INTERSIL HUF75229P3

HUF75229P3
Data Sheet
June 1998
44A, 50V, 0.022 Ohm, N-Channel UltraFET
Power MOSFET
This N-Channel power MOSFET is
manufactured using the innovative
UltraFET™ process. This advanced
process technology achieves the
lowest possible on-resistance per silicon area, resulting in
outstanding performance. This device is capable of
withstanding high energy in the avalanche mode and the
diode exhibits very low reverse recovery time and stored
charge. It was designed for use in applications where power
efficiency is important, such as switching regulators,
switching converters, motor drivers, relay drivers, lowvoltage bus switches, and power management in portable
and battery-operated products.
HUF75229P3
• 44A, 50V
• Low On-Resistance, rDS(ON) = 0.022Ω
• Temperature Compensating PSPICE Model
• Thermal Impedance SPICE Model
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
• Related Literature
- TB334, “Guidelines for Soldering Surface Mount
Components to PC Boards”
Symbol
D
PACKAGE
TO-220AB
4536.1
Features
Ordering Information
PART NUMBER
File Number
BRAND
G
75229P
NOTE: When ordering use the entire part number.
S
Packaging
JEDEC TO-220AB
SOURCE
DRAIN
GATE
DRAIN
(FLANGE)
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
UltraFET is a trademark of Intersil Corporation.
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999
HUF75229P3
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
Drain Current
Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .EAS
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body for 10s, See Techbrief 334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
UNITS
V
V
V
50
50
±20
44
Figure 5
Figure 6, 14, 15
90
0.6
-55 to 175
A
W
W/oC
oC
300
260
oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 150oC.
TC = 25oC, Unless Otherwise Specified
Electrical Specifications
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
Drain to Source Breakdown Voltage
BVDSS
ID = 250µA, VGS = 0V (Figure 11)
50
-
-
V
Gate to Source Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA (Figure 10)
2
-
4
V
VDS = 45V, VGS = 0V
-
-
1
µA
VDS = 40V, VGS = 0V, TC = 150oC
-
-
250
µA
VGS = ±20V
-
-
±100
nA
0.017
0.020
0.022
Ω
Zero Gate Voltage Drain Current
IDSS
Gate to Source Leakage Current
IGSS
Drain to Source On Resistance
rDS(ON)
Turn-On Time
tON
-
-
105
ns
12
-
ns
-
58
-
ns
td(OFF)
-
33
-
ns
tf
-
33
-
ns
tOFF
-
-
100
ns
-
60
75
nC
-
35
43
nC
-
2.0
2.5
nC
-
1060
-
pF
-
405
-
pF
-
95
-
pF
td(ON)
Rise Time
tr
Fall Time
Turn-Off Time
Total Gate Charge
VDD = 30V, ID ≅ 44A,
RL = 0.68Ω, VGS = 10V,
RGS = 9.1Ω
(Figures 18, 19)
-
Turn-On Delay Time
Turn-Off Delay Time
ID = 44A, VGS = 10V (Figure 9)
Qg(TOT)
VGS = 0V to 20V
Gate Charge at 10V
Qg(10)
VGS = 0V to 10V
Threshold Gate Charge
Qg(TH)
VGS = 0V to 2V
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
VDD = 30V,
ID ≅ 44A,
RL = 0.68Ω
Ig(REF) = 1.0mA
(Figures 13, 16, 17)
VDS = 25V, VGS = 0V,
f = 1MHz
(Figure 12)
Thermal Resistance Junction to Case
RθJC
(Figure 3)
-
-
1.66
oC/W
Thermal Resistance Junction to Ambient
RθJA
TO-220
-
-
62
oC/W
MIN
TYP
MAX
UNITS
ISD = 44A
-
-
1.25
V
trr
ISD = 44A, dISD/dt = 100A/µs
-
-
72
ns
QRR
ISD = 44A, dISD/dt = 100A/µs
-
-
120
nC
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Source to Drain Diode Voltage
VSD
Reverse Recovery Time
Reverse Recovered Charge
2
TEST CONDITIONS
HUF75229P3
Typical Performance Curves
POWER DISSIPATION MULTIPLIER
1.2
50
ID, DRAIN CURRENT (A)
1.0
0.8
0.6
0.4
0.2
0
40
30
20
10
0
0
25
50
75
100
125
150
175
25
50
TC , CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
2
THERMAL IMPEDANCE
ZθJC, NORMALIZED
1
75
100
125
TC, CASE TEMPERATURE (oC)
150
175
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
PDM
0.1
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
SINGLE PULSE
0.01
10-5
10-4
10-3
10-2
10-1
t, RECTANGULAR PULSE DURATION (s)
100
101
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
200
IDM, PEAK CURRENT (A)
100
ID, DRAIN CURRENT (A)
400
TJ = MAX RATED
TC = 25oC
100µs
10
1ms
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON) BVDSS MAX = 50V
10ms
1
1
10
100
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA
3
200
TC = 25oC FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
I
100
= I25
175 - TC
150
VGS = 10V
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
40
10-5
10-4
10-3
10-2
10-1
t, PULSE WIDTH (s)
100
FIGURE 5. PEAK CURRENT CAPABILITY
101
HUF75229P3
Typical Performance Curves
100
300
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
ID, DRAIN CURRENT (A)
IAS, AVALANCHE CURRENT (A)
(Continued)
100
STARTING TJ = 25oC
STARTING TJ = 150oC
10
0.001
0.01
0.1
1
tAV, TIME IN AVALANCHE (ms)
VGS = 20V
VGS = 10V
VGS = 8V
VGS = 7V
80
VGS = 6V
60
40
VGS = 5V
20
0
10
PULSE DURATION = 250µs
TC = 25oC
0
1
2
3
4
VDS, DRAIN TO SOURCE VOLTAGE (V)
5
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
CAPABILITY
PULSE TEST
PULSE DURATION = 250µs
DUTY CYCLE = 0.5% MAX
80
-55oC
175oC
60
40
20
25oC
0
0
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
2.5
100
ID, DRAIN CURRENT (A)
FIGURE 7. SATURATION CHARACTERISTICS
VDD = 15V
1.5
3.0
4.5
6.0
VGS, GATE TO SOURCE VOLTAGE (V)
1.5
1.0
-40
0
40
80
120
160
200
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
1.2
1.2
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
VGS = VDS, ID = 250µA
NORMALIZED GATE
THRESHOLD VOLTAGE
2.0
0.5
-80
7.5
FIGURE 8. TRANSFER CHARACTERISTICS
1.0
0.8
0.6
0.4
-80
PULSE DURATION = 250µs, VGS = 10V, ID = 44A
-40
0
40
80
120
160
200
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
4
ID = 250µA
1.1
1.0
0.9
0.8
-80
-40
0
40
80
120
160
200
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
HUF75229P3
Typical Performance Curves
(Continued)
10
1500
VGS , GATE TO SOURCE VOLTAGE (V)
VGS = 0V, f = 1MHz
C, CAPACITANCE (pF)
1200
CISS
900
600
COSS
300
CRSS
8
6
4
0
10
20
30
40
VDS , DRAIN TO SOURCE VOLTAGE (V)
50
WAVEFORMS IN
DESCENDING ORDER:
ID = 44A
ID = 27A
ID = 11A
2
0
0
VDD = 30V
0
5
10
25
15
20
Qg, GATE CHARGE (nC)
30
35
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT
GATE CURRENT
Test Circuits and Waveforms
VDS
BVDSS
L
tP
VARY tP TO OBTAIN
REQUIRED PEAK IAS
+
RG
VDS
IAS
VDD
VDD
-
VGS
DUT
tP
0V
IAS
0
0.01Ω
tAV
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
VDS
VDD
RL
Qg(TOT)
VDS
VGS = 20V
VGS
Qg(10)
+
VDD
DUT
IG(REF)
VGS = 10V
VGS
-
VGS = 2V
0
Qg(TH)
Ig(REF)
0
FIGURE 16. GATE CHARGE TEST CIRCUIT
5
FIGURE 17. GATE CHARGE WAVEFORM
HUF75229P3
Test Circuits and Waveforms
(Continued)
VDS
tON
tOFF
td(ON)
td(OFF)
tf
tr
RL
VDS
90%
90%
+
VGS
-
VDD
10%
10%
0
DUT
90%
RGS
VGS
VGS
0
FIGURE 18. SWITCHING TIME TEST CIRCUIT
6
10%
50%
50%
PULSE WIDTH
FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
HUF75229P3
PSPICE Electrical Model
SUBCKT HUF75229P3 2 1 3 ;
rev 6/19/97
CA 12 8 1.72e-9
CB 15 14 1.52e-9
CIN 6 8 9.61e-10
LDRAIN
DPLCAP
DRAIN
2
5
10
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
EVTHRES
+ 19 8
+
LGATE
+
17
EBREAK 18
RDRAIN
6
8
ESG
EVTEMP
RGATE +
18 22
9
20
21
DBODY
-
16
MWEAK
6
MMED
MSTRO
RLGATE
LSOURCE
CIN
8
SOURCE
3
7
RSOURCE
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RLSOURCE
S1A
12
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 1e-3
RGATE 9 20 1.52
RLDRAIN 2 5 10
RLGATE 1 9 26.9
RLSOURCE 3 7 28.6
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 13.85e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A
S1B
S2A
S2B
11
50
-
GATE
1
LDRAIN 2 5 1e-9
LGATE 1 9 2.86e-9
LSOURCE 3 7 2.69e-9
ESLC
-
IT 8 17 1
DBREAK
+
RSLC2
5
51
EBREAK 11 7 17 18 58.13
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
RLDRAIN
RSLC1
51
S2A
13
8
14
13
S1B
CA
RBREAK
15
17
18
RVTEMP
S2B
13
CB
6
8
VBAT
5
8
EDS
-
-
IT
14
+
+
EGS
19
-
+
8
22
RVTHRES
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*135),3.5))}
.MODEL DBODYMOD D (IS = 7.50e-13 RS = 5.05e-3 TRS1 = 2.21e-3 TRS2 = 1.02e-6 CJO = 1.51e-9 TT = 4.05e-8 M = 0.5)
.MODEL DBREAKMOD D (RS = 2.14e-1 TRS1 = 9.62e-4 TRS2 = 1.23e-6)
.MODEL DPLCAPMOD D (CJO = 13.5e-10 IS = 1e-30 N = 10 M = 0.85)
.MODEL MMEDMOD NMOS (VTO = 3.25 KP = 2.50 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.52)
.MODEL MSTROMOD NMOS (VTO = 3.80 KP = 70.0 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 2.91 KP = 0.06 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 15.2 RS = 0.1)
.MODEL RBREAKMOD RES (TC1 = 1.05e-3 TC2 = 1.94e-7)
.MODEL RDRAINMOD RES (TC1 = 8.04e-2 TC2 = 1.37e-4)
.MODEL RSLCMOD RES (TC1 = 4.83e-3 TC2 = 1.16e-6)
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0)
.MODEL RVTHRESMOD RES (TC = -3.43e-3 TC2 = -1.63e-5)
.MODEL RVTEMPMOD RES (TC1 = -1.35e-3 TC2 = 1.16e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5
.MODEL S1BMOD VSWITCH (RON = 1e-5
.MODEL S2AMOD VSWITCH (RON = 1e-5
.MODEL S2AMOD VSWITCH (RON = 1e-5
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
VON = -7.90 VOFF= -4.90)
VON = -4.90 VOFF= -7.90)
VON = -0.50 VOFF= 2.50)
VON = 2.50 VOFF= -0.50)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
7
HUF75229P3
SPICE Thermal Model
7
JUNCTION
REV 16 June 97
HUF75229P3
RTHERM1
CTHERM1 7 6 4.90e-7
CTHERM2 6 5 4.90e-4
CTHERM3 5 4 1.96e-3
CTHERM4 4 3 7.90e-3
CTHERM5 3 2 1.85e-1
CTHERM6 2 1 2.70
CTHERM1
6
RTHERM2
RTHERM1 7 6 1.10e-2
RTHERM2 6 5 3.30e-2
RTHERM3 5 4 1.64e-1
RTHERM4 4 3 7.90e-1
RTHERM5 3 2 3.60e-1
RTHERM6 2 1 1.60e-1
CTHERM2
5
RTHERM3
CTHERM3
4
RTHERM4
CTHERM4
3
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
1
CASE
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
8