HiPerFASTTM IGBT with Diode C2-Class High Speed IGBTs Symbol Test Conditions IXGH 30N60C2D1 VCES IXGT 30N60C2D1 IC25 VCE(sat) tfi typ Maximum Ratings VCES TJ = 25°C to 150°C 600 V VCGR TJ = 25°C to 150°C; RGE = 1 MΩ 600 V VGES Continuous ±20 V VGEM Transient ±30 V IC25 TC = 25°C (limited by leads) 70 A IC110 TC = 110°C 30 A ICM TC = 25°C, 1 ms 150 A SSOA (RBSOA) PC VGE = 15 V, TVJ = 125°C, RG = 10 Ω Clamped inductive load @ ≤ 600 V TC = 25°C TO-247 AD (IXGH) C (TAB) G A 190 W -55 ... +150 °C TJM 150 °C Tstg -55 ... +150 °C 300 °C Features 250 °C z Maximum lead temperature for soldering 1.6 mm (0.062 in.) from case for 10 s Plastic body for 10s Md Mounting torque (TO-247) Weight TO-247 TO-268 Symbol Test Conditions VGE(th) ICES 1.13/10Nm/lb.in. 6 4 Characteristic Values (TJ = 25°C, unless otherwise specified) min. typ. max. = 250 µA, VCE = VGE IC VCE = VCES VGE = 0 V IGES VCE = 0 V, VGE = ±20 V VCE(sat) IC = 24 A, VGE = 15 V g g 2.5 TJ = 25°C TJ = 125°C TJ = 25°C TJ = 125°C 1.8 G G = Gate, E = Emitter, z z z V 200 3 µA mA ±100 nA 2.7 V V z z z z z E C (TAB) C = Collector, TAB = Collector Very high frequency IGBT Square RBSOA High current handling capability MOS Gate turn-on - drive simplicity PFC circuits Uninterruptible power supplies (UPS) Switched-mode and resonant-mode power supplies AC motor speed control DC servo and robot drives DC choppers Advantages z z z © 2005 IXYS All rights reserved E Applications z 5.0 C TO-268 (IXGT) ICM = 60 TJ = 600 V = 70 A = 2.7 V = 32 ns High power density Very fast switching speed for high frequency aaplications High power surface mountable package DS99169A(01/05) IXGH 30N60C2D1 IXGT 30N60C2D1 Symbol gfs Test Conditions Characteristic Values (TJ = 25°C, unless otherwise specified) min. typ. max. IC = 24 A; VCE = 10 V, Pulse test, t ≤ 300 µs, duty cycle ≤ 2 % 18 VCE = 25 V, VGE = 0 V, f = 1 MHz Cres Qg Qge S 1430 pF 140 pF 40 pF 70 nC 10 nC 23 nC 13 ns ∅P Cies Coes 28 IC = 24 A, VGE = 15 V, VCE = 300 V Qgc td(on) tri Inductive load, TJ = 25°°C 15 td(off) IC = 24 A, VGE = 15 V VCE = 400 V, RG = 5 Ω 70 tfi Eoff td(on) tri Eon td(off) tfi Inductive load, TJ = 125°°C IC = 24 A, VGE = 15 V VCE = 400 V, RG = 5 Ω Eoff ns 140 ns 60 ns 0.19 0.30 mJ 13 ns 17 ns 0.22 mJ 120 ns 130 ns 0.59 mJ e Dim. Millimeter Min. Max. A 4.7 5.3 2.2 2.54 A1 2.2 2.6 A2 b 1.0 1.4 b1 1.65 2.13 b2 2.87 3.12 C .4 .8 D 20.80 21.46 E 15.75 16.26 e 5.20 5.72 L 19.81 20.32 L1 4.50 ∅P 3.55 3.65 Q 5.89 6.40 R 4.32 5.49 S 6.15 BSC TO-268 Outline 0.65 K/W RthJC RthCK TO-247 AD Outline (TO-247) 0.25 Reverse Diode (FRED) K/W Characteristic Values (TJ = 25°C, unless otherwise specified) min. typ. max. Symbol Test Conditions VF IF = 30 A, VGE = 0 V, Pulse test t ≤ 300 µs, duty cycle d ≤ 2 % IRM t rr IF = 30 A, VGE = 0 V, -diF/dt =100 A/µs, TJ = 100°C VR = 100 V TJ = 100°C 100 IF = 1 A; -di/dt = 100 A/µs; VR = 30 V 25 TJ =150°C 1.6 2.5 V V 4 A ns ns 0.9 K/W RthJC IXYS reserves the right to change limits, test conditions, and dimensions. IXYS MOSFETs and IGBTs are covered by one or moreof the following U.S. patents: 4,835,592 4,850,072 4,881,106 4,931,844 5,017,508 5,034,796 5,049,961 5,063,307 5,187,117 5,237,481 5,381,025 5,486,715 6,162,665 6,259,123 B1 6,306,728 B1 6,404,065 B1 6,534,343 6,583,505 6,683,344 6,710,405B2 6,710,463 6,727,585 6,759,692 6771478 B2 Inches Min. Max. .185 .209 .087 .102 .059 .098 .040 .055 .065 .084 .113 .123 .016 .031 .819 .845 .610 .640 0.205 0.225 .780 .800 .177 .140 .144 0.232 0.252 .170 .216 242 BSC IXGH 30N60C2D1 IXGT 30N60C2D1 Fig. 1. Output Characteristics @ 25 Deg. C Fig. 2. Extended Output Characteristics @ 25 deg. C 270 50 VGE = 15V 13V 11V 45 40 13V 210 30 I C - Amperes 35 I C - Amperes VGE = 15V 240 9V 7V 25 20 15 11V 180 150 9V 120 90 7V 60 10 30 5V 5 5V 0 0 0.5 1 1.5 2 2.5 3 3.5 0 2 4 6 Fig. 3. Output Characteristics @ 125 Deg. C 12 14 16 18 1.2 VGE = 15V 13V 11V 40 V GE = 15V 9V 1.1 V C E (sat)- Normalized 45 I C - Amperes 10 Fig. 4. Dependence of V CE(sat ) on Tem perature 50 35 7V 30 25 20 15 5V 10 I C = 48A 1.0 0.9 I C = 24A 0.8 0.7 0.6 5 I C = 12A 0.5 0 0.5 1 1.5 2 2.5 3 25 3.5 50 75 100 125 150 TJ - Degrees Centigrade V CE - Volts Fig. 5. Collector-to-Em itter Voltage vs. Gate-to-Em itter voltage Fig. 6. Input Adm ittance 200 4.5 TJ = 25ºC I C = 48A 24A 12A 180 160 I C - Amperes 4 VC E - Volts 8 V C E - Volts V C E - Volts 3.5 3 140 120 100 80 60 2.5 TJ = 25ºC 125ºC 40 20 2 0 5 6 7 8 9 10 11 12 13 14 15 16 17 V G E - Volts © 2005 IXYS All rights reserved 3 4 5 6 7 8 V G E - Volts 9 10 11 12 IXGH 30N60C2D1 IXGT 30N60C2D1 Fig. 8. Dependence of Turn-Off Energy on RG Fig. 7. Transconductance 35 2000 TJ = 125ºC VGE = 15V VCE = 400V 1800 30 1600 E off - microJoules g f s - Siemens 25 TJ = 25ºC 125ºC 20 15 10 I C = 48A 1400 1200 1000 I C = 24A 800 600 400 5 200 0 I C = 12A 0 0 20 40 60 80 100 120 140 160 180 200 5 10 15 20 I C - Amperes 1000 E off - microJoules E off - microJoules R G = 5Ω VGE = 15V VCE = 400V 1200 800 TJ = 125ºC 600 400 TJ = 25ºC 200 35 40 45 50 1400 R G = 5Ω VGE = 15V VCE = 400V 1200 30 Fig. 10. Dependence of Turn-Off Energy on Tem perature Fig. 9. Dependence of Turn-Off Energy on IC 1400 25 R G - Ohms I C = 48A 1000 800 600 I C = 24A 400 200 I C = 12A 0 0 10 15 20 25 30 35 40 45 50 25 35 I C - Amperes 55 65 75 85 95 105 115 125 TJ - Degrees Centigrade Fig. 11. Dependence of Turn-Off Sw itching Tim e on RG Fig. 12. Dependence of Turn-Off Sw itching Tim e on IC 200 td(off) tfi - - - - - - 400 TJ = 125ºC VGE = 15V VCE = 400V 350 300 250 200 I C = 12A I C = 24A I C = 48A 150 100 Switching Time - nanosecond 450 Switching Time - nanosecond 45 td(off) tfi - - - - - - 180 R G = 5Ω VGE = 15V VCE = 400V 160 140 TJ = 125ºC 120 100 80 60 TJ = 25ºC 40 5 10 15 20 25 30 R G - Ohms 35 40 45 50 10 15 20 25 30 35 I C - Amperes 40 45 50 IXGH 30N60C2D1 IXGT 30N60C2D1 Fig. 13. Dependence of Turn-Off Sw itching Tim e on Tem perature Fig. 14. Gate Charge 15 td(off) tfi - - - - - - 160 120 VCE = 300V I C = 24A I G = 10mA 12 I C = 48A 24A 12A R G = 5Ω VGE = 15V VCE = 400V 140 VG E - Volts Switching Time - nanosecond 180 100 80 I C = 12A 24A 48A 60 9 6 3 40 0 25 35 45 55 65 75 85 95 105 115 125 0 10 20 TJ - Degrees Centigrade 30 40 50 60 70 Q G - nanoCoulombs Fig. 15. Capacitance 10000 Capacitance - p F f = 1 MHz C ies 1000 C oes 100 C res 10 0 5 10 15 20 25 30 35 40 V C E - Volts Fig. 16. Maxim um Transient Therm al Resistance R (th) J C - (ºC/W) 1.0 0.5 0.1 1 © 2005 IXYS All rights reserved 10 Pulse Width - milliseconds 100 1000 IXGH 30N60C2D1 IXGT 30N60C2D1 1000 60 A nC 50 IF 30 TVJ= 100°C 25 800 Qr IF= 60A IF= 30A IRM IF= 60A IF= 30A 40 20 600 TVJ=150°C 30 15 TVJ=100°C 400 20 10 TVJ=25°C 200 10 0 TVJ= 100°C A 0 1 0 100 3 V 2 5 A/µs 1000 -diF/dt VF Fig. 17. Forward current IF versus VF Fig. 18. Reverse recovery charge 90 2.0 200 600 A/µs 800 1000 -diF/dt 400 Fig. 19. Peak reverse current IRM 1.00 TVJ= 100°C µs V VFR 15 trr Kf 0 20 TVJ= 100°C ns 1.5 0 tfr 0.75 VFR tfr 80 IF= 60A IF= 30A 1.0 10 0.50 5 0.25 IRM 70 0.5 Qr 0.0 0 40 80 120 °C 160 60 0 200 TVJ 400 600 800 1000 A/µs 0 0 400 -diF/dt Fig. ,II Fig.20. 20.Dynamic Dynamicparameters parametersQQ r r,RM RM Fig. 21. Recovery time trr versus 1 K/W 0.00 600 A/µs 800 1000 diF/dt Fig. 22. Peak forward voltage VFR Constants for ZthJC calculation: i 1 2 0.1 ZthJC 0.01 0.001 0.00001 200 DSEP 29-06 0.0001 0.001 0.01 Fig. 23. Transient thermal resistance junction to case 0.1 s t 1 Rthi (K/W) ti (s) 0.502 0.193 0.0052 0.0003