FDB045AN08A0_F085 N-Channel PowerTrench® MOSFET 75V, 80A, 4.5m: Features Applications • rDS(ON) = 3.9m: (Typ.), VGS = 10V, ID = 80A • 42V Automotive Load Control • Qg(tot) = 92nC (Typ.), VGS = 10V • Starter / Alternator Systems • Low Miller Charge • Electronic Power Steering Systems • Low QRR Body Diode • Electronic Valve Train Systems • UIS Capability (Single Pulse and Repetitive Pulse) • DC-DC converters and Off-line UPS • Qualified to AEC Q101 • Distributed Power Architectures and VRMs • RoHS Compliant • Primary Switch for 24V and 48V systems Formerly developmental type 82684 D GATE G SOURCE TO-263AB FDB SERIES DRAIN (FLANGE) S MOSFET Maximum Ratings TC = 25°C unless otherwise noted Symbol VDSS VGS ID EAS PD TJ, TSTG Parameter Ratings Units Drain to Source Voltage 75 V Gate to Source Voltage r20 V 90 19 A A Drain Current Continuous (TC < 137oC, VGS = 10V) Continuous (Tamb = 25oC, VGS = 10V, with RTJA = 43oC/W) Pulsed Single Pulse Avalanche Energy (Note 1) Power dissipation Derate above 25oC Operating and Storage Temperature Figure 4 A 600 mJ 310 W 2.0 -55 to 175 W/oC o C Thermal Characteristics o RTJC Thermal Resistance Junction to Case TO-263 RTJA Thermal Resistance Junction to Ambient TO-263 (Note 2) 62 oC/W RTJA Thermal Resistance Junction to Ambient TO-263, 1in2 copper pad area 43 o 0.48 C/W C/W This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/ Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html. All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification. ©2010 Fairchild Semiconductor Corporation FDB045AN08A0_F085 Rev. A www.fairchildsemi.com FDB045AN08A0_F085 N-Channel PowerTrench® MOSFET June 2010 Device Marking FDB045AN08A0 Device FDB045AN08A0_F085 Package TO-263AB Reel Size 330mm Tape Width 24mm Quantity 800 units Electrical Characteristics TC = 25°C unless otherwise noted Symbol Parameter Test Conditions Min Typ Max Units 75 - - - V - 1 - - 250 VGS = r20V - - r100 nA - 4 V Off Characteristics BVDSS Drain to Source Breakdown Voltage IDSS Zero Gate Voltage Drain Current IGSS Gate to Source Leakage Current ID = 250PA, VGS = 0V VDS = 60V VGS = 0V TC = 150oC PA On Characteristics VGS(TH) rDS(ON) Gate to Source Threshold Voltage Drain to Source On Resistance VGS = VDS, ID = 250PA 2 ID = 80A, VGS = 10V - 0.0039 0.0045 ID = 37A, VGS = 6V - 0.0056 0.0084 ID = 80A, VGS = 10V, TJ = 175oC - 0.008 0.011 - 6600 - - 1000 - pF - 240 - pF nC : Dynamic Characteristics CISS Input Capacitance COSS Output Capacitance CRSS Reverse Transfer Capacitance VDS = 25V, VGS = 0V, f = 1MHz Qg(TOT) Total Gate Charge at 10V VGS = 0V to 10V Qg(TH) Threshold Gate Charge VGS = 0V to 2V Qgs Gate to Source Gate Charge Qgs2 Gate Charge Threshold to Plateau Qgd Gate to Drain “Miller” Charge VDD = 40V ID = 80A Ig = 1.0mA pF 92 138 - 11 17 nC - 27 - nC - 16 - nC - 21 - nC Switching Characteristics (VGS = 10V) tON Turn-On Time - - 160 ns td(ON) Turn-On Delay Time - 18 - ns tr Rise Time - 88 - ns td(OFF) Turn-Off Delay Time - 40 - ns tf Fall Time - 45 - ns tOFF Turn-Off Time - - 128 ns ISD = 80A - - 1.25 V ISD = 40A - - 1.0 V VDD = 40V, ID = 80A VGS = 10V, RGS = 3.3: Drain-Source Diode Characteristics VSD Source to Drain Diode Voltage trr Reverse Recovery Time ISD = 75A, dISD/dt = 100A/Ps - - 53 ns QRR Reverse Recovered Charge ISD = 75A, dISD/dt = 100A/Ps - - 54 nC Notes: 1: Starting TJ = 25°C, L = 0.48mH, IAS = 50A. 2: Pulse Width = 100s FDB045AN08A0_F085 Rev. A www.fairchildsemi.com FDB045AN08A0_F085 N-Channel PowerTrench® MOSFET Package Marking and Ordering Information POWER DISSIPATION MULTIPLIER 1.2 200 CURRENT LIMITED BY PACKAGE ID, DRAIN CURRENT (A) 1.0 0.8 0.6 0.4 160 120 80 40 0.2 0 0 25 50 75 100 150 125 0 175 25 50 75 TC , CASE TEMPERATURE (oC) 100 125 150 175 TC, CASE TEMPERATURE (oC) Figure 1. Normalized Power Dissipation vs Ambient Temperature Figure 2. Maximum Continuous Drain Current vs Case Temperature 2 ZTJC, NORMALIZED THERMAL IMPEDANCE 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZTJC x RTJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) Figure 3. Normalized Maximum Transient Thermal Impedance 2000 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK IDM, PEAK CURRENT (A) 1000 CURRENT AS FOLLOWS: 175 - TC I = I25 VGS = 10V 150 100 50 10-5 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10-4 10-3 10-2 10-1 100 101 t, PULSE WIDTH (s) Figure 4. Peak Current Capability FDB045AN08A0_F085A Rev. A www.fairchildsemi.com FDB045AN08A0_F085 N-Channel PowerTrench® MOSFET Typical Characteristics TC = 25°C unless otherwise noted 500 2000 IAS, AVALANCHE CURRENT (A) 10Ps 1000 ID, DRAIN CURRENT (A) 100Ps 100 1ms 10ms 10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 DC SINGLE PULSE TJ = MAX RATED TC = 25oC 0.1 0.1 100 STARTING TJ = 25oC 10 STARTING TJ = 150oC 1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 100 Figure 5. Forward Bias Safe Operating Area .01 100 Figure 6. Unclamped Inductive Switching Capability 150 PULSE DURATION = 80Ps DUTY CYCLE = 0.5% MAX VDD = 15V 90 TJ = 175oC 60 TJ = -55oC TJ = 25oC VGS = 7V VGS = 10V 120 ID, DRAIN CURRENT (A) 120 VGS = 6V 90 60 VGS = 5V TC = 25oC PULSE DURATION = 80Ps DUTY CYCLE = 0.5% MAX 30 30 0 0 4.0 4.5 5.0 5.5 VGS , GATE TO SOURCE VOLTAGE (V) 0 6.0 Figure 7. Transfer Characteristics 0.5 1.0 VDS , DRAIN TO SOURCE VOLTAGE (V) 1.5 Figure 8. Saturation Characteristics 2.5 7 PULSE DURATION = 80Ps DUTY CYCLE = 0.5% MAX NORMALIZED DRAIN TO SOURCE ON RESISTANCE DRAIN TO SOURCE ON RESISTANCE(m:) 0.1 1 10 tAV, TIME IN AVALANCHE (ms) NOTE: Refer to Fairchild Application Notes AN7514 and AN7515 150 ID , DRAIN CURRENT (A) If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If Rz 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 6 VGS = 6V 5 4 VGS = 10V PULSE DURATION = 80Ps DUTY CYCLE = 0.5% MAX 2.0 1.5 1.0 VGS = 10V, ID =80A 3 0 20 40 ID, DRAIN CURRENT (A) 60 80 Figure 9. Drain to Source On Resistance vs Drain Current FDB045AN08A0_F085 Rev. A 0.5 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) 200 Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature www.fairchildsemi.com FDB045AN08A0_F085 N-Channel PowerTrench® MOSFET Typical Characteristics TC = 25°C unless otherwise noted 1.2 1.15 ID = 250PA NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE NORMALIZED GATE THRESHOLD VOLTAGE VGS = VDS, ID = 250PA 1.0 0.8 0.6 0.4 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) 1.05 1.00 0.95 0.90 -80 200 -40 0 40 80 120 160 200 TJ , JUNCTION TEMPERATURE (oC) Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature 10000 Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature VGS , GATE TO SOURCE VOLTAGE (V) 10 CISS CGS + CGD C, CAPACITANCE (pF) 1.10 COSS # CDS + CGD 1000 CRSS CGD VDD = 40V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 80A ID = 10A 2 VGS = 0V, f = 1MHz 100 0.1 0 1 10 VDS , DRAIN TO SOURCE VOLTAGE (V) Figure 13. Capacitance vs Drain to Source Voltage FDB045AN08A0_F085 Rev. A 75 0 25 50 Qg, GATE CHARGE (nC) 75 100 Figure 14. Gate Charge Waveforms for Constant Gate Currents www.fairchildsemi.com FDB045AN08A0_F085 N-Channel PowerTrench® MOSFET Typical Characteristics TC = 25°C unless otherwise noted VDS BVDSS tP L VDS VARY tP TO OBTAIN REQUIRED PEAK IAS IAS + RG VDD VDD - VGS DUT tP IAS 0V 0 0.01: tAV Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Waveforms VDS VDD Qg(TOT) VDS L VGS VGS VGS = 10V + Qgs2 VDD DUT VGS = 2V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms VDS tON tOFF td(ON) td(OFF) RL tr VDS tf 90% 90% + VGS VDD - 10% 0 10% DUT 90% RGS VGS 50% 50% PULSE WIDTH VGS 0 Figure 19. Switching Time Test Circuit FDB045AN08A0_F085 Rev. A 10% Figure 20. Switching Time Waveforms www.fairchildsemi.com FDB045AN08A0_F085 N-Channel PowerTrench® MOSFET Test Circuits and Waveforms 7 – 7 -0 $ 3 '0 = -------------------------5T -$ (EQ. 1) In using surface mount devices such as the TO-263 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 80 RTJA = 26.51+ 19.84/(0.262+Area) EQ.2 RTJA = 26.51+ 128/(1.69+Area) EQ.3 60 RTJA (oC/W) The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RTJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. 40 20 0.1 1 10 (0.645) (6.45) AREA, TOP COPPER AREA in2 (cm2) (64.5) Figure 21. Thermal Resistance vs Mounting Pad Area 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Fairchild provides thermal information to assist the designer’s preliminary application evaluation. Figure 21 defines the RTJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads. + $UHD 5 T -$ = + --------------------------------------- (EQ. 2) Area in Inches Squared + $UHD 5 T -$ = + ------------------------------------ (EQ. 3) Area in Centimeter Squared FDB045AN08A0_F085 Rev. A www.fairchildsemi.com FDB045AN08A0_F085 N-Channel PowerTrench® MOSFET Thermal Resistance vs. Mounting Pad Area .SUBCKT FDB045AN08A0 2 1 3 ; CA 12 8 1.5e-9 CB 15 14 1.5e-9 CIN 6 8 6.4e-9 rev March 2002 LDRAIN DPLCAP 10 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD RSLC2 5 51 ESLC EVTHRES + 19 8 + LGATE GATE 1 11 + 17 EBREAK 18 - 50 RDRAIN 6 8 ESG DBREAK + LDRAIN 2 5 1e-9 LGATE 1 9 4.81e-9 LSOURCE 3 7 4.63e-9 RLDRAIN RSLC1 51 EBREAK 11 7 17 18 82.3 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 IT 8 17 1 DRAIN 2 5 EVTEMP RGATE + 18 22 9 20 21 16 DBODY MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN 8 7 SOURCE 3 RSOURCE RLSOURCE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 9e-4 RGATE 9 20 1.36 RLDRAIN 2 5 10 RLGATE 1 9 48.1 RLSOURCE 3 7 46.3 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 2.3e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B S1A 12 S2A 13 8 14 13 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 14 + + VBAT 5 8 EDS - IT - + 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*250),10))} .MODEL DBODYMOD D (IS = 2.4e-11 N = 1.04 RS = 1.76e-3 TRS1 = 2.7e-3 TRS2 = 2e-7 XTI=3.9 CJO = 4.35e-9 TT = 1e-8 M = 5.4e-1) .MODEL DBREAKMOD D (RS = 1.5e-1 TRS1 = 1e-3 TRS2 = -8.9e-6) .MODEL DPLCAPMOD D (CJO = 1.35e-9 IS = 1e-30 N = 10 M = 0.53) .MODEL MMEDMOD NMOS (VTO = 3.7 KP = 9 IS =1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.36) .MODEL MSTROMOD NMOS (VTO = 4.4 KP = 250 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 3.05 KP = 0.03 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.36e1 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.05e-3 TC2 = -9e-7) .MODEL RDRAINMOD RES (TC1 = 1.9e-2 TC2 = 4e-5) .MODEL RSLCMOD RES (TC1 = 1.3e-3 TC2 = 1e-5) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RVTHRESMOD RES (TC1 = -6e-3 TC2 = -1.9e-5) .MODEL RVTEMPMOD RES (TC1 = -2.4e-3 TC2 = 1e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.0 VOFF= -1.5) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.5 VOFF= -4.0) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.0 VOFF= 0.5) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.5 VOFF= -1.0) .ENDS Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. FDB045AN08A0_F085 Rev. A www.fairchildsemi.com FDB045AN08A0_F085 N-Channel PowerTrench® MOSFET PSPICE Electrical Model REV March 2002 template FDB045AN08A0 n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl = 2.4e-11, n1 = 1.04, rs = 1.76e-3, trs1 = 2.7e-3, trs2 = 2e-7, xti = 3.9, cjo = 4.35e-9, tt = 1e-8, m = 5.4e-1) dp..model dbreakmod = (rs = 1.5e-1, trs1 = 1e-3, trs2 = -8.9e-6) dp..model dplcapmod = (cjo = 1.35e-9, isl =10e-30, nl =10, m = 0.53) m..model mmedmod = (type=_n, vto = 3.7, kp = 9, is =1e-30, tox=1) m..model mstrongmod = (type=_n, vto = 4.4, kp = 250, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 3.05, kp = 0.03, is = 1e-30, tox = 1, rs=0.1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -4.0, voff = -1.5) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -1.5, voff = -4.0) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1.0, voff = 0.5) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -1.0) LDRAIN DPLCAP 10 c.ca n12 n8 = 1.5e-9 c.cb n15 n14 = 1.5e-9 c.cin n6 n8 = 6.4e-9 RLDRAIN RSLC1 51 RSLC2 ISCL dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 21 DBODY MWEAK EBREAK + 17 18 - MMED MSTRO m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u CIN 8 LSOURCE SOURCE 3 7 RSOURCE RLSOURCE S1A 12 S2A 14 13 13 8 S1B CA 11 16 6 RLGATE res.rbreak n17 n18 = 1, tc1 = 1.05e-3, tc2 = -9e-7 res.rdrain n50 n16 = 9e-4, tc1 = 1.9e-2, tc2 = 4e-5 res.rgate n9 n20 = 1.36 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 48.1 res.rlsource n3 n7 = 46.3 res.rslc1 n5 n51= 1e-6, tc1 = 1e-3, tc2 =1e-5 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 2.3e-3, tc1 = 1e-3, tc2 =1e-6 res.rvtemp n18 n19 = 1, tc1 = -2.4e-3, tc2 = 1e-6 res.rvthres n22 n8 = 1, tc1 = -6e-3, tc2 = -1.9e-5 DBREAK 50 - i.it n8 n17 = 1 l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 4.81e-9 l.lsource n3 n7 = 4.63e-9 DRAIN 2 5 RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 EGS - 19 IT 14 + + VBAT 5 8 EDS - + 8 22 RVTHRES spe.ebreak n11 n7 n17 n18 = 82.3 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/250))** 10)) } } FDB045AN08A0_F085 Rev. A www.fairchildsemi.com FDB045AN08A0_F085 N-Channel PowerTrench® MOSFET SABER Electrical Model th JUNCTION REV 23 March 2002 FDB045AN08A0T CTHERM1 th 6 6.45e-3 CTHERM2 6 5 3e-2 CTHERM3 5 4 1.4e-2 CTHERM4 4 3 1.65e-2 CTHERM5 3 2 4.85e-2 CTHERM6 2 tl 1e-1 RTHERM1 CTHERM1 6 RTHERM1 th 6 3.24e-3 RTHERM2 6 5 8.08e-3 RTHERM3 5 4 2.28e-2 RTHERM4 4 3 1e-1 RTHERM5 3 2 1.1e-1 RTHERM6 2 tl 1.4e-1 RTHERM2 CTHERM2 5 SABER Thermal Model SABER thermal model FDB045AN08A0T template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 6.45e-3 ctherm.ctherm2 6 5 = 3e-2 ctherm.ctherm3 5 4 = 1.4e-2 ctherm.ctherm4 4 3 = 1.65e-2 ctherm.ctherm5 3 2 = 4.85e-2 ctherm.ctherm6 2 tl = 1e-1 rtherm.rtherm1 th 6 = 3.24e-3 rtherm.rtherm2 6 5 = 8.08e-3 rtherm.rtherm3 5 4 = 2.28e-2 rtherm.rtherm4 4 3 = 1e-1 rtherm.rtherm5 3 2 = 1.1e-1 rtherm.rtherm6 2 tl = 1.4e-1 } RTHERM3 CTHERM3 4 RTHERM4 CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 tl FDB045AN08A0_F085 Rev. A CASE www.fairchildsemi.com FDB045AN08A0_F085 N-Channel PowerTrench® MOSFET SPICE Thermal Model AccuPower¥ Auto-SPM¥ Build it Now¥ CorePLUS¥ CorePOWER¥ CROSSVOLT¥ CTL¥ Current Transfer Logic¥ DEUXPEED® Dual Cool™ EcoSPARK® EfficientMax¥ ESBC¥ F-PFS¥ FRFET® SM Global Power Resource Green FPS¥ Green FPS¥ e-Series¥ Gmax¥ GTO¥ IntelliMAX¥ ISOPLANAR¥ MegaBuck¥ MICROCOUPLER¥ MicroFET¥ MicroPak¥ MicroPak2¥ MillerDrive¥ MotionMax¥ Motion-SPM¥ OptoHiT™ OPTOLOGIC® OPTOPLANAR® ® Fairchild® Fairchild Semiconductor® FACT Quiet Series¥ FACT® FAST® FastvCore¥ FETBench¥ FlashWriter®* FPS¥ ® PDP SPM™ Power-SPM¥ PowerTrench® PowerXS™ Programmable Active Droop¥ QFET® QS¥ Quiet Series¥ RapidConfigure¥ ¥ Saving our world, 1mW/W/kW at a time™ SignalWise¥ SmartMax¥ SMART START¥ SPM® STEALTH¥ SuperFET¥ SuperSOT¥-3 SuperSOT¥-6 SuperSOT¥-8 SupreMOS¥ SyncFET¥ Sync-Lock™ ® * The Power Franchise® TinyBoost¥ TinyBuck¥ TinyCalc¥ TinyLogic® TINYOPTO¥ TinyPower¥ TinyPWM¥ TinyWire¥ TriFault Detect¥ TRUECURRENT¥* PSerDes¥ UHC® Ultra FRFET¥ UniFET¥ VCX¥ VisualMax¥ XS™ * Trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Advance Information Formative / In Design Preliminary First Production No Identification Needed Full Production Obsolete Not In Production Definition Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I48 © Fairchild Semiconductor Corporation www.fairchildsemi.com FDB045AN08A0_F085 N-Channel PowerTrench® MOSFET TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.