Preliminary Technical Information GenX3TM 600V IGBT IXGH64N60A3 IXGT64N60A3 VCES = 600V IC110 = 64A VCE(sat) ≤ 1.35V Ultra-lowVsat PT IGBTs for up to 5 kHz switching Symbol Test Conditions Maximum Ratings VCES TC = 25°C to 150°C 600 V VCGR TJ = 25°C to 150°C, RGE = 1MΩ 600 V VGES Continuous ± 20 V VGEM Transient ± 30 V IC110 TC = 110°C 64 A ICM TC = 25°C, 1ms 400 A SSOA VGE = 15V, TVJ = 125°C, RG = 3Ω ICM = 100 A (RBSOA) Clamped inductive load @ ≤ 600V PC TC = 25°C 460 W -55 ... +150 °C TJM 150 °C Tstg -55 ... +150 °C 300 260 °C °C 1.13/10 Nm/lb.in. 6 5 g g TJ TL TSOLD 1.6mm (0.062 in.) from case for 10s Plastic body for 10 seconds Md Mounting torque (TO-247) Weight TO-247 TO-268 TO-247 (IXGH) G C C (TAB) E TO-268 (IXGT) G E C (TAB) G = Gate E = Emitter C = Collector TAB = Collector Features z z z Optimized for low conduction losses Square RBSOA International standard packages Advantages z Symbol Test Conditions (TJ = 25°C unless otherwise specified) Characteristic Values Min. Typ. Max. BVCES IC = 250μA, VGE = 0V 600 VGE(th) IC = 250μA, VCE = VGE 3.0 ICES VCE = VCES VGE = 0V IGES VCE = 0V, VGE = ± 20V VCE(sat) IC = 50A, VGE = 15V, Note 1 1.20 High power density Low gate drive requirement Applications V TJ = 125°C © 2008 IXYS CORPORATION, All rights reserved z 5.0 V 50 μA 500 μA ±100 nA 1.35 V z z z z z z z z z Power Inverters UPS Motor Drives SMPS PFC Circuits Battery Chargers Welding Machines Lamp Ballasts Inrush Current Protection Circuits DS100003(06/08) IXGH64N60A3 IXGT64N60A3 Symbol Test Conditions (TJ = 25°C unless otherwise specified) gfS Characteristic Values Min. Typ. Max. IC = 50A, VCE = 10V, Note 1 40 TO-247 (IXGH) Outline 70 S 4850 pF 270 pF Cres 66 pF Qg 167 nC Cies Coes Qge VCE = 25V, VGE = 0V, f = 1MHz 28 nC Qgc 60 nC td(on) 26 ns 40 ns 1.42 mJ 268 ns 222 ns 3.28 mJ 25 ns 40 ns 2.76 mJ 415 ns 362 ns 6.00 mJ tri Eon td(off) tfi IC = 50A, VGE = 15V, VCE = 0.5 • VCES Inductive load, TJ = 25°C IC = 50A, VGE = 15V VCE = 480V, RG = 3Ω Eoff td(on) tri Eon td(off) tfi Inductive load, TJ = 125°C IC = 50A, VGE = 15V VCE = 480V, RG = 3Ω Eoff RthJC 0.27 RthCS 0.25 °C/W 1 2 ∅P 3 e Terminals: 1 - Gate 3 - Source Dim. Millimeter Min. Max. A 4.7 5.3 2.2 2.54 A1 2.2 2.6 A2 b 1.0 1.4 1.65 2.13 b1 b2 2.87 3.12 C .4 .8 D 20.80 21.46 E 15.75 16.26 e 5.20 5.72 L 19.81 20.32 L1 4.50 ∅P 3.55 3.65 Q 5.89 6.40 R 4.32 5.49 S 6.15 BSC 2 - Drain Tab - Drain Inches Min. Max. .185 .209 .087 .102 .059 .098 .040 .055 .065 .084 .113 .123 .016 .031 .819 .845 .610 .640 0.205 0.225 .780 .800 .177 .140 .144 0.232 0.252 .170 .216 242 BSC ° C/W TO-268 (IXGT) Outline Note 1: Pulse test, t ≤ 300μs, duty cycle, d ≤ 2%. PRELIMINARY TECHNICAL INFORMATION The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice. IXYS reserves the right to change limits, test conditions and dimensions. IXYS MOSFETs and IGBTs are covered 4,835,592 by one or more of the following U.S. patents: 4,850,072 4,881,106 4,931,844 5,017,508 5,034,796 5,049,961 5,063,307 5,187,117 5,237,481 5,381,025 5,486,715 6,162,665 6,259,123 B1 6,306,728 B1 6,404,065 B1 6,534,343 6,583,505 6,683,344 6,727,585 7,005,734 B2 6,710,405 B2 6,759,692 7,063,975 B2 6,710,463 6,771,478 B2 7,071,537 7,157,338B2 IXGH64N60A3 IXGT64N60A3 Fig. 1. Output Characteristics @ 25ºC Fig. 2. Extended Output Characteristics @ 25ºC 100 280 VGE = 15V 13V 11V 90 80 200 IC - Amperes 70 IC - Amperes VGE = 15V 13V 11V 240 9V 60 50 40 7V 30 9V 160 120 80 7V 20 40 10 0 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 0 1 2 3 Fig. 3. Output Characteristics @ 125ºC 7 8 125 150 8.0 8.5 VGE = 15V VCE(sat) - Normalized 1.3 9V 70 IC - Amperes 6 1.4 VGE = 15V 13V 11V 80 5 Fig. 4. Dependence of VCE(sat) on Junction Temperature 100 90 4 VCE - Volts VCE - Volts 60 7V 50 40 30 1.2 I C = 100A I C = 50A I C = 25A 1.1 1.0 0.9 20 0.8 5V 10 0 0.7 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 -50 -25 0 VCE - Volts Fig. 5. Collector-to-Emitter Voltage vs. Gate-to-Emitter Voltage 50 75 100 Fig. 6. Input Admittance 180 3.2 160 TJ = 25ºC 2.8 I 2.0 C IC - Amperes 140 2.4 VCE - Volts 25 TJ - Degrees Centigrade = 100A 50A 25A 120 100 80 TJ = 125ºC 25ºC - 40ºC 60 1.6 40 1.2 20 0.8 0 5 6 7 8 9 10 11 12 VGE - Volts © 2008 IXYS CORPORATION, All rights reserved 13 14 15 4.0 4.5 5.0 5.5 6.0 6.5 VGE - Volts 7.0 7.5 IXGH64N60A3 IXGT64N60A3 Fig. 8. Gate Charge Fig. 7. Transconductance 110 16 TJ = - 40ºC 100 VCE = 300V 14 I C = 50A 90 VGE - Volts g f s - Siemens 70 I G = 10 mA 12 25ºC 80 125ºC 60 50 10 8 6 40 30 4 20 2 10 0 0 0 20 40 60 80 100 120 140 160 0 180 20 40 IC - Amperes 60 80 100 120 140 160 180 QG - NanoCoulombs Fig. 10. Reverse-Bias Safe Operating Area Fig. 9. Capacitance 110 10,000 100 90 80 1,000 IC - Amperes Capacitance - PicoFarads Cies Coes 100 70 60 50 40 30 Cres 20 f = 1 MHz 10 10 0 5 10 15 20 25 30 35 40 0 100 TJ = 125ºC RG = 3Ω dV / dt < 10V / ns 150 200 250 300 350 400 450 500 550 600 650 VCE - Volts VCE - Volts Fig. 11. Maximum Transient Thermal Impedance Z(th)JC - ºC / W 1.00 0.10 0.01 0.0001 0.001 0.01 0.1 1 10 Pulse Width - Seconds IXYS reserves the right to change limits, test conditions and dimensions. IXYS REF: G_64N60A3(75) 7-02-08-B IXGH64N60A3 IXGT64N60A3 Fig. 13. Inductive Switching Energy Loss vs. Junction Temperature Fig. 12. Inductive Switching Energy Loss vs. Gate Resistance 16 18 8 15 16 14 14 8 4 7 Eoff - MilliJoules 9 I C = 50A 12 6 10 5 8 4 6 3 2 I C = 50A 2 4 5 10 15 20 25 30 1 0 2 0 25 35 35 45 55 RG - Ohms 16 7 RG = 3Ω , VGE = 15V VCE = 480V 6 4 TJ = 125ºC 6 3 4 2 TJ = 25ºC 30 40 50 60 70 80 90 400 900 390 800 380 I C 700 = 50A 370 600 360 tf 0 100 C 340 300 0 5 10 15 20 25 30 35 RG - Ohms Fig. 17. Inductive Turn-off Switching Times vs. Junction Temperature tf 380 440 380 RG = 3Ω , VGE = 15V 420 360 TJ = 125ºC 340 400 320 380 td(off) - - - - 360 RG = 3Ω , VGE = 15V 340 VCE = 480V 260 320 240 300 t f - Nanoseconds 400 475 td(off) - - - - 450 425 VCE = 480V 400 340 375 320 I C 350 = 100A, 50A 300 325 280 300 260 275 280 240 250 200 260 220 225 180 240 100 200 TJ = 25ºC 220 20 30 40 50 60 70 80 IC - Amperes © 2008 IXYS CORPORATION, All rights reserved 90 25 35 45 55 65 75 85 95 TJ - Degrees Centigrade 105 115 200 125 t d(off) - Nanoseconds 420 460 t d(off) - Nanoseconds 480 400 280 400 VCE = 480V = 100A 420 tf 500 td(off) - - - - TJ = 125ºC, VGE = 15V I Fig. 16. Inductive Turn-off Switching Times vs. Collector Current 300 0 125 115 = 100A IC - Amperes 360 105 1000 C 350 1 0 20 - MilliJoules 8 on 5 E 10 2 95 t d(off) - Nanoseconds 12 85 410 I ---- t f - Nanoseconds 14 Eon 75 Fig. 15. Inductive Turn-off Switching Times vs. Gate Resistance 8 Eoff 65 TJ - Degrees Centigrade Fig. 14. Inductive Switching Energy Loss vs. Collector Current Eoff - MilliJoules 7 3 5 t f - Nanoseconds 8 = 100A VCE = 480V 4 6 C - MilliJoules 5 VCE = 480V - MilliJoules TJ = 125ºC , VGE = 15V 10 I on 6 --- ---- E Eon - on Eoff 11 E 12 Eon RG = 3Ω , VGE = 15V 7 I C = 100A 13 Eoff - MilliJoules 9 Eoff IXGH64N60A3 IXGT64N60A3 Fig. 18. Inductive Turn-on Switching Times vs. Gate Resistance Fig. 19. Inductive Turn-on Switching Times vs. Junction Temperature 160 td(on) - - - - TJ = 125ºC, VGE = 15V I C 60 60 40 I C = 50A 90 80 32 70 30 60 28 50 26 40 40 24 20 I C = 50A 30 20 0 5 10 15 20 25 34 I C = 100A 30 35 40 45 22 20 50 25 RG - Ohms - Nanoseconds 80 36 VCE = 480V d(on) 80 38 t 100 t d(on) - Nanoseconds 100 td(on) - - - - RG = 3Ω , VGE = 15V 100 VCE = 480V 120 40 tr 110 120 = 100A t r - Nanoseconds 140 t r - Nanoseconds 120 140 tr 35 45 55 65 75 85 95 105 115 20 125 TJ - Degrees Centigrade Fig. 20. Inductive Turn-on Switching Times vs. Collector Current 120 34 110 tr 100 RG = 3Ω , VGE = 15V 33 32 31 80 30 TJ = 25ºC, 125ºC 70 29 60 28 50 27 40 26 30 25 20 24 10 23 0 20 30 40 50 60 70 80 90 t d(on) - Nanoseconds VCE = 480V 90 t r - Nanoseconds td(on) - - - - 22 100 IC - Amperes IXYS reserves the right to change limits, test conditions and dimensions. IXYS REF: G_64N60A3(75) 7-02-08-B