INTERSIL RF1S70N03SM

RFP70N03, RF1S70N03SM
Data Sheet
70A, 30V, 0.010 Ohm, N-Channel Power
MOSFETs
These N-Channel power MOSFETs are manufactured using
the MegaFET process. This process, which uses feature
sizes approaching those of LSI integrated circuits gives
optimum utilization of silicon, resulting in outstanding
performance. They were designed for use in applications
such as switching regulators, switching converters, motor
drivers, and relay drivers. These transistors can be operated
directly from integrated circuits.
Formerly developmental type TA49025.
Ordering Information
PART NUMBER
PACKAGE
BRAND
July 1999
File Number
3404.4
Features
• 70A, 30V
• rDS(ON) = 0.010Ω
• Temperature Compensating PSPICE® Model
• Peak Current vs Pulse Width Curve
• UIS Rating Curve (Single Pulse)
• 175oC Operating Temperature
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
Components to PC Boards”
Symbol
D
RFP70N03
TO-220AB
RFP70N03
RF1S70N03SM
TO-263AB
F1S70N03
G
NOTE: When ordering, use the entire part number. Add the suffix 9A to
obtain the TO-263AB variant in tape and reel, e.g., RF1S70N03SM9A
S
Packaging
JEDEC TO-220AB
JEDEC TO-263AB
SOURCE
DRAIN
GATE
DRAIN
(FLANGE)
DRAIN
(FLANGE)
GATE
SOURCE
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
PSPICE® is a registered trademark of MicroSim Corporation.
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999
RFP70N03, RF1S70N03SM
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
Drain Current
Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from case for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL
Package Body for 10s, see Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
UNITS
V
V
V
30
30
±20
70
200
Figures 5, 13, 14
150
1.0
-55 to 175
A
A
W
W/oC
oC
300
260
oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 150oC.
TC = 25oC, Unless Otherwise Specified
Electrical Specifications
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
Drain to Source Breakdown Voltage
BVDSS
ID = 250µA, VGS = 0V (Figure 10)
30
-
-
V
Gate to Source Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA (Figure 9)
2
-
4
V
VDS = 30V, VGS = 0V
-
-
1
µA
VDS = 30V, VGS = 0V, TC = 150oC
-
-
50
µA
VGS = ±20V
-
-
100
nA
ID = 70A, VGS = 10V (Figure 8)
-
-
0.010
Ω
VDD = 15V, ID ≅ 70A,
RL = 0.214Ω, VGS = 10V,
RGS = 2.5Ω
-
-
80
ns
-
20
-
ns
tr
-
20
-
ns
td(OFF)
-
40
-
ns
tf
-
25
-
ns
tOFF
-
-
125
ns
-
215
260
nC
-
120
145
nC
-
6.5
8.0
nC
-
3300
-
pF
-
1750
-
pF
-
750
-
pF
Zero Gate Voltage Drain Current
IDSS
Gate to Source Leakage Current
IGSS
Drain to Source On Resistance
rDS(ON)
Turn-On Time
tON
Turn-On Delay Time
td(ON)
Rise Time
Turn-Off Delay Time
Fall Time
Turn-Off Time
Total Gate Charge
Qg(TOT)
VGS = 0V to 20V
Gate Charge at 10V
Qg(10)
VGS = 0V to 10V
Threshold Gate Charge
Qg(TH)
VGS = 0V to 2V
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
VDD = 24V, ID ≅ 70A,
RL = 0.343Ω
Ig(REF) = 1.0mA
(Figure 12)
VDS = 25V, VGS = 0V,
f = 1MHz
(Figure 11)
Thermal Resistance Junction to Case
RθJC
(Figure 3)
-
-
1.0
oC/W
Thermal Resistance Junction to Ambient
RθJA
TO-220, TO-263
-
-
62
oC/W
MIN
TYP
MAX
UNITS
ISD = 70A
-
-
1.5
V
ISD = 70A, dISD/dt = 100A/µs
-
-
125
ns
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Source to Drain Diode Voltage
VSD
Reverse Recovery Time
trr
2
TEST CONDITIONS
RFP70N03, RF1S70N03SM
Typical Performance Curves
80
POWER DISSIPATION MULTIPLIER
1.2
70
ID, DRAIN CURRENT (A)
1.0
0.8
0.6
0.4
0.2
60
50
40
30
20
10
0
0
0
25
125
50
75
100
TC , CASE TEMPERATURE (oC)
175
150
25
ZθJC, NORMALIZED THERMAL IMPEDANCE
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
50
75
100
125
TC, CASE TEMPERATURE (oC)
150
175
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
100
0.5
0.2
10-1
PDM
0.1
0.05
t1
t2
0.02
0.01
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
SINGLE PULSE
10-2 -5
10
10-4
10-3
10-2
10-1
t1, RECTANGULAR PULSE DURATION (s)
10-0
101
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
300
100µs
ID, DRAIN CURRENT (A)
100
1ms
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
10
10ms
100ms
DC
TC = 25oC
TJ = MAX RATED
SINGLE PULSE
1
VDSS(MAX) = 30V
10
1
VDS, DRAIN TO SOURCE VOLTAGE (V)
IAS, AVALANCHE CURRENT (A)
300
IDM
100
If R = 0
tAV = (L) (IAS)/(1.3 x RATED BVDSS - VDD)
10
50
STARTING TJ = 25oC
STARTING TJ = 150oC
If R ≠ 0
tAV = (L/R) ln [(IAS x R)/(1.3 x RATED BVDSS - VDD) +1]
0.01
0.10
1
10
tAV, TIME IN AVALANCHE (ms)
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA
3
FIGURE 5. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
RFP70N03, RF1S70N03SM
Typical Performance Curves
200
VGS = 10V
(Continued)
200
VGS = 8V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
VGS = 7V
160
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TC = 25oC
120
DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
160
VGS = 6V
80
VGS = 5V
-55oC
25oC
120
175oC
80
40
40
VGS = 4V
0
0
0
1.5
3.0
4.5
6.0
7.5
0
2
4
6
8
VGS, GATE TO SOURCE VOLTAGE (V)
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 6. SATURATION CHARACTERISTICS
FIGURE 7. TRANSFER CHARACTERISTICS
2.0
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS = 10V, ID = 70A
VGS = VDS , ID = 250µA
NORMALIZED
GATE THRESHOLD VOLTAGE
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
2.0
1.5
1.0
0.5
0
-80
-40
0
40
80
120
160
1.6
1.2
0.8
0.4
0
-80
200
-40
TJ, JUNCTION TEMPERATURE (oC)
40
80
120
160
200
FIGURE 9. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
7000
2.0
ID = 250µA
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS = CDS + CGD
6000
1.6
C, CAPACITANCE (pF)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
0
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 8. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
1.2
0.8
5000
CISS
4000
3000
COSS
2000
0.4
CRSS
1000
0
-80
10
-40
0
40
80
120
160
200
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
4
0
0
5
10
15
20
25
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
RFP70N03, RF1S70N03SM
Typical Performance Curves
(Continued)
VDS, DRAIN SOURCE VOLTAGE (V)
VDD = BVDSS
VDD = BVDSS
7.5
22.5
5.0
15.0
0.75BVDSS
0.75BVDSS
0.50BVDSS
0.50BVDSS
0.25BVDSS
0.25BVDSS
RL = 0.43Ω
Ig(REF) = 3.0mA
VGS = 10V
7.5
0
I g ( REF )
20 --------------------I g ( ACT )
2.5
VGS, GATE SOURCE VOLTAGE (V)
10.0
30.0
0
I g ( REF )
80 --------------------I g ( ACT )
t, TIME (µs)
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 12. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
Test Circuits and Waveforms
VDS
BVDSS
L
tP
VARY tP TO OBTAIN
REQUIRED PEAK IAS
+
RG
VDS
IAS
VDD
VDD
-
VGS
DUT
tP
0V
IAS
0
0.01Ω
tAV
FIGURE 13. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 14. UNCLAMPED ENERGY WAVEFORMS
tON
tOFF
td(ON)
VDS
td(OFF)
tf
tr
VDS
90%
90%
RL
VGS
+
DUT
RGS
VGS
-
VDD
90%
VGS
0
FIGURE 15. SWITCHING TIME TEST CIRCUIT
5
10%
10%
0
10%
50%
50%
PULSE WIDTH
FIGURE 16. SWITCHING WAVEFORMS
RFP70N03, RF1S70N03SM
Test Circuits and Waveforms
(Continued)
VDS
VDD
RL
Qg(TOT)
VDS
VGS = 20V
VGS
Qg(10)
+
VDD
DUT
Ig(REF)
VGS = 10V
VGS
-
VGS = 2V
0
Qg(TH)
Ig(REF)
0
FIGURE 17. GATE CHARGE TEST CIRCUIT
6
FIGURE 18. GATE CHARGE WAVEFORM
RFP70N03, RF1S70N03SM
PSPICE Electrical Model
.SUBCKT RFP70N03 2 1 3 ;
*NOM TEMP = 25oC
rev 9/16/92
CA 12 8 6.09e-9
CB 15 14 6.05e-9
CIN 6 8 3.40e-9
DRAIN
2
LDRAIN
5
DBODY 7 5 DBDMOD
DBREAK 5 11 DBKMOD
DPLCAP 10 5 DPLCAPMOD
10
DPLCAP
-
+
GATE
9
1
LGATE
-
EVTO
20
RGATE
18
8
-
VTO
16
+
EBREAK 11 7 17 18 35.4
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTO 20 6 18 8 1
RDRAIN
DBREAK
ESG 6
+ 8
6
MOS1
8
S1A
MOS1 16 6 8 8 MOSMOD M=0.99
MOS2 16 21 8 8 MOSMOD M=0.01
RBREAK 17 18 RBKMOD 1
RDRAIN 5 16 RDSMOD 30.7e-6
RGATE 9 20 0.890
RIN 6 8 1e9
RSOURCE 8 7 RDSMOD 3.92e-3
RVTO 18 19 RVTOMOD 1
13
8
S1B
17
18
CIN
IT 8 17 1
12
11
EBREAK
RIN
LDRAIN 2 5 1e-9
LGATE 1 9 3.10e-9
LSOURCE 3 7 1.82e-9
DBODY
MOS2
21
S2A
15
14
13
S2B
RSOURCE
17
+
7
LSOURCE
RBREAK
18
RVTO
13
CA
+
EGS 6
- 8
CB
14
+
5
EDS 8
IT
-
S1A 6 12 13 8 S1AMOD
S1B 13 12 13 8 S1BMOD
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S2BMOD
VBAT 8 19 DC 1
VTO 21 6 0.605
.MODEL DBDMOD D (IS=7.91e-12 RS=3.87e-3 TRS1=2.71e-3 TRS2=2.50e-7 CJO=4.84e-9 TT=4.51e-8)
.MODEL DBKMOD D (RS=3.9e-2 TRS1=1.05e-4 TRS2=3.11e-5)
.MODEL DPLCAPMOD D (CJO=4.8e-9 IS=1e-30 N=10)
.MODEL MOSMOD NMOS (VTO=3.46 KP=47 IS=1e-30 N=10 TOX=1 L=1u W=1u)
.MODEL RBKMOD RES (TC1=8.46e-4 TC2=-8.48e-7)
.MODEL RDSMOD RES (TC1=2.23e-3 TC2=6.56e-6)
.MODEL RVTOMOD RES (TC1=-3.29e-3 TC2=3.49e-7)
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-8.35 VOFF=-6.35)
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-6.35 VOFF=-8.35)
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2.0 VOFF=3.0)
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=3.0 VOFF=-2.0)
.ENDS
NOTE: For further discussion of the PSPICE model consult A New PSPICE Sub-circuit for the Power MOSFET Featuring Global
Temperature Options; written by William J. Hepp and C. Frank Wheatley.
7
3
SOURCE
19
-
VBAT
+
RFP70N03, RF1S70N03SM
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
8
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029
RFP70N03, RF1S70N03SM
Data Sheet
70A, 30V, 0.010 Ohm, N-Channel Power
MOSFETs
These N-Channel power MOSFETs are manufactured using
the MegaFET process. This process, which uses feature
sizes approaching those of LSI integrated circuits gives
optimum utilization of silicon, resulting in outstanding
performance. They were designed for use in applications
such as switching regulators, switching converters, motor
drivers, and relay drivers. These transistors can be operated
directly from integrated circuits.
Formerly developmental type TA49025.
Ordering Information
PART NUMBER
PACKAGE
BRAND
July 1999
File Number
3404.4
Features
• 70A, 30V
• rDS(ON) = 0.010Ω
• Temperature Compensating PSPICE® Model
• Peak Current vs Pulse Width Curve
• UIS Rating Curve (Single Pulse)
• 175oC Operating Temperature
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
Components to PC Boards”
Symbol
D
RFP70N03
TO-220AB
RFP70N03
RF1S70N03SM
TO-263AB
F1S70N03
G
NOTE: When ordering, use the entire part number. Add the suffix 9A to
obtain the TO-263AB variant in tape and reel, e.g., RF1S70N03SM9A
S
Packaging
JEDEC TO-220AB
JEDEC TO-263AB
SOURCE
DRAIN
GATE
DRAIN
(FLANGE)
DRAIN
(FLANGE)
GATE
SOURCE
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
PSPICE® is a registered trademark of MicroSim Corporation.
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999
RFP70N03, RF1S70N03SM
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
Drain Current
Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from case for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL
Package Body for 10s, see Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
UNITS
V
V
V
30
30
±20
70
200
Figures 5, 13, 14
150
1.0
-55 to 175
A
A
W
W/oC
oC
300
260
oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 150oC.
TC = 25oC, Unless Otherwise Specified
Electrical Specifications
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
Drain to Source Breakdown Voltage
BVDSS
ID = 250µA, VGS = 0V (Figure 10)
30
-
-
V
Gate to Source Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA (Figure 9)
2
-
4
V
VDS = 30V, VGS = 0V
-
-
1
µA
VDS = 30V, VGS = 0V, TC = 150oC
-
-
50
µA
VGS = ±20V
-
-
100
nA
ID = 70A, VGS = 10V (Figure 8)
-
-
0.010
Ω
VDD = 15V, ID ≅ 70A,
RL = 0.214Ω, VGS = 10V,
RGS = 2.5Ω
-
-
80
ns
-
20
-
ns
tr
-
20
-
ns
td(OFF)
-
40
-
ns
tf
-
25
-
ns
tOFF
-
-
125
ns
-
215
260
nC
-
120
145
nC
-
6.5
8.0
nC
-
3300
-
pF
-
1750
-
pF
-
750
-
pF
Zero Gate Voltage Drain Current
IDSS
Gate to Source Leakage Current
IGSS
Drain to Source On Resistance
rDS(ON)
Turn-On Time
tON
Turn-On Delay Time
td(ON)
Rise Time
Turn-Off Delay Time
Fall Time
Turn-Off Time
Total Gate Charge
Qg(TOT)
VGS = 0V to 20V
Gate Charge at 10V
Qg(10)
VGS = 0V to 10V
Threshold Gate Charge
Qg(TH)
VGS = 0V to 2V
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
VDD = 24V, ID ≅ 70A,
RL = 0.343Ω
Ig(REF) = 1.0mA
(Figure 12)
VDS = 25V, VGS = 0V,
f = 1MHz
(Figure 11)
Thermal Resistance Junction to Case
RθJC
(Figure 3)
-
-
1.0
oC/W
Thermal Resistance Junction to Ambient
RθJA
TO-220, TO-263
-
-
62
oC/W
MIN
TYP
MAX
UNITS
ISD = 70A
-
-
1.5
V
ISD = 70A, dISD/dt = 100A/µs
-
-
125
ns
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Source to Drain Diode Voltage
VSD
Reverse Recovery Time
trr
2
TEST CONDITIONS
RFP70N03, RF1S70N03SM
Typical Performance Curves
80
POWER DISSIPATION MULTIPLIER
1.2
70
ID, DRAIN CURRENT (A)
1.0
0.8
0.6
0.4
0.2
60
50
40
30
20
10
0
0
0
25
125
50
75
100
TC , CASE TEMPERATURE (oC)
175
150
25
ZθJC, NORMALIZED THERMAL IMPEDANCE
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
50
75
100
125
TC, CASE TEMPERATURE (oC)
150
175
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
100
0.5
0.2
10-1
PDM
0.1
0.05
t1
t2
0.02
0.01
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
SINGLE PULSE
10-2 -5
10
10-4
10-3
10-2
10-1
t1, RECTANGULAR PULSE DURATION (s)
10-0
101
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
300
100µs
ID, DRAIN CURRENT (A)
100
1ms
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
10
10ms
100ms
DC
TC = 25oC
TJ = MAX RATED
SINGLE PULSE
1
VDSS(MAX) = 30V
10
1
VDS, DRAIN TO SOURCE VOLTAGE (V)
IAS, AVALANCHE CURRENT (A)
300
IDM
100
If R = 0
tAV = (L) (IAS)/(1.3 x RATED BVDSS - VDD)
10
50
STARTING TJ = 25oC
STARTING TJ = 150oC
If R ≠ 0
tAV = (L/R) ln [(IAS x R)/(1.3 x RATED BVDSS - VDD) +1]
0.01
0.10
1
10
tAV, TIME IN AVALANCHE (ms)
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA
3
FIGURE 5. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
RFP70N03, RF1S70N03SM
Typical Performance Curves
200
VGS = 10V
(Continued)
200
VGS = 8V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
VGS = 7V
160
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TC = 25oC
120
DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
160
VGS = 6V
80
VGS = 5V
-55oC
25oC
120
175oC
80
40
40
VGS = 4V
0
0
0
1.5
3.0
4.5
6.0
7.5
0
2
4
6
8
VGS, GATE TO SOURCE VOLTAGE (V)
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 6. SATURATION CHARACTERISTICS
FIGURE 7. TRANSFER CHARACTERISTICS
2.0
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS = 10V, ID = 70A
VGS = VDS , ID = 250µA
NORMALIZED
GATE THRESHOLD VOLTAGE
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
2.0
1.5
1.0
0.5
0
-80
-40
0
40
80
120
160
1.6
1.2
0.8
0.4
0
-80
200
-40
TJ, JUNCTION TEMPERATURE (oC)
40
80
120
160
200
FIGURE 9. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
7000
2.0
ID = 250µA
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS = CDS + CGD
6000
1.6
C, CAPACITANCE (pF)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
0
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 8. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
1.2
0.8
5000
CISS
4000
3000
COSS
2000
0.4
CRSS
1000
0
-80
10
-40
0
40
80
120
160
200
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
4
0
0
5
10
15
20
25
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
RFP70N03, RF1S70N03SM
Typical Performance Curves
(Continued)
VDS, DRAIN SOURCE VOLTAGE (V)
VDD = BVDSS
VDD = BVDSS
7.5
22.5
5.0
15.0
0.75BVDSS
0.75BVDSS
0.50BVDSS
0.50BVDSS
0.25BVDSS
0.25BVDSS
RL = 0.43Ω
Ig(REF) = 3.0mA
VGS = 10V
7.5
0
I g ( REF )
20 --------------------I g ( ACT )
2.5
VGS, GATE SOURCE VOLTAGE (V)
10.0
30.0
0
I g ( REF )
80 --------------------I g ( ACT )
t, TIME (µs)
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 12. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
Test Circuits and Waveforms
VDS
BVDSS
L
tP
VARY tP TO OBTAIN
REQUIRED PEAK IAS
+
RG
VDS
IAS
VDD
VDD
-
VGS
DUT
tP
0V
IAS
0
0.01Ω
tAV
FIGURE 13. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 14. UNCLAMPED ENERGY WAVEFORMS
tON
tOFF
td(ON)
VDS
td(OFF)
tf
tr
VDS
90%
90%
RL
VGS
+
DUT
RGS
VGS
-
VDD
90%
VGS
0
FIGURE 15. SWITCHING TIME TEST CIRCUIT
5
10%
10%
0
10%
50%
50%
PULSE WIDTH
FIGURE 16. SWITCHING WAVEFORMS
RFP70N03, RF1S70N03SM
Test Circuits and Waveforms
(Continued)
VDS
VDD
RL
Qg(TOT)
VDS
VGS = 20V
VGS
Qg(10)
+
VDD
DUT
Ig(REF)
VGS = 10V
VGS
-
VGS = 2V
0
Qg(TH)
Ig(REF)
0
FIGURE 17. GATE CHARGE TEST CIRCUIT
6
FIGURE 18. GATE CHARGE WAVEFORM
RFP70N03, RF1S70N03SM
PSPICE Electrical Model
.SUBCKT RFP70N03 2 1 3 ;
*NOM TEMP = 25oC
rev 9/16/92
CA 12 8 6.09e-9
CB 15 14 6.05e-9
CIN 6 8 3.40e-9
DRAIN
2
LDRAIN
5
DBODY 7 5 DBDMOD
DBREAK 5 11 DBKMOD
DPLCAP 10 5 DPLCAPMOD
10
DPLCAP
-
+
GATE
9
1
LGATE
-
EVTO
20
RGATE
18
8
-
VTO
16
+
EBREAK 11 7 17 18 35.4
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTO 20 6 18 8 1
RDRAIN
DBREAK
ESG 6
+ 8
6
MOS1
8
S1A
MOS1 16 6 8 8 MOSMOD M=0.99
MOS2 16 21 8 8 MOSMOD M=0.01
RBREAK 17 18 RBKMOD 1
RDRAIN 5 16 RDSMOD 30.7e-6
RGATE 9 20 0.890
RIN 6 8 1e9
RSOURCE 8 7 RDSMOD 3.92e-3
RVTO 18 19 RVTOMOD 1
13
8
S1B
17
18
CIN
IT 8 17 1
12
11
EBREAK
RIN
LDRAIN 2 5 1e-9
LGATE 1 9 3.10e-9
LSOURCE 3 7 1.82e-9
DBODY
MOS2
21
S2A
15
14
13
S2B
RSOURCE
17
+
7
LSOURCE
RBREAK
18
RVTO
13
CA
+
EGS 6
- 8
CB
14
+
5
EDS 8
IT
-
S1A 6 12 13 8 S1AMOD
S1B 13 12 13 8 S1BMOD
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S2BMOD
VBAT 8 19 DC 1
VTO 21 6 0.605
.MODEL DBDMOD D (IS=7.91e-12 RS=3.87e-3 TRS1=2.71e-3 TRS2=2.50e-7 CJO=4.84e-9 TT=4.51e-8)
.MODEL DBKMOD D (RS=3.9e-2 TRS1=1.05e-4 TRS2=3.11e-5)
.MODEL DPLCAPMOD D (CJO=4.8e-9 IS=1e-30 N=10)
.MODEL MOSMOD NMOS (VTO=3.46 KP=47 IS=1e-30 N=10 TOX=1 L=1u W=1u)
.MODEL RBKMOD RES (TC1=8.46e-4 TC2=-8.48e-7)
.MODEL RDSMOD RES (TC1=2.23e-3 TC2=6.56e-6)
.MODEL RVTOMOD RES (TC1=-3.29e-3 TC2=3.49e-7)
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-8.35 VOFF=-6.35)
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-6.35 VOFF=-8.35)
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2.0 VOFF=3.0)
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=3.0 VOFF=-2.0)
.ENDS
NOTE: For further discussion of the PSPICE model consult A New PSPICE Sub-circuit for the Power MOSFET Featuring Global
Temperature Options; written by William J. Hepp and C. Frank Wheatley.
7
3
SOURCE
19
-
VBAT
+
RFP70N03, RF1S70N03SM
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
8
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029