 V supply voltage
Sleep mode;
at 3.0 V supply voltage
Digital input pins; note 2
VIH
HIGH-level input voltage
at 2.0 V supply voltage
1.3
−
3.3
V
at 3.0 V supply voltage
2.0
−
5.0
V
at 2.0 V supply voltage
−0.5
−
+0.5
V
VIL
LOW-level input voltage
−0.5
−
+0.8
V
ILI
input leakage current
−
−
1
µA
Ci
input capacitance
−
−
10
pF
at 3.0 V supply voltage
3-level input: pin PCS
VIH
HIGH-level input voltage
0.9VDDD
−
VDDD + 0.5
V
VIM
MID-level input voltage
0.4VDDD
−
0.6VDDD
V
VIL
LOW-level input voltage
−0.5
−
+0.5
V
0.45VDDA
0.5VDDA
0.55VDDA
V
−
12.5
−
kΩ
(THD + N)/S < 0.1%;
RL = 800 Ω
−
tbf
−
mA
3
−
−
kΩ
note 3
−
−
50
pF
DAC
Vref(DAC)
reference voltage
Ro(ref)
output resistance on
pin Vref(DAC)
Io(max)
maximum output current
RL
load resistance
CL
load capacitance
with respect to VSSA
Notes
1. All supply connections must be made to the same external power supply unit.
2. At 3 V supply voltage, the input pads are TTL compatible. However, at 2.0 V supply voltage no TTL levels can be
accepted, but levels from 3.3 V domain can be applied to the pins.
3. When the DAC drives a capacitive load above 50 pF, a series resistance of 100 Ω must be used to prevent
oscillations in the output operational amplifier.
2000 Feb 07
12
Philips Semiconductors
Preliminary specification
Low power audio DAC
UDA1334BTS
14 AC CHARACTERISTICS
14.1 2.0 V supply voltage
VDDD = VDDA = 2.0 V; fi = 1 kHz; Tamb = 25 °C; RL = 5 kΩ.; all voltages with respect to ground (pins VSSA and VSSD);
unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
DAC
Vo(rms)
output voltage (RMS value)
∆Vo
unbalance between channels
−
600
−
mV
−
0.1
−
dB
−
−80
−
dB
−
−37
−
dB
fs = 96 kHz; at 0 dB
−
−75
−
dB
fs = 96 kHz; at −60 dB; A-weighted
−
−35
−
dB
fs = 44.1 kHz; code = 0; A-weighted −
97
−
dB
−
95
−
dB
−
100
−
dB
−
60
−
dB
at 0 dB (FS) digital input
(THD + N)/S total harmonic
fs = 44.1 kHz; at 0 dB
distortion-plus-noise to signal fs = 44.1 kHz; at −60 dB;
ratio
A-weighted
S/N
signal-to-noise ratio
fs = 96 kHz; code = 0; A-weighted
αcs
channel separation
PSRR
power supply rejection ratio
fripple = 1 kHz; Vripple = 30 mV (p-p)
14.2 3.0 V supply voltage
VDDD = VDDA = 3.0 V; fi = 1 kHz; Tamb = 25 °C; RL = 5 kΩ; all voltages with respect to ground (pins VSSA and VSSD);
unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
DAC
Vo(rms)
output voltage (RMS value)
∆Vo
unbalance between channels
−
900
−
mV
−
0.1
−
dB
−
−90
−
dB
−
−40
−
dB
fs = 96 kHz; at 0 dB
−
−85
−
dB
fs = 96 kHz; at −60 dB; A-weighted
−
−38
−
dB
fs = 44.1 kHz; code = 0; A-weighted −
100
−
dB
−
98
−
dB
−
100
−
dB
−
60
−
dB
at 0 dB (FS) digital input
(THD + N)/S total harmonic
fs = 44.1 kHz; at 0 dB
distortion-plus-noise to signal fs = 44.1 kHz; at −60 dB;
ratio
A-weighted
S/N
signal-to-noise ratio
fs = 96 kHz; code = 0; A-weighted
αcs
channel separation
PSRR
power supply rejection ratio
2000 Feb 07
fripple = 1 kHz; Vripple = 30 mV (p-p)
13
Philips Semiconductors
Preliminary specification
Low power audio DAC
UDA1334BTS
14.3 Timing
VDDD = VDDA = 1.8 to 3.6 V; Tamb = −20 to +85 °C; RL = 5 kΩ; all voltages with respect to ground (pins VSSA and VSSD);
unless otherwise specified; note 1.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
System clock timing (see Fig.6)
Tsys
system clock cycle time
tCWH
system clock HIGH time
tCWL
system clock LOW time
fsys = 256fs
35
88
780
ns
fsys = 384fs
23
59
520
ns
fsys = 512fs
17
44
390
ns
fsys < 19.2 MHz
0.3Tsys −
0.7Tsys ns
fsys ≥ 19.2 MHz
0.4Tsys −
0.6Tsys ns
fsys < 19.2 MHz
0.3Tsys −
0.7Tsys ns
fsys ≥ 19.2 MHz
0.4Tsys −
0.6Tsys ns
Reset timing
treset
reset time
1
−
−
µs
Serial interface timing (see Fig.7)
fBCK
bit clock frequency
−
−
64fs
Hz
tBCKH
bit clock HIGH time
50
−
−
ns
tBCKL
bit clock LOW time
50
−
−
ns
tr
rise time
−
−
20
ns
tf
fall time
−
−
20
ns
tsu(DATAI)
set-up time data input
20
−
−
ns
th(DATAI)
hold time data input
0
−
−
ns
tsu(WS)
set-up time word select
20
−
−
ns
th(WS)
hold time word select
10
−
−
ns
Note
1. The typical value of the timing is specified at fs = 44.1 kHz (sampling frequency).
2000 Feb 07
14
Philips Semiconductors
Preliminary specification
Low power audio DAC
UDA1334BTS
t CWH
handbook, full pagewidth
MGR984
t CWL
Tsys
Fig.6 System clock timing.
handbook, full pagewidth
WS
th(WS)
tBCKH
tr
tsu(WS)
tf
BCK
tsu(DATAI)
tBCKL
Tcy(BCK)
th(DATAI)
DATAI
MGL880
Fig.7 Serial interface timing.
2000 Feb 07
15
Philips Semiconductors
Preliminary specification
Low power audio DAC
UDA1334BTS
15 APPLICATION INFORMATION
analog
supply voltage
handbook, full pagewidth
R7
1Ω
C9
system
clock
R5
SYSCLK
47 Ω
digital
supply voltage
47 µF
(16 V)
47 µF
(16 V)
C10
C6
100 nF
(63 V)
VSSA
100 nF
(63 V)
15
VDDA
13
R6
1Ω
C5
VSSD
5
VDDD
4
6
14
BCK
WS
DATAI
SFOR1
SFOR0
MUTE
DEEM
PCS
VOUTL C3
47 µF
(16 V)
1
2
R3
R1
220 kΩ
C1
3
7
11
UDA1334BTS
16
8
9
VOUTR C4
47 µF
(16 V)
12
left
output
100 Ω
10 nF
(63 V)
R4
right
output
100 Ω
R2
220 kΩ
C2
10 nF
(63 V)
Vref(DAC)
C8
100 nF
(63 V)
10
C7
47 µF
(16 V)
MGL965
Fig.8 Typical application diagram.
2000 Feb 07
16
Philips Semiconductors
Preliminary specification
Low power audio DAC
UDA1334BTS
16 PACKAGE OUTLINE
SSOP16: plastic shrink small outline package; 16 leads; body width 4.4 mm
D
SOT369-1
E
A
X
c
y
HE
v M A
Z
9
16
Q
A2
A
(A 3)
A1
pin 1 index
θ
Lp
L
1
8
detail X
w M
bp
e
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (1)
e
HE
L
Lp
Q
v
w
y
Z (1)
θ
mm
1.5
0.15
0.00
1.4
1.2
0.25
0.32
0.20
0.25
0.13
5.30
5.10
4.5
4.3
0.65
6.6
6.2
1.0
0.75
0.45
0.65
0.45
0.2
0.13
0.1
0.48
0.18
10
0o
Note
1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.
OUTLINE
VERSION
SOT369-1
2000 Feb 07
REFERENCES
IEC
JEDEC
EIAJ
EUROPEAN
PROJECTION
ISSUE DATE
95-02-04
99-12-27
MO-152
17
o
Philips Semiconductors
Preliminary specification
Low power audio DAC
UDA1334BTS
If wave soldering is used the following conditions must be
observed for optimal results:
17 SOLDERING
17.1
Introduction to soldering surface mount
packages
• Use a double-wave soldering method comprising a
turbulent wave with high upward pressure followed by a
smooth laminar wave.
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our “Data Handbook IC26; Integrated Circuit Packages”
(document order number 9398 652 90011).
• For packages with leads on two sides and a pitch (e):
– larger than or equal to 1.27 mm, the footprint
longitudinal axis is preferred to be parallel to the
transport direction of the printed-circuit board;
There is no soldering method that is ideal for all surface
mount IC packages. Wave soldering is not always suitable
for surface mount ICs, or for printed-circuit boards with
high population densities. In these situations reflow
soldering is often used.
17.2
– smaller than 1.27 mm, the footprint longitudinal axis
must be parallel to the transport direction of the
printed-circuit board.
The footprint must incorporate solder thieves at the
downstream end.
Reflow soldering
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
• For packages with leads on four sides, the footprint must
be placed at a 45° angle to the transport direction of the
printed-circuit board. The footprint must incorporate
solder thieves downstream and at the side corners.
Several methods exist for reflowing; for example,
infrared/convection heating in a conveyor type oven.
Throughput times (preheating, soldering and cooling) vary
between 100 and 200 seconds depending on heating
method.
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
Typical reflow peak temperatures range from
215 to 250 °C. The top-surface temperature of the
packages should preferable be kept below 230 °C.
Typical dwell time is 4 seconds at 250 °C.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
17.3
17.4
Wave soldering
Fix the component by first soldering two
diagonally-opposite end leads. Use a low voltage (24 V or
less) soldering iron applied to the flat part of the lead.
Contact time must be limited to 10 seconds at up to
300 °C.
Conventional single wave soldering is not recommended
for surface mount devices (SMDs) or printed-circuit boards
with a high component density, as solder bridging and
non-wetting can present major problems.
To overcome these problems the double-wave soldering
method was specifically developed.
2000 Feb 07
Manual soldering
When using a dedicated tool, all other leads can be
soldered in one operation within 2 to 5 seconds between
270 and 320 °C.
18
Philips Semiconductors
Preliminary specification
Low power audio DAC
17.5
UDA1334BTS
Suitability of surface mount IC packages for wave and reflow soldering methods
SOLDERING METHOD
PACKAGE
REFLOW(1)
WAVE
BGA, LFBGA, SQFP, TFBGA
not suitable
suitable(2)
HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS
not
PLCC(3), SO, SOJ
suitable
LQFP, QFP, TQFP
SSOP, TSSOP, VSO
suitable
suitable
suitable
not
recommended(3)(4)
suitable
not
recommended(5)
suitable
Notes
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum
temperature (with respect to time) and body size of the package, there is a risk that internal or external package
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.
The package footprint must incorporate solder thieves downstream and at the side corners.
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
18 DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
19 LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
2000 Feb 07
19
Philips Semiconductors – a worldwide company
Argentina: see South America
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 68 9211, Fax. +359 2 68 9102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381, Fax. +1 800 943 0087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +45 33 29 3333, Fax. +45 33 29 3905
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615 800, Fax. +358 9 6158 0920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 2353 60, Fax. +49 40 2353 6300
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22 493 8541, Fax. +91 22 493 0966
Indonesia: PT Philips Development Corporation, Semiconductors Division,
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),
Tel. +39 039 203 6838, Fax +39 039 203 6800
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,
Tel. +48 22 5710 000, Fax. +48 22 5710 001
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,
Tel. +27 11 471 5401, Fax. +27 11 471 5398
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 821 2382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93 301 6312, Fax. +34 93 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1 488 2741 Fax. +41 1 488 3263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381, Fax. +1 800 943 0087
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 3341 299, Fax.+381 11 3342 553
For all other countries apply to: Philips Semiconductors,
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Internet: http://www.semiconductors.philips.com
SCA 69
© Philips Electronics N.V. 2000
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
753503/25/01/pp20
Date of release: 2000
Feb 07
Document order number:
9397 750 06674