HITACHI HAT2033

HAT2033R/HAT2033RJ
Silicon N Channel Power MOS FET
High Speed Power Switching
ADE-208-664B (Z)
3rd. Edition
February 1999
Features
•
•
•
•
For Automotive Application ( at Type Code “J “)
Low on-resistance
Capable of 4 V gate drive
High density mounting
Outline
SOP–8
8
5 6 7 8
D D D D
4
G
5
7 6
3
1 2
4
1, 2, 3
Source
4
Gate
5, 6, 7, 8 Drain
S S S
1 2 3
HAT2033R/HAT2033RJ
Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Ratings
Unit
Drain to source voltage
VDSS
60
V
Gate to source voltage
VGSS
± 20
V
Drain current
ID
7
A
56
A
7
A
—
—
7
A
—
—
4.2
mJ
2.5
W
Drain peak current
I D(pulse)
Body-drain diode reverse drain current
I DR
Avalanche current
HAT2033R
I AP
Note1
Note4
HAT2033RJ
Avalanche energy
HAT2033R
EAR
Note4
HAT2033RJ
Note2
Channel dissipation
Pch
Channel temperature
Tch
150
°C
Storage temperature
Tstg
– 55 to + 150
°C
Note:
2
1. PW ≤ 10µs, duty cycle ≤ 1 %
2. When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW≤ 10s
3. Value at Tch=25°C, Rg≥50Ω
HAT2033R/HAT2033RJ
Electrical Characteristics (Ta = 25°C)
Item
Symbol Min
Typ
Max
Unit
Test Conditions
Drain to source breakdown voltage
V(BR)DSS
60
—
—
V
I D = 10 mA, VGS = 0
Gate to source breakdown voltage
V(BR)GSS
± 20
—
—
V
I G = ± 100 µA, VDS = 0
Gate to source leak current
I GSS
—
—
± 10
µA
VGS = ± 16 V, VDS = 0
Zero gate voltage
HAT2033R
I DSS
—
—
1
µA
VDS = 60 V, VGS = 0
drain current
HAT2033RJ I DSS
—
—
0.1
µA
Zero gate voltage
HAT2033R
I DSS
—
—
—
µA
VDS =4 8V , VGS = 0
drain current
HAT2033RJ I DSS
—
—
10
µA
Ta = 125°C
Gate to source cutoff voltage
VGS(off)
1.2
—
2.2
V
VDS = 10 V, I D = 1 mA
Static drain to source on state
RDS(on)
—
0.03
0.038
Ω
I D = 4 A, VGS = 10 V Note4
resistance
RDS(on)
—
0.04
0.053
Ω
I D = 4 A, VGS = 4 V Note4
Forward transfer admittance
|yfs|
6.5
10
—
S
I D = 4 A, VDS = 10 V Note4
Input capacitance
Ciss
—
740
—
pF
VDS = 10 V
Output capacitance
Coss
—
370
—
pF
VGS = 0
Reverse transfer capacitance
Crss
—
130
—
pF
f = 1MHz
Turn-on delay time
t d(on)
—
13
—
ns
VGS =10 V, ID = 4 A
Rise time
tr
—
55
—
ns
VDD ≅ 30 V
Turn-off delay time
t d(off)
—
140
—
ns
Fall time
tf
—
95
—
ns
Body–drain diode forward voltage
VDF
—
0.82
1.07
V
IF = 7 A, VGS = 0 Note4
Body–drain diode reverse
recovery time
t rr
—
45
—
ns
IF = 7 A , VGS = 0
diF/ dt = 50 A/µs
Note:
4. Pulse test
3
HAT2033R/HAT2033RJ
Main Characteristics
Maximum Safe Operation Area
100
Test Condition :
When using the glass epoxy board
(FR4 40x40x1.6 mm), PW < 10 s
30
3.0
I D (A)
Power vs. Temperature Derating
Drain Current
Channel Dissipation
Pch (W)
4.0
2.0
1.0
0
50
100
150
Ambient Temperature
200
Ta (°C)
100 µs
10 µs
PW
10
DC
3
Op
er
1
=
1m
s
10
ms
on
(1
sh
ati
ot)
(P
W
N
Operation in
< ote
10 6
this area is
s)
0.1 limited by R DS(on)
Ta = 25°C
0.03 1 shot Pulse
1 Drive Operation
0.01
0.1 0.3
1
3
10
30
100
Drain to Source Voltage V DS (V)
0.3
Note 6 :
When using the glass epoxy board
(FR4 40x40x1.6 mm)
Typical Output Characteristics
50
Pulse Test
6V
V DS = 10 V
Pulse Test
4.5 V
30
20
10
4.0 V
ID
(A)
40
3.5 V
Drain Current
Drain Current
I D (A)
10 V
Typical Transfer Characteristics
20
3.0 V
16
12
8
25°C
4
Tc = 75°C
–25°C
VGS = 2.5 V
0
4
2
4
6
Drain to Source Voltage
8
10
V DS (V)
0
1
2
3
Gate to Source Voltage
4
V GS (V)
5
HAT2033R/HAT2033RJ
Drain to Source Saturation Voltage vs.
Gate to Source Voltage
Pulse Test
0.4
0.3
0.2
ID=5A
0.1
1A
2A
Drain to Source On State Resistance
R DS(on) ( Ω )
Drain to Source Saturation Voltage
V DS(on) (V)
0.5
Static Drain to Source on State Resistance
vs. Drain Current
0.5
Pulse Test
0.2
0.1
VGS = 4 V
0.05
10 V
0.02
0.01
12
4
8
Gate to Source Voltage
Static Drain to Source on State Resistance
vs. Temperature
0.10
Pulse Test
0.08
5A
1, 2 A
0.06
V GS = 4 V
0.04
0.02
0
–40
0.1 0.2
16
20
V GS (V)
1, 2, 5 A
10 V
0
40
80
120
160
Case Temperature Tc (°C)
0.5 1 2
5 10 20
Drain Current I D (A)
50
Forward Transfer Admittance vs.
Drain Current
Forward Transfer Admittance |y fs | (S)
Static Drain to Source on State Resistance
R DS(on) ( Ω)
0
50
20
Tc = –25 °C
10
25 °C
5
75 °C
2
1
0.5
0.1
V DS = 10 V
Pulse Test
0.3
1
3
10
30
Drain Current I D (A)
100
5
HAT2033R/HAT2033RJ
1000
5000
di / dt = 50 A / µs
V GS = 0, Ta = 25 °C
500
2000
Capacitance C (pF)
Reverse Recovery Time trr (ns)
Typical Capacitance vs.
Drain to Source Voltage
Body–Drain Diode Reverse
Recovery Time
1000
200
100
50
20
Ciss
500
Coss
200
100
Crss
50
VGS = 0
f = 1 MHz
20
10
0.1
10
0
0.3
1
3
10
30
100
Reverse Drain Current I DR (A)
10
20
30
40
50
Drain to Source Voltage V DS (V)
Dynamic Input Characteristics
V GS
20
12
8
V DD = 50 V
25 V
10 V
8
16
24
32
Gate Charge Qg (nc)
4
0
40
Switching Time t (ns)
V DD = 50 V
25 V
10 V
V DS
1000
V GS (V)
16
40
0
6
ID=7A
80
60
Switching Characteristics
20
Gate to Source Voltage
Drain to Source Voltage
V DS (V)
100
300
t d(off)
100
tf
30
tr
t d(on)
10
3
1
0.1
V GS = 10 V, V DD = 3 0 V
PW = 5 µs, duty < 1 %
0.3
1
3
10
30
Drain Current I D (A)
100
HAT2033R/HAT2033RJ
Maximun Avalanche Energy vs.
Channel Temperature Derating
Repetive Avalanche Energy E AR (mJ)
Reverse Drain Current vs.
Souece to Drain Voltage
Reverse Drain Current I DR (A)
20
16
12 10 V
5V
8
V GS = 0, –5 V
4
Pulse Test
0
0.4
0.8
1.2
Source to Drain Voltage
1.6
2.0
5
I AP = 7 A
V DD = 25 V
L = 100 µH
duty < 0.1 %
Rg > 50 Ω
4
3
2
1
0
25
50
75
100
125
150
Channel Temperature Tch (°C)
V SD (V)
Avalanche Waveform
Avalanche Test Circuit
V DS
Monitor
EAR =
L
1
2
• L • I AP •
2
I AP
Monitor
VDSS
VDSS – V DD
V (BR)DSS
I AP
Rg
D. U. T
V DS
VDD
ID
Vin
15 V
50Ω
0
VDD
7
HAT2033R/HAT2033RJ
Normalized Transient Thermal Impedance vs. Pulse Width
Normalized Transient Thermal Impedance
γ s (t)
10
1
D=1
0.5
0.1
0.01
0.2
0.1
0.05
θ ch – f(t) = γ s (t) • θ ch – f
θ ch – f = 83.3 °C/W, Ta = 25 °C
When using the glass epoxy board
(FR4 40x40x1.6 mm)
0.02
0.01
e
uls
0.001
PDM
p
ot
D=
h
1s
PW
T
PW
T
0.0001
10 µ
100 µ
1m
10 m
100 m
1
10
100
1000
10000
Pulse Width PW (S)
Switching Time Test Circuit
Switching Time Waveform
Vout
Monitor
Vin Monitor
90%
D.U.T.
RL
Vin
Vin
10 V
50Ω
V DD
= 30 V
Vout
10%
10%
90%
td(on)
8
tr
10%
90%
td(off)
tf
HAT2033R/HAT2033RJ
Package Dimensions
Unit: mm
1
4
6.2 Max
0.25 Max
5
1.75 Max
8
4.0 Max
5.0 Max
0 – 8°
0.51 Max
0.25 Max
1.27
1.27 Max
0.15
0.25 M
Hitachi code
EIAJ
JEDEC
FP–8DA
—
MS-012AA
9
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica
: http:semiconductor.hitachi.com/
Europe
: http://www.hitachi-eu.com/hel/ecg
Asia (Singapore)
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm
Asia (Taiwan)
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm
Japan
: http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe GmbH
Electronic components Group
Dornacher Stra§e 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 778322
Hitachi Asia Pte. Ltd.
16 Collyer Quay #20-00
Hitachi Tower
Singapore 049318
Tel: 535-2100
Fax: 535-1533
Hitachi Asia Ltd.
Taipei Branch Office
3F, Hung Kuo Building. No.167,
Tun-Hwa North Road, Taipei (105)
Tel: <886> (2) 2718-3666
Fax: <886> (2) 2718-8180
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower, World Finance Centre,
Harbour City, Canton Road, Tsim Sha Tsui,
Kowloon, Hong Kong
Tel: <852> (2) 735 9218
Fax: <852> (2) 730 0281
Telex: 40815 HITEC HX
Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.