HAT2033R/HAT2033RJ Silicon N Channel Power MOS FET High Speed Power Switching ADE-208-664B (Z) 3rd. Edition February 1999 Features • • • • For Automotive Application ( at Type Code “J “) Low on-resistance Capable of 4 V gate drive High density mounting Outline SOP–8 8 5 6 7 8 D D D D 4 G 5 7 6 3 1 2 4 1, 2, 3 Source 4 Gate 5, 6, 7, 8 Drain S S S 1 2 3 HAT2033R/HAT2033RJ Absolute Maximum Ratings (Ta = 25°C) Item Symbol Ratings Unit Drain to source voltage VDSS 60 V Gate to source voltage VGSS ± 20 V Drain current ID 7 A 56 A 7 A — — 7 A — — 4.2 mJ 2.5 W Drain peak current I D(pulse) Body-drain diode reverse drain current I DR Avalanche current HAT2033R I AP Note1 Note4 HAT2033RJ Avalanche energy HAT2033R EAR Note4 HAT2033RJ Note2 Channel dissipation Pch Channel temperature Tch 150 °C Storage temperature Tstg – 55 to + 150 °C Note: 2 1. PW ≤ 10µs, duty cycle ≤ 1 % 2. When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW≤ 10s 3. Value at Tch=25°C, Rg≥50Ω HAT2033R/HAT2033RJ Electrical Characteristics (Ta = 25°C) Item Symbol Min Typ Max Unit Test Conditions Drain to source breakdown voltage V(BR)DSS 60 — — V I D = 10 mA, VGS = 0 Gate to source breakdown voltage V(BR)GSS ± 20 — — V I G = ± 100 µA, VDS = 0 Gate to source leak current I GSS — — ± 10 µA VGS = ± 16 V, VDS = 0 Zero gate voltage HAT2033R I DSS — — 1 µA VDS = 60 V, VGS = 0 drain current HAT2033RJ I DSS — — 0.1 µA Zero gate voltage HAT2033R I DSS — — — µA VDS =4 8V , VGS = 0 drain current HAT2033RJ I DSS — — 10 µA Ta = 125°C Gate to source cutoff voltage VGS(off) 1.2 — 2.2 V VDS = 10 V, I D = 1 mA Static drain to source on state RDS(on) — 0.03 0.038 Ω I D = 4 A, VGS = 10 V Note4 resistance RDS(on) — 0.04 0.053 Ω I D = 4 A, VGS = 4 V Note4 Forward transfer admittance |yfs| 6.5 10 — S I D = 4 A, VDS = 10 V Note4 Input capacitance Ciss — 740 — pF VDS = 10 V Output capacitance Coss — 370 — pF VGS = 0 Reverse transfer capacitance Crss — 130 — pF f = 1MHz Turn-on delay time t d(on) — 13 — ns VGS =10 V, ID = 4 A Rise time tr — 55 — ns VDD ≅ 30 V Turn-off delay time t d(off) — 140 — ns Fall time tf — 95 — ns Body–drain diode forward voltage VDF — 0.82 1.07 V IF = 7 A, VGS = 0 Note4 Body–drain diode reverse recovery time t rr — 45 — ns IF = 7 A , VGS = 0 diF/ dt = 50 A/µs Note: 4. Pulse test 3 HAT2033R/HAT2033RJ Main Characteristics Maximum Safe Operation Area 100 Test Condition : When using the glass epoxy board (FR4 40x40x1.6 mm), PW < 10 s 30 3.0 I D (A) Power vs. Temperature Derating Drain Current Channel Dissipation Pch (W) 4.0 2.0 1.0 0 50 100 150 Ambient Temperature 200 Ta (°C) 100 µs 10 µs PW 10 DC 3 Op er 1 = 1m s 10 ms on (1 sh ati ot) (P W N Operation in < ote 10 6 this area is s) 0.1 limited by R DS(on) Ta = 25°C 0.03 1 shot Pulse 1 Drive Operation 0.01 0.1 0.3 1 3 10 30 100 Drain to Source Voltage V DS (V) 0.3 Note 6 : When using the glass epoxy board (FR4 40x40x1.6 mm) Typical Output Characteristics 50 Pulse Test 6V V DS = 10 V Pulse Test 4.5 V 30 20 10 4.0 V ID (A) 40 3.5 V Drain Current Drain Current I D (A) 10 V Typical Transfer Characteristics 20 3.0 V 16 12 8 25°C 4 Tc = 75°C –25°C VGS = 2.5 V 0 4 2 4 6 Drain to Source Voltage 8 10 V DS (V) 0 1 2 3 Gate to Source Voltage 4 V GS (V) 5 HAT2033R/HAT2033RJ Drain to Source Saturation Voltage vs. Gate to Source Voltage Pulse Test 0.4 0.3 0.2 ID=5A 0.1 1A 2A Drain to Source On State Resistance R DS(on) ( Ω ) Drain to Source Saturation Voltage V DS(on) (V) 0.5 Static Drain to Source on State Resistance vs. Drain Current 0.5 Pulse Test 0.2 0.1 VGS = 4 V 0.05 10 V 0.02 0.01 12 4 8 Gate to Source Voltage Static Drain to Source on State Resistance vs. Temperature 0.10 Pulse Test 0.08 5A 1, 2 A 0.06 V GS = 4 V 0.04 0.02 0 –40 0.1 0.2 16 20 V GS (V) 1, 2, 5 A 10 V 0 40 80 120 160 Case Temperature Tc (°C) 0.5 1 2 5 10 20 Drain Current I D (A) 50 Forward Transfer Admittance vs. Drain Current Forward Transfer Admittance |y fs | (S) Static Drain to Source on State Resistance R DS(on) ( Ω) 0 50 20 Tc = –25 °C 10 25 °C 5 75 °C 2 1 0.5 0.1 V DS = 10 V Pulse Test 0.3 1 3 10 30 Drain Current I D (A) 100 5 HAT2033R/HAT2033RJ 1000 5000 di / dt = 50 A / µs V GS = 0, Ta = 25 °C 500 2000 Capacitance C (pF) Reverse Recovery Time trr (ns) Typical Capacitance vs. Drain to Source Voltage Body–Drain Diode Reverse Recovery Time 1000 200 100 50 20 Ciss 500 Coss 200 100 Crss 50 VGS = 0 f = 1 MHz 20 10 0.1 10 0 0.3 1 3 10 30 100 Reverse Drain Current I DR (A) 10 20 30 40 50 Drain to Source Voltage V DS (V) Dynamic Input Characteristics V GS 20 12 8 V DD = 50 V 25 V 10 V 8 16 24 32 Gate Charge Qg (nc) 4 0 40 Switching Time t (ns) V DD = 50 V 25 V 10 V V DS 1000 V GS (V) 16 40 0 6 ID=7A 80 60 Switching Characteristics 20 Gate to Source Voltage Drain to Source Voltage V DS (V) 100 300 t d(off) 100 tf 30 tr t d(on) 10 3 1 0.1 V GS = 10 V, V DD = 3 0 V PW = 5 µs, duty < 1 % 0.3 1 3 10 30 Drain Current I D (A) 100 HAT2033R/HAT2033RJ Maximun Avalanche Energy vs. Channel Temperature Derating Repetive Avalanche Energy E AR (mJ) Reverse Drain Current vs. Souece to Drain Voltage Reverse Drain Current I DR (A) 20 16 12 10 V 5V 8 V GS = 0, –5 V 4 Pulse Test 0 0.4 0.8 1.2 Source to Drain Voltage 1.6 2.0 5 I AP = 7 A V DD = 25 V L = 100 µH duty < 0.1 % Rg > 50 Ω 4 3 2 1 0 25 50 75 100 125 150 Channel Temperature Tch (°C) V SD (V) Avalanche Waveform Avalanche Test Circuit V DS Monitor EAR = L 1 2 • L • I AP • 2 I AP Monitor VDSS VDSS – V DD V (BR)DSS I AP Rg D. U. T V DS VDD ID Vin 15 V 50Ω 0 VDD 7 HAT2033R/HAT2033RJ Normalized Transient Thermal Impedance vs. Pulse Width Normalized Transient Thermal Impedance γ s (t) 10 1 D=1 0.5 0.1 0.01 0.2 0.1 0.05 θ ch – f(t) = γ s (t) • θ ch – f θ ch – f = 83.3 °C/W, Ta = 25 °C When using the glass epoxy board (FR4 40x40x1.6 mm) 0.02 0.01 e uls 0.001 PDM p ot D= h 1s PW T PW T 0.0001 10 µ 100 µ 1m 10 m 100 m 1 10 100 1000 10000 Pulse Width PW (S) Switching Time Test Circuit Switching Time Waveform Vout Monitor Vin Monitor 90% D.U.T. RL Vin Vin 10 V 50Ω V DD = 30 V Vout 10% 10% 90% td(on) 8 tr 10% 90% td(off) tf HAT2033R/HAT2033RJ Package Dimensions Unit: mm 1 4 6.2 Max 0.25 Max 5 1.75 Max 8 4.0 Max 5.0 Max 0 – 8° 0.51 Max 0.25 Max 1.27 1.27 Max 0.15 0.25 M Hitachi code EIAJ JEDEC FP–8DA — MS-012AA 9 Cautions 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Hitachi, Ltd. Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica : http:semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322 Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533 Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180 Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.