TI TM248NBK36B-70

TM124MBK36B, TM124MBK36R 1048576 BY 36-BIT
TM248NBK36B, TM248NBK36R 2097152 BY 36-BIT
DYNAMIC RAM MODULE
SMMS137E – JANUARY 1991 – REVISEDJUNE 1995
D
D
D
D
D
D
D
D
D
D
Organization
TM124MBK36B . . . 1 048 576 × 36
TM248NBK36B . . . 2 097 152 × 36
Single 5-V Power Supply (±10% Tolerance)
72-pin Leadless Single In-Line Memory
Module (SIMM) for Use With Sockets
TM124MBK36B–Utilizes Eight 4-Megabit
DRAMs in Plastic Small-Outline J-Lead
(SOJ) Packages and One 4-Megabit
Quad-CAS DRAM in a Plastic Small-Outline
J-Lead (SOJ) Package
TM248NBK36B–Utilizes Sixteen 4-Megabit
DRAMs in Plastic Small-Outline J-Lead
(SOJ) Packages and Two 4-Megabit
Quad-CAS DRAMs in Plastic Small-Outline
J-Lead (SOJ) Packages
Long Refresh Period
16 ms (1024 Cycles)
All Inputs, Outputs, Clocks Fully TTL
Compatible
3-State Output
Common CAS Control for Nine Common
Data-In and Data-Out Lines, in Four Blocks
Enhanced Page Mode Operation with
CAS-Before-RAS ( CBR), RAS-Only, and
Hidden Refresh
D
D
Presence Detect
Performance Ranges:
ACCESS
TIME
tRAC
D
D
D
D
’124MBK36B-60
’124MBK36B-70
’124MBK36B-80
’248NBK36B-60
’248NBK36B-70
’248NBK36B-80
(MAX)
60 ns
70 ns
80 ns
60 ns
70 ns
80 ns
ACCESS ACCESS READ
TIME
TIME
OR
tAA
tCAC WRITE
CYCLE
(MAX)
(MAX)
(MIN)
30 ns
15 ns
110 ns
35 ns
18 ns
130 ns
40 ns
20 ns
150 ns
30 ns
15 ns
110 ns
35 ns
18 ns
130 ns
40 ns
20 ns
150 ns
Low Power Dissipation
Operating Free-Air Temperature Range
0°C to 70°C
Gold-Tabbed Versions Available:†
– TM124MBK36B
– TM248NBK36B
Tin-Lead (Solder) Tabbed Versions
Available:
– TM124MBK36R
– TM248NBK36R
description
TM124MBK36B
The TM124MBK36B is a dynamic random-access memory (DRAM) organized as four times 1 048 576 × 9
(bit 9 is generally used for parity) in a 72-pin leadless single in-line memory module (SIMM). The SIMM is
composed of eight TMS44400DJ, 1 048 576 × 4-bit DRAMs, each in 20/26-lead plastic small-outline J-lead
packages (SOJs), and one TMS44460DJ, 1 048 576 × 4-bit Quad-CAS DRAM in a 24/26-lead plastic
small-outline J-lead package (SOJ), mounted on a substrate with decoupling capacitors. Each TMS44400DJ
and TMS44460DJ is described in the TMS44400 or TMS44460 data sheet, respectively.
The TM124MBK36B is available in the single-sided BK leadless module for use with sockets.
The TM124MBK36B features RAS access times of 60 ns, 70 ns, and 80 ns. This device is rated for operation
from 0°C to 70°C.
TM248NBK36B
The TM248NBK36B is a DRAM organized as four times 2 097 152 × 9 (bit 9 is generally used for parity) in a
72-pin leadless SIMM. The SIMM is composed of sixteen TMS44400DJ, 1 048 576 × 4-bit DRAMs, each in
20/26-lead plastic small-outline J-lead packages (SOJs), and two TMS44460DJ, 1 048 576 × 4-bit Quad-CAS
DRAMs, each in a 24/26-lead plastic small-outline J-lead package (SOJ), mounted on a substrate with
decoupling capacitors. Each TMS44400DJ and TMS44460DJ is described in the TMS44400 and TMS44460
data sheet, respectively.
† Part numbers in this data sheet are for the gold-tabbed version; the information applies to both gold-tabbed and solder-tabbed versions.
Copyright  1995, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
1
TM124MBK36B, TM124MBK36R 1048576 BY 36-BIT
TM248NBK36B, TM248NBK36R 2097152 BY 36-BIT
DYNAMIC RAM MODULE
SMMS137E – JANUARY 1991 – REVISEDJUNE 1995
TM248NBK36B (continued)
The TM124NBK36B is available in the double-sided BK leadless module for use with sockets.
The TM124NBK36B features RAS access times of 60 ns, 70 ns, and 80 ns. This device is rated for operation
from 0°C to 70°C
operation
TM124MBK36B
The TM124MBK36B operates as eight TMS44400DJs and one TMS44460DJ connected as shown in the
functional block diagram and Table 1. The parity bits are provided by the TMS44460DJ and are controlled by
RAS2. To ensure proper parity bit operation all memory accesses should include a RAS2 pulse. Refer to the
TMS44400 and TMS44460 data sheets for details of operation. The common I/O feature dictates the use of
early write cycles to prevent contention on D and Q.
TM248NBK36B
The TM248NBK36B operates as sixteen TMS44400DJs and two TMS44460DJs connected as shown in the
functional block diagram and Table 1. The parity bits are provided by the TMS44460DJ and are controlled by
RAS2 on side 1 and RAS3 on side 2. To ensure proper parity bit operation, all memory accesses should include
a RAS2 or RAS3 pulse. Refer to the TMS44400 and TMS44460 data sheets for details of operation. The
common I/O feature dictates the use of early write cycles to prevent contention on D and Q.
2
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TM124MBK36B, TM124MBK36R 1048576 BY 36-BIT
TM248NBK36B, TM248NBK36R 2097152 BY 36-BIT
DYNAMIC RAM MODULE
SMMS137E – JANUARY 1991 – REVISEDJUNE 1995
BK SINGLE IN-LINE MEMORY MODULE
(TOP VIEW)
VSS
DQ0
DQ18
DQ1
DQ19
DQ2
DQ20
DQ3
DQ21
VCC
NC
A0
A1
A2
A3
A4
A5
A6
NC
DQ4
DQ22
DQ5
DQ23
DQ6
DQ24
DQ7
DQ25
A7
NC
VCC
A8
A9
RAS3
RAS2
DQ26
DQ8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
DQ17
DQ35
VSS
CAS0
CAS2
CAS3
CAS1
RAS0
RAS1
NC
W
NC
DQ9
DQ27
DQ10
DQ28
DQ11
DQ29
DQ12
DQ30
DQ13
DQ31
VCC
DQ32
DQ14
DQ33
DQ15
DQ34
DQ16
NC
PD1
PD2
PD3
PD4
NC
VSS
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
TM124MBK36B
(SIDE VIEW)
TM248NBK36B
(SIDE VIEW)
PIN NOMENCLATURE
A0 – A9
CAS0 – CAS3
DQ0 – DQ35
NC
PD1 – PD4
RAS0 – RAS3
VCC
VSS
W
Address Inputs
Column-Address Strobe
Data In/Data Out
No Connection
Presence Detects
Row-Address Strobe
5-V Supply
Ground
Write Enable
PRESENCE DETECT
SIGNAL
(PIN)
PD1
(67)
PD2
(68)
VSS
VSS
VSS
VSS
80 ns
VSS
NC
VSS
NC
70 ns
NC
NC
60 ns
NC
NC
80 ns
TM124MBK36B
70 ns
60 ns
TM248NBK36B
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
PD3
(69)
PD4
(70)
NC
VSS
NC
VSS
NC
NC
VSS
NC
NC
VSS
NC
NC
3
TM124MBK36B, TM124MBK36R 1048576 BY 36-BIT
TM248NBK36B, TM248NBK36R 2097152 BY 36-BIT
DYNAMIC RAM MODULE
SMMS137E – JANUARY 1991 – REVISEDJUNE 1995
Table 1. Connection Table
DATA BLOCK
RASx
CASx
SIDE 1
SIDE 2†
DQ0 – DQ7
DQ8
RAS0
RAS2
RAS1
RAS3
CAS0
CAS0
DQ9 – DQ16
DQ17
RAS0
RAS2
RAS1
RAS3
CAS1
CAS1
DQ18 – DQ25
DQ26
RAS2
RAS2
RAS3
RAS3
CAS2
CAS2
DQ27 – DQ34
DQ35
RAS2
RAS2
RAS3
RAS3
CAS3
CAS3
† Side 2 applies to the TM248NBK36B only.
single-in-line memory module and components
PC substrate: 1,27 ± 0,1 mm (0.05 inch) nominal thickness; 0.005 inch/inch maximum warpage
Bypass capacitors: Multilayer ceramic
Contact area for TM124MBK36B and TM248NBK36B: Nickel plate and gold plate over copper
Contact area for TM124MBK36R and TM248NBK36R: Nickel plate and tin-lead over copper
4
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
functional block diagram (TM124MBK36B and TM248NBK36B, side 1)
A0 – A9
10
RAS0
RAS2
W
CAS0
CAS1
10
DQ0 –
DQ3
10
DQ4 –
DQ7
1M × 4
A0 – A9
RAS
W
CAS
OE
DQ1 –
DQ4
1M × 4
A0 – A9
RAS
W
CAS
OE
DQ1 –
DQ4
10
DQ9 –
DQ12
10
DQ13 –
DQ16
1M × 4
A0 – A9
RAS
W
CAS
OE
DQ1 –
DQ4
1M × 4
A0 – A9
RAS
W
CAS
OE
DQ1 –
DQ4
10
DQ18 –
DQ21
10
DQ22 –
DQ25
10
1M × 4
A0 – A9
RAS
W
CAS
OE
DQ1 –
DQ4
1M × 4
A0 – A9
RAS
W
CAS
OE
DQ1 –
DQ4
1M × 4
A0 – A9
RAS
W
CAS4
DQ4
CAS3
DQ3
CAS2
DQ2
DQ1
CAS1
OE
DQ27 –
DQ30
DQ31 –
DQ34
DQ35
DQ26
DQ17
DQ8
5
TM124MBK36B, TM124MBK36R 1048576 BY 36-BIT
TM248NBK36B, TM248NBK36R 2097152 BY 36-BIT
DYNAMIC RAM MODULE
1M × 4
A0 – A9
RAS
W
CAS
OE
DQ1 –
DQ4
10
SMMS137E – JANUARY 1991 – REVISED JUNE 1995
POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251–1443
10
1M × 4
A0–A9
RAS
W
CAS
OE
DQ1–
DQ4
CAS3
CAS2
10
RAS1
RAS3
W
CAS0
CAS1
10
POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251–1443
10
1M × 4
A0 – A9
RAS
W
CAS
OE
DQ1 –
DQ4
1M × 4
A0 – A9
RAS
W
CAS
OE
DQ1 –
DQ4
10
DQ0 –
DQ3
10
DQ4 –
DQ7
CAS3
CAS2
1M × 4
A0 – A9
RAS
W
CAS
OE
DQ1 –
DQ4
1M × 4
A0 – A9
RAS
W
CAS
OE
DQ1 –
DQ4
10
DQ9 –
DQ12
10
DQ13 –
DQ16
1M × 4
A0 – A9
RAS
W
CAS
OE
DQ1 –
DQ4
1M × 4
A0 – A9
RAS
W
CAS
OE
DQ1 –
DQ4
10
DQ18 –
DQ21
10
DQ22 –
DQ25
10
1M × 4
A0 – A9
RAS
W
CAS
OE
DQ1 –
DQ4
1M × 4
A0 – A9
RAS
W
CAS
OE
DQ1 –
DQ4
1M × 4
A0 – A9
RAS
W
CAS4
DQ4
CAS3
DQ3
CAS2
DQ2
DQ1
CAS1
OE
DQ27 –
DQ30
DQ31 –
DQ34
DQ35
DQ26
DQ17
DQ8
Template Release Date: 7–11–94
A0 – A9
TM124MBK36B, TM124MBK36R 1048576 BY 36-BIT
TM248NBK36B, TM248NBK36R 2097152 BY 36-BIT
DYNAMIC RAM MODULE
SMMS137E – JANUARY 1991 – REVISED JUNE 1995
6
functional block diagram (TM248NBK36B, side 2)
TM124MBK36B, TM124MBK36R 1048576 BY 36-BIT
TM248NBK36B, TM248NBK36R 2097152 BY 36-BIT
DYNAMIC RAM MODULE
SMMS137E – JANUARY 1991 – REVISEDJUNE 1995
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Voltage range on any pin (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 1 V to 7 V
Voltage range on VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 1 V to 7 V
Short-circuit output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA
Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 W
Operating free-air temperature range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values are with respect to VSS.
recommended operating conditions
MIN
NOM
MAX
5
UNIT
VCC
VIH
Supply voltage
4.5
5.5
V
High-level input voltage
2.4
6.5
V
VIL
TA
Low-level input voltage (see Note 2)
–1
0.8
V
0
70
°C
Operating free-air temperature
NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used for logic-voltage levels only.
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted)
PARAMETER
VOH
High-level output
voltage
IOH = – 5 mA
VOL
Low-level output
voltage
IOL = 4.2 mA
II
Input current (leakage)
IO
ICC1
ICC2
’124MBK36B-60
TEST CONDITIONS
MIN
’124MBK36B-70
MAX
2.4
MIN
MAX
2.4
’124MBK36B-80
MIN
MAX
2.4
UNIT
V
0.4
0.4
0.4
V
VCC = 5.5 V,
VI = 0 V to 6.5 V,
All other pins = 0 V to VCC
± 10
± 10
± 10
µA
Output current
(leakage)
VCC = 5.5 V,
CAS high
VO = 0 V to VCC,
± 10
± 10
± 10
µA
Read or write cycle
current (see Note 3)
VCC = 5.5 V,
Minimum cycle
945
810
720
mA
18
18
18
mA
Standby current
After 1 memory cycle,
RAS and CAS high,
VIH = 2.4 V (TTL)
After 1 memory cycle,
RAS and CAS high,
VIH = VCC – 0.2 V (CMOS)
9
9
9
mA
ICC3
Average refresh current
(RAS only or CBR)
(see Note 3)
VCC = 5.5 V,
Minimum cycle,
RAS cycling,
CAS high (RAS only),
RAS low after CAS low (CBR)
945
810
720
mA
ICC4
Average page current
(see Note 4)
VCC = 5.5 V,
RAS low,
810
720
630
mA
tPC = minimum,
CAS cycling
NOTES: 3. Measured with a maximum of one address change while RAS = VIL
4. Measured with a maximum of one address change while CAS = VIH
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
7
TM124MBK36B, TM124MBK36R 1048576 BY 36-BIT
TM248NBK36B, TM248NBK36R 2097152 BY 36-BIT
DYNAMIC RAM MODULE
SMMS137E – JANUARY 1991 – REVISEDJUNE 1995
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted)
PARAMETER
VOH
High-level output
voltage
IOH = – 5 mA
VOL
Low-level output
voltage
IOL = 4.2 mA
II
Input current (leakage)
IO
ICC1
ICC2
’248NBK36B-60
TEST CONDITIONS
MIN
MAX
2.4
’248NBK36B-70
MIN
’248NBK36B-80
MAX
MIN
2.4
MAX
2.4
UNIT
V
0.4
0.4
0.4
V
VCC = 5.5 V,
VI = 0 V to 6.5 V,
All other pins = 0 V to VCC
± 20
± 20
± 20
µA
Output current
(leakage)
VCC = 5.5 V,
CAS high
VO = 0 V to VCC,
± 20
± 20
± 20
µA
Read or write cycle
current (see Note 3)
VCC = 5.5 V,
Minimum cycle
963
828
738
mA
36
36
36
mA
18
18
18
mA
1890
1620
1440
mA
828
738
648
mA
Standby current
ICC3
Average refresh current
(RAS only or CBR)
(see Note 3)
ICC4
Average page current
(see Note 4)
After 1 memory cycle,
RAS and CAS high,
VIH = 2.4 V (TTL)
After 1 memory cycle,
RAS and CAS high,
VIH = VCC – 0.2 V (CMOS)
VCC = 5.5 V,
Minimum cycle,
RAS cycling,
CAS high (RAS only),
RAS low after CAS low (CBR)
VCC = 5.5 V,
tPC = minimum,
RAS low, CAS cycling
NOTES: 3. Measured with a maximum of one address change while RAS = VIL
4. Measured with a maximum of one address change while CAS = VIH
capacitance over recommended ranges of supply voltage and operating free-air temperature,
f = 1 MHz (see Note 5)
’124MBK36B
PARAMETER
MIN
MAX
’248NBK36B
MIN
MAX
UNIT
Ci(A)
Input capacitance, A0 – A9
45
90
pF
Ci(R)
Input capacitance, RAS
35
35
pF
Ci(C)
Input capacitance, CAS
21
42
pF
Ci(W)
Input capacitance, W
63
126
pF
Co(DQ)
Output capacitance on DQ pins
7
14
pF
NOTE 5: VCC = 5 V ± 0.5 V and the bias on pins under test is 0 V.
8
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TM124MBK36B, TM124MBK36R 1048576 BY 36-BIT
TM248NBK36B, TM248NBK36R 2097152 BY 36-BIT
DYNAMIC RAM MODULE
SMMS137E – JANUARY 1991 – REVISEDJUNE 1995
switching characteristics over recommended ranges of supply voltage and operating free-air
temperature
’124MBK36B-60
’248NBK36B-60
PARAMETER
MIN
’124MBK36B-70
’248NBK36B-70
MAX
MIN
MAX
’124MBK36B-80
’248NBK36B-80
MIN
UNIT
MAX
tCAC
tAA
Access time from CAS low
15
18
20
ns
Access time from column address
30
35
40
ns
tRAC
tCPA
Access time from RAS low
60
70
80
ns
Access time from column precharge
35
40
45
ns
tCLZ
tOFF
CAS to output in low impedance
0
Output disable time after CAS high (see Note 6)
0
0
15
0
0
18
0
ns
20
ns
NOTE 6: tOFF is specified when the output is no longer driven.
timing requirements over recommended ranges of supply voltage and operating free-air
temperature
’124MBK36B-60
’248NBK36B-60
MIN
’124MBK36B-70
’248NBK36B-70
MAX
MIN
MAX
’124MBK36B-80
’248NBK36B-80
MIN
UNIT
MAX
tRC
tRWC
Cycle time, random read or write (see Note 7)
110
130
150
ns
Cycle time, read write
130
153
175
ns
tPC
tRASP
Cycle time, page-mode read or write (see Note 8)
40
Pulse duration, page mode, RAS low
60
100 000
70
100 000
80
100 000
ns
tRAS
tCAS
Pulse duration, nonpage mode, RAS low
60
10 000
70
10 000
80
10 000
ns
Pulse duration, CAS low
15
10 000
18
10 000
20
10 000
ns
tCP
tRP
Pulse duration, CAS high
10
10
10
ns
Pulse duration, RAS high (precharge)
40
50
60
ns
tWP
tASC
Pulse duration, write
15
15
15
ns
Setup time, column address before CAS low
0
0
0
ns
tASR
tDS
Setup time, row address before RAS low
0
0
0
ns
Setup time, data
0
0
0
ns
tRCS
tCWL
Setup time, read before CAS low
0
0
0
ns
Setup time, W low before CAS high
15
18
20
ns
tRWL
tWCS
Setup time, W low before RAS high
15
18
20
ns
tWSR
Setup time, W high (see Note 9)
Setup time, W low before CAS low
45
50
ns
0
0
0
ns
10
10
10
ns
NOTES: 7. All cycles assume tT = 5 ns.
8. To assure tPC min, tASC should be ≥ 5 ns.
9. CBR refresh only
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
9
TM124MBK36B, TM124MBK36R 1048576 BY 36-BIT
TM248NBK36B, TM248NBK36R 2097152 BY 36-BIT
DYNAMIC RAM MODULE
SMMS137E – JANUARY 1991 – REVISEDJUNE 1995
timing requirements over recommended ranges of supply voltage and operating free-air
temperature (continued)
’124MBK36B-60
’248NBK36B-60
MIN
MAX
’124MBK36B-70
’248NBK36B-70
MIN
MAX
’124MBK36B-80
’248NBK36B-80
MIN
UNIT
MAX
tCAH
tDHR
Hold time, column address after CAS low
10
15
15
ns
Hold time, data after RAS low (see Note 10)
50
55
60
ns
tDH
tAR
Hold time, data
10
15
15
ns
Hold time, column address after RAS low (see Note 10)
50
55
60
ns
tCLCH
tRAH
Hold time, CAS low to CAS high
tRCH
tRRH
Hold time, read after CAS high (see Note 11)
0
tWCH
tWCR
Hold time, write after CAS low
15
Hold time, write after RAS low (see Note 10)
50
tWHR
tCHR
Hold time, W high (see Note 9)
10
Delay time, RAS low to CAS high (see Note 9)
15
tCRP
tCSH
Delay time, CAS high to RAS low
0
Delay time, RAS low to CAS high
60
tCSR
tRAD
Delay time, CAS low to RAS low (see Note 9)
10
Delay time, RAS low to column address (see Note 12)
15
tRAL
tCAL
Delay time, column address to RAS high
30
Delay time, column address to CAS high
30
tRCD
tRPC
Delay time, RAS low to CAS low (see Note 12)
20
tRSH
tREF
Delay time, CAS low to RAS high
tT
Transition time
Hold time, row address after RAS low
Hold time, read after RAS high (see Note 11)
Delay time, RAS high to CAS low (see Note 9)
5
5
5
ns
10
10
10
ns
0
0
0
ns
0
0
ns
15
15
ns
55
60
ns
10
10
ns
15
20
ns
0
0
ns
70
80
ns
15
10
35
35
20
0
0
18
20
2
16
50
2
50
CBR refresh only
The minimum value is measured when tRCD is set to tRCD min as a reference.
Either tRRH or tRCH must be satisfied for a read cycle.
The maximum value is specified only to assure access time.
device symbolization (TM124MBK36B illustrated)
TM124MBK36B
–SS
YY
MM
T
–SS
=
=
=
=
Year Code
Month Code
Assembly Site Code
Speed Code
NOTE: Location of symbolization may vary.
10
POST OFFICE BOX 1443
20
• HOUSTON, TEXAS 77251–1443
YYMMT
2
ns
ns
40
52
0
16
ns
40
40
35
45
15
15
Refresh time interval
NOTES: 9.
10.
11.
12.
10
30
ns
60
ns
ns
ns
16
ms
50
ns
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1999, Texas Instruments Incorporated