HUF75229P3 Data Sheet June 1998 44A, 50V, 0.022 Ohm, N-Channel UltraFET Power MOSFET This N-Channel power MOSFET is manufactured using the innovative UltraFET™ process. This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, lowvoltage bus switches, and power management in portable and battery-operated products. HUF75229P3 • 44A, 50V • Low On-Resistance, rDS(ON) = 0.022Ω • Temperature Compensating PSPICE Model • Thermal Impedance SPICE Model • Peak Current vs Pulse Width Curve • UIS Rating Curve • Related Literature - TB334, “Guidelines for Soldering Surface Mount Components to PC Boards” Symbol D PACKAGE TO-220AB 4536.1 Features Ordering Information PART NUMBER File Number BRAND G 75229P NOTE: When ordering use the entire part number. S Packaging JEDEC TO-220AB SOURCE DRAIN GATE DRAIN (FLANGE) 1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. UltraFET is a trademark of Intersil Corporation. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 HUF75229P3 Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .EAS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief 334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg UNITS V V V 50 50 ±20 44 Figure 5 Figure 6, 14, 15 90 0.6 -55 to 175 A W W/oC oC 300 260 oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 150oC. TC = 25oC, Unless Otherwise Specified Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Drain to Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V (Figure 11) 50 - - V Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 10) 2 - 4 V VDS = 45V, VGS = 0V - - 1 µA VDS = 40V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±20V - - ±100 nA 0.017 0.020 0.022 Ω Zero Gate Voltage Drain Current IDSS Gate to Source Leakage Current IGSS Drain to Source On Resistance rDS(ON) Turn-On Time tON - - 105 ns 12 - ns - 58 - ns td(OFF) - 33 - ns tf - 33 - ns tOFF - - 100 ns - 60 75 nC - 35 43 nC - 2.0 2.5 nC - 1060 - pF - 405 - pF - 95 - pF td(ON) Rise Time tr Fall Time Turn-Off Time Total Gate Charge VDD = 30V, ID ≅ 44A, RL = 0.68Ω, VGS = 10V, RGS = 9.1Ω (Figures 18, 19) - Turn-On Delay Time Turn-Off Delay Time ID = 44A, VGS = 10V (Figure 9) Qg(TOT) VGS = 0V to 20V Gate Charge at 10V Qg(10) VGS = 0V to 10V Threshold Gate Charge Qg(TH) VGS = 0V to 2V Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDD = 30V, ID ≅ 44A, RL = 0.68Ω Ig(REF) = 1.0mA (Figures 13, 16, 17) VDS = 25V, VGS = 0V, f = 1MHz (Figure 12) Thermal Resistance Junction to Case RθJC (Figure 3) - - 1.66 oC/W Thermal Resistance Junction to Ambient RθJA TO-220 - - 62 oC/W MIN TYP MAX UNITS ISD = 44A - - 1.25 V trr ISD = 44A, dISD/dt = 100A/µs - - 72 ns QRR ISD = 44A, dISD/dt = 100A/µs - - 120 nC Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage VSD Reverse Recovery Time Reverse Recovered Charge 2 TEST CONDITIONS HUF75229P3 Typical Performance Curves POWER DISSIPATION MULTIPLIER 1.2 50 ID, DRAIN CURRENT (A) 1.0 0.8 0.6 0.4 0.2 0 40 30 20 10 0 0 25 50 75 100 125 150 175 25 50 TC , CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE 2 THERMAL IMPEDANCE ZθJC, NORMALIZED 1 75 100 125 TC, CASE TEMPERATURE (oC) 150 175 FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 t, RECTANGULAR PULSE DURATION (s) 100 101 FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 200 IDM, PEAK CURRENT (A) 100 ID, DRAIN CURRENT (A) 400 TJ = MAX RATED TC = 25oC 100µs 10 1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) BVDSS MAX = 50V 10ms 1 1 10 100 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 4. FORWARD BIAS SAFE OPERATING AREA 3 200 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: I 100 = I25 175 - TC 150 VGS = 10V TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 40 10-5 10-4 10-3 10-2 10-1 t, PULSE WIDTH (s) 100 FIGURE 5. PEAK CURRENT CAPABILITY 101 HUF75229P3 Typical Performance Curves 100 300 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] ID, DRAIN CURRENT (A) IAS, AVALANCHE CURRENT (A) (Continued) 100 STARTING TJ = 25oC STARTING TJ = 150oC 10 0.001 0.01 0.1 1 tAV, TIME IN AVALANCHE (ms) VGS = 20V VGS = 10V VGS = 8V VGS = 7V 80 VGS = 6V 60 40 VGS = 5V 20 0 10 PULSE DURATION = 250µs TC = 25oC 0 1 2 3 4 VDS, DRAIN TO SOURCE VOLTAGE (V) 5 NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY PULSE TEST PULSE DURATION = 250µs DUTY CYCLE = 0.5% MAX 80 -55oC 175oC 60 40 20 25oC 0 0 NORMALIZED DRAIN TO SOURCE ON RESISTANCE 2.5 100 ID, DRAIN CURRENT (A) FIGURE 7. SATURATION CHARACTERISTICS VDD = 15V 1.5 3.0 4.5 6.0 VGS, GATE TO SOURCE VOLTAGE (V) 1.5 1.0 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC) FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 1.2 1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE VGS = VDS, ID = 250µA NORMALIZED GATE THRESHOLD VOLTAGE 2.0 0.5 -80 7.5 FIGURE 8. TRANSFER CHARACTERISTICS 1.0 0.8 0.6 0.4 -80 PULSE DURATION = 250µs, VGS = 10V, ID = 44A -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 4 ID = 250µA 1.1 1.0 0.9 0.8 -80 -40 0 40 80 120 160 200 TJ , JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE HUF75229P3 Typical Performance Curves (Continued) 10 1500 VGS , GATE TO SOURCE VOLTAGE (V) VGS = 0V, f = 1MHz C, CAPACITANCE (pF) 1200 CISS 900 600 COSS 300 CRSS 8 6 4 0 10 20 30 40 VDS , DRAIN TO SOURCE VOLTAGE (V) 50 WAVEFORMS IN DESCENDING ORDER: ID = 44A ID = 27A ID = 11A 2 0 0 VDD = 30V 0 5 10 25 15 20 Qg, GATE CHARGE (nC) 30 35 NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT Test Circuits and Waveforms VDS BVDSS L tP VARY tP TO OBTAIN REQUIRED PEAK IAS + RG VDS IAS VDD VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS VDS VDD RL Qg(TOT) VDS VGS = 20V VGS Qg(10) + VDD DUT IG(REF) VGS = 10V VGS - VGS = 2V 0 Qg(TH) Ig(REF) 0 FIGURE 16. GATE CHARGE TEST CIRCUIT 5 FIGURE 17. GATE CHARGE WAVEFORM HUF75229P3 Test Circuits and Waveforms (Continued) VDS tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + VGS - VDD 10% 10% 0 DUT 90% RGS VGS VGS 0 FIGURE 18. SWITCHING TIME TEST CIRCUIT 6 10% 50% 50% PULSE WIDTH FIGURE 19. RESISTIVE SWITCHING WAVEFORMS HUF75229P3 PSPICE Electrical Model SUBCKT HUF75229P3 2 1 3 ; rev 6/19/97 CA 12 8 1.72e-9 CB 15 14 1.52e-9 CIN 6 8 9.61e-10 LDRAIN DPLCAP DRAIN 2 5 10 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD EVTHRES + 19 8 + LGATE + 17 EBREAK 18 RDRAIN 6 8 ESG EVTEMP RGATE + 18 22 9 20 21 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN 8 SOURCE 3 7 RSOURCE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RLSOURCE S1A 12 RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 1e-3 RGATE 9 20 1.52 RLDRAIN 2 5 10 RLGATE 1 9 26.9 RLSOURCE 3 7 28.6 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 13.85e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B 11 50 - GATE 1 LDRAIN 2 5 1e-9 LGATE 1 9 2.86e-9 LSOURCE 3 7 2.69e-9 ESLC - IT 8 17 1 DBREAK + RSLC2 5 51 EBREAK 11 7 17 18 58.13 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RLDRAIN RSLC1 51 S2A 13 8 14 13 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 VBAT 5 8 EDS - - IT 14 + + EGS 19 - + 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*135),3.5))} .MODEL DBODYMOD D (IS = 7.50e-13 RS = 5.05e-3 TRS1 = 2.21e-3 TRS2 = 1.02e-6 CJO = 1.51e-9 TT = 4.05e-8 M = 0.5) .MODEL DBREAKMOD D (RS = 2.14e-1 TRS1 = 9.62e-4 TRS2 = 1.23e-6) .MODEL DPLCAPMOD D (CJO = 13.5e-10 IS = 1e-30 N = 10 M = 0.85) .MODEL MMEDMOD NMOS (VTO = 3.25 KP = 2.50 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.52) .MODEL MSTROMOD NMOS (VTO = 3.80 KP = 70.0 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 2.91 KP = 0.06 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 15.2 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.05e-3 TC2 = 1.94e-7) .MODEL RDRAINMOD RES (TC1 = 8.04e-2 TC2 = 1.37e-4) .MODEL RSLCMOD RES (TC1 = 4.83e-3 TC2 = 1.16e-6) .MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0) .MODEL RVTHRESMOD RES (TC = -3.43e-3 TC2 = -1.63e-5) .MODEL RVTEMPMOD RES (TC1 = -1.35e-3 TC2 = 1.16e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -7.90 VOFF= -4.90) VON = -4.90 VOFF= -7.90) VON = -0.50 VOFF= 2.50) VON = 2.50 VOFF= -0.50) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 7 HUF75229P3 SPICE Thermal Model 7 JUNCTION REV 16 June 97 HUF75229P3 RTHERM1 CTHERM1 7 6 4.90e-7 CTHERM2 6 5 4.90e-4 CTHERM3 5 4 1.96e-3 CTHERM4 4 3 7.90e-3 CTHERM5 3 2 1.85e-1 CTHERM6 2 1 2.70 CTHERM1 6 RTHERM2 RTHERM1 7 6 1.10e-2 RTHERM2 6 5 3.30e-2 RTHERM3 5 4 1.64e-1 RTHERM4 4 3 7.90e-1 RTHERM5 3 2 3.60e-1 RTHERM6 2 1 1.60e-1 CTHERM2 5 RTHERM3 CTHERM3 4 RTHERM4 CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 1 CASE All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com 8