MITSUBISHI CM100TX-24S1

< IGBT MODULES >
CM100TX-24S1
HIGH POWER SWITCHING USE
INSULATED TYPE
Collector current I C .............….......................…
100A
Collector-emitter voltage V CES ......................… 1 2 0 0 V
Maximum junction temperature T j m a x ..............
1 7 5 °C
●Flat base Type
●Copper base plate (non-plating)
●Tin plating pin terminals
●RoHS Directive compliant
sixpack (3φ Inverter)
●Recognized under UL1557, File E323585
APPLICATION
AC Motor Control, Motion/Servo Control, Power supply, etc.
OUTLINE DRAWING & INTERNAL CONNECTION
Dimension in mm
TERMINAL
t=0.8
SECTION A
INTERNAL CONNECTION
Tolerance otherwise specified
P(30~32)
P1(16~18)
GUP(1)
GVP(5)
GWP(9)
EUP(2)
EVP(6)
EWP(10)
V(24~26)
W(21~23)
GUN(3)
GVP(7)
GWN(11)
EUN(4)
EVP(8)
EWN(12)
N(33~35)
NTC
U(27~29)
TH1(19)
TH2(20)
N1(13~15)
Publication Date : December 2013
1
Division of Dimension
0.5
to
over
3
over
6
Tolerance
3
±0.2
to
6
±0.3
to
30
±0.5
over 30
to 120
±0.8
over 120
to 400
±1.2
< IGBT MODULES >
CM100TX-24S1
HIGH POWER SWITCHING USE
INSULATED TYPE
MAXIMUM RATINGS (Tj=25 °C, unless otherwise specified)
INVERTER PART IGBT/DIODE
Rating
Unit
VCES
Symbol
Collector-emitter voltage
G-E short-circuited
1200
V
VGES
Gate-emitter voltage
C-E short-circuited
± 20
V
IC
Item
DC, TC=107 °C
Collector current
ICRM
Ptot
(Note1)
IERM
(Note1)
(Note2, 4)
100
(Note3)
200
Pulse, Repetitive
Total power dissipation
IE
Conditions
TC=25 °C
DC
Emitter current
(Note2, 4)
A
625
(Note2)
W
100
Pulse, Repetitive
(Note3)
A
200
MODULE
Rating
Unit
Visol
Symbol
Isolation voltage
Item
Terminals to base plate, RMS, f=60 Hz, AC 1 min
Conditions
4000
V
Tjmax
Maximum junction temperature
Instantaneous event (overload)
175
TCmax
Maximum case temperature
(Note4)
125
Tjop
Operating junction temperature
Continuous operation (under switching)
-40 ~ +150
Tstg
Storage temperature
-
-40 ~ +125
°C
°C
ELECTRICAL CHARACTERISTICS (T j =25 °C, unless otherwise specified)
INVERTER PART IGBT/DIODE
Symbol
Item
Limits
Conditions
Min.
Typ.
Max.
Unit
ICES
Collector-emitter cut-off current
VCE=VCES, G-E short-circuited
-
-
1.0
mA
IGES
Gate-emitter leakage current
VGE=VGES, C-E short-circuited
-
-
0.5
μA
VGE(th)
Gate-emitter threshold voltage
IC=10 mA, VCE=10 V
5.4
6.0
6.6
V
T j =25 °C
-
1.80
2.25
Refer to the figure of test circuit
T j =125 °C
-
2.00
-
(Note5)
T j =150 °C
-
2.05
-
IC=100 A,
T j =25 °C
-
1.70
2.15
VGE=15 V,
T j =125 °C
-
1.90
-
(Note5)
T j =150 °C
-
1.95
-
-
-
10
-
-
2.0
-
-
0.17
-
210
-
-
-
300
-
-
200
-
-
600
IC=100 A, VGE=15 V,
VCEsat
(Terminal)
Collector-emitter saturation voltage
VCEsat
(Chip)
Cies
Input capacitance
Coes
Output capacitance
Cres
Reverse transfer capacitance
QG
Gate charge
td(on)
Turn-on delay time
tr
Rise time
td(off)
Turn-off delay time
tf
Fall time
VEC
VCC=600 V, IC=100 A, VGE=15 V
VCC=600 V, IC=100 A, VGE=±15 V,
RG=6.2 Ω, Inductive load
-
-
300
T j =25 °C
-
2.60
3.40
Refer to the figure of test circuit
T j =125 °C
-
2.16
-
(Note5)
T j =150 °C
-
2.10
-
IE=100 A, G-E short-circuited,
(Note1)
(Terminal)
Emitter-collector voltage
VEC
VCE=10 V, G-E short-circuited
(Note1)
(Chip)
IE=100 A,
T j =25 °C
-
2.50
3.30
G-E short-circuited,
T j =125 °C
-
2.06
-
(Note5)
T j =150 °C
-
2.00
-
V
V
nF
nC
ns
V
V
trr
(Note1)
Reverse recovery time
VCC=600 V, IE=100 A, VGE=±15 V,
-
-
300
ns
Qrr
(Note1)
Reverse recovery charge
RG=6.2 Ω, Inductive load
-
2.7
-
μC
Eon
Turn-on switching energy per pulse
VCC=600 V, IC=IE=100 A,
-
5.9
-
Eoff
Turn-off switching energy per pulse
VGE=±15 V, RG=6.2 Ω, T j =150 °C,
-
9.7
-
Reverse recovery energy per pulse
Inductive load
-
9.7
-
mJ
R CC'+EE'
Internal lead resistance
Main terminals-chip, per switch,
TC=25 °C (Note4)
-
-
2.2
mΩ
rg
Internal gate resistance
Per switch
-
0
-
Ω
Err
(Note1)
Publication Date : December 2013
2
mJ
< IGBT MODULES >
CM100TX-24S1
HIGH POWER SWITCHING USE
INSULATED TYPE
ELECTRICAL CHARACTERISTICS (cont.; T j =25 °C, unless otherwise specified)
NTC THERMISTOR PART
Symbol
Item
Limits
Conditions
(Note4)
R25
Zero-power resistance
TC=25 °C
ΔR/R
Deviation of resistance
R100=493 Ω, TC=100 °C
B(25/50)
B-constant
Approximate by equation
P25
Power dissipation
TC=25 °C
Typ.
4.85
5.00
5.15
kΩ
-7.3
-
+7.8
%
-
3375
-
K
-
-
10
mW
(Note4)
(Note6)
(Note4)
Max.
Unit
Min.
THERMAL RESISTANCE CHARACTERISTICS
Symbol
Rth(j-c)Q
Item
Junction to case, per Inverter IGBT
Thermal resistance
Rth(j-c)D
Rth(c-s)
Limits
Conditions
Min.
(Note4)
(Note4)
Junction to case, per Inverter DIODE
Case to heat sink, per 1 module,
Thermal grease applied (Note4, 7)
Contact thermal resistance
Typ.
Max.
-
-
0.24
-
-
0.37
-
15
-
Unit
K/W
K/kW
MECHANICAL CHARACTERISTICS
Symbol
Item
Max.
2.5
3.0
3.5
N·m
-
330
-
g
Terminal to terminal
16.3
-
-
Terminal to base plate
19.1
-
-
Terminal to terminal
10.3
-
-
Terminal to base plate
15.3
-
-
±0
-
+100
Mounting torque
Mounting to heat sink
m
mass
-
Creepage distance
da
Clearance
ec
Flatness of base plate
On the centerline X, Y
Min.
M 5 screw
(Note8)
Note1. Represent ratings and characteristics of the anti-parallel, emitter-collector free wheeling diode (DIODE).
2. Junction temperature (T j ) should not increase beyond T j m a x rating.
3. Pulse width and repetition rate should be such that the device junction temperature (T j ) dose not exceed T j m a x rating.
4. Case temperature (TC) and heat sink temperature (T s ) are defined on the each surface (mounting side) of base plate and heat sink
just under the chips. Refer to the figure of chip location.
5. Pulse width and repetition rate should be such as to cause negligible temperature rise.
R
1
1
6. B( 25 / 50) = ln( 25 ) /(
),
−
R 50 T25 T50
-:Concave
+:Convex
R25: resistance at absolute temperature T25 [K]; T25=25 [°C]+273.15=298.15 [K]
R50: resistance at absolute temperature T50 [K]; T50=50 [°C]+273.15=323.15 [K]
7. Typical value is measured by using thermally conductive grease of λ=0.9 W/(m·K).
8. The base plate (mounting side) flatness measurement points (X, Y) are as follows of the following figure.
Y
X
mounting side
mounting side
mounting side
Unit
Typ.
Ms
ds
Limits
Conditions
-:Concave
+:Convex
9. Use the following screws when mounting the printed circuit board (PCB) on the stand offs.
"φ2.6×10 or φ2.6×12 B1 tapping screw"
The length of the screw depends on the thickness (t1.6~t2.0) of the PCB.
Publication Date : December 2013
3
mm
mm
μm
< IGBT MODULES >
CM100TX-24S1
HIGH POWER SWITCHING USE
INSULATED TYPE
RECOMMENDED OPERATING CONDITIONS
Symbol
Item
VCC
Limits
Conditions
Min.
Typ.
Max.
Unit
(DC) Supply voltage
Applied across P-N/P1-N1 terminals
-
600
850
V
VGEon
Gate (-emitter drive) voltage
Applied across
G*P-E*P/G*N-E*N(*=U, V, W) terminals
13.5
15.0
16.5
V
RG
External gate resistance
Per switch
6.2
-
62
Ω
CHIP LOCATION (Top view)
Dimension in mm, tolerance: ±1 mm
Tr*P/Tr*N: IGBT, Di*P/Di*N: DIODE (*=U/V/W), Th: NTC thermistor
iE
*: U, V, W
P1
~
~
TEST CIRCUIT AND WAVEFORMS
vGE
P
90 %
0V
G*P
-VGE
iE
0
Load
IE
E*P
iC
VCC
90 %
RG
G*N
0
vGE
0A
0.5×I r r
10%
iC
0A
-VGE
N1
N
tr
td(on)
tf
td(off)
Switching characteristics test circuit and waveforms
t
t r r , Q r r characteristics test waveform
iE
iC
iC
ICM
vCE
VCC
0.1×ICM
0.1×VCC
0
t
Irr
vCE
E*N
trr
~
~
+
*
+VGE
Q r r =0.5×I r r ×t r r
t
vEC
VCC
vCE
VCC
0.1×VCC
t
IEM
ICM
0.02×ICM
0
ti
ti
IGBT Turn-on switching energy
IGBT Turn-off switching energy
t
0A
t
0V
t
ti
DIODE Reverse recovery energy
Turn-on / Turn-off switching energy and Reverse recovery energy test waveforms (Integral time instruction drawing)
Publication Date : December 2013
4
< IGBT MODULES >
CM100TX-24S1
HIGH POWER SWITCHING USE
INSULATED TYPE
TEST CIRCUIT
16~18
VGE=15V
30~32
16~18
VGE=15V
1
30~32
16~18
VGE=15V
5
IC
IC
6
V
10
V
V
27~29
24~26
Shortcircuited
3
4
13~15
16~18
Shortcircuited
33~35
7
13~15
30~32
16~18
Shortcircuited
1
13~15
16~18
30~32
Shortcircuited
VGE=15V
IC
4
Gate-emitter GVP-EVP GVN-EVN,
short-circuited GWP-EWP, GWN-EWN
VGE=15V
11
IC
IC
12
13~15
33~35
Gate-emitter GUP-EUP, GUN-EUN,
short-circuited GWP-EWP, GWN-EWN
UP / UN IGBT
V
21~23
7
13~15
30~32
10
V
8
33~35
33~35
9
24~26
3
13~15
33~35
6
V
11
12
5
27~29
VGE=15V
21~23
Shortcircuited
8
2
9
IC
2
Shortcircuited
30~32
33~35
Gate-emitter GUP-EUP, GUN-EUN,
short-circuited GVP-EVP, GVN-EVN
VP / VN IGBT
WP / WN IGBT
V CE s a t characteristics test circuit
16~18
Shortcircuited
30~32
16~18
1
IE
Shortcircuited
2
5
IE
24~25
3
4
13~15
16~18
33~35
7
13~15
30~32
16~18
Shortcircuited
1
Shortcircuited
30~32
16~18
Shortcircuited
13~15
33~35
Gate-emitter GVP-EVP GVN-EVN,
short-circuited GWP-EWP, GWN-EWN
Shortcircuited
9
V
IE
11
12
33~35
13~15
Gate-emitter GUP-EUP, GUN-EUN,
short-circuited GWP-EWP, GWN-EWN
UP / UN DIODE
30~32
21~23
IE
7
33~35
10
V
8
4
13~15
13~15
24~26
IE
3
33~35
5
27~29
11
12
6
V
IE
21~23
Shortcircuited
8
2
9
V
27~29
Shortcircuited
30~32
10
V
Shortcircuited
Shortcircuited
16~18
Shortcircuited
6
V
Shortcircuited
30~32
33~35
Gate-emitter GUP-EUP, GUN-EUN,
short-circuited GVP-EVP, GVN-EVN
VP / VN DIODE
WP / WN DIODE
VEC characteristics test circuit
Publication Date : December 2013
5
< IGBT MODULES >
CM100TX-24S1
HIGH POWER SWITCHING USE
INSULATED TYPE
PERFORMANCE CURVES
INVERTER PART
COLLECTOR-EMITTER SATURATION VOLTAGE
CHARACTERISTICS
(TYPICAL)
OUTPUT CHARACTERISTICS
(TYPICAL)
T j =25 °C
VGE=15 V
(Chip)
(V)
200
15 V
VCEsat
VGE=20 V
COLLECTOR-EMITTER SATURATION VOLTAGE
150
COLLECTOR CURRENT
IC
(A)
12 V
11 V
100
10 V
50
9V
0
0
2
4
6
8
COLLECTOR-EMITTER VOLTAGE
VCE
10
3
T j =150 °C
T j =125 °C
2.5
2
1.5
T j =25 °C
1
0.5
0
0
50
(V)
200
(A)
G-E short-circuited
(Chip)
(Chip)
1000
IC=40 A
T j =125 °C
IE
IC=100 A
(A)
IC=200 A
8
EMITTER CURRENT
(V)
150
IC
FREE WHEELING DIODE
FORWARD CHARACTERISTICS
(TYPICAL)
10
VCEsat
COLLECTOR-EMITTER SATURATION VOLTAGE
100
COLLECTOR CURRENT
COLLECTOR-EMITTER SATURATION VOLTAGE
CHARACTERISTICS
(TYPICAL)
T j =25 °C
(Chip)
3.5
6
4
100
T j =150 °C
T j =25 °C
2
0
10
6
8
10
12
14
GATE-EMITTER VOLTAGE
16
VGE
18
0.5
20
(V)
1
1.5
2
2.5
EMITTER-COLLECTOR VOLTAGE
Publication Date : December 2013
6
3
3.5
VEC
(V)
4
< IGBT MODULES >
CM100TX-24S1
HIGH POWER SWITCHING USE
INSULATED TYPE
PERFORMANCE CURVES
INVERTER PART
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
VCC=600 V, VGE=±15 V, RG=6.2 Ω, INDUCTIVE LOAD
---------------: T j =150 °C, - - - - -: T j =125 °C
VCC=600 V, VGE=±15 V, IC=100 A, INDUCTIVE LOAD
---------------: T j =150 °C, - - - - -: T j =125 °C
1000
1000
td(off)
td(off)
tf
(ns)
SWITCHING TIME
SWITCHING TIME
(ns)
tf
100
td(on)
tr
10
100
td(on)
tr
10
1
10
100
COLLECTOR CURRENT
1000
IC
1
(A)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
VCC=600 V, VGE=±15 V, RG=6.2 Ω,
INDUCTIVE LOAD, PER PULSE
---------------: T j =150 °C, - - - - -: T j =125 °C
10
Eoff
10
EXTERNAL GATE RESISTANCE
100
RG
(Ω)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
VCC=600 V, VGE=±15 V, IC/IE=100 A,
INDUCTIVE LOAD, PER PULSE
---------------: T j =150 °C, - - - - -: T j =125 °C
100
100
Err
0.1
10
SWITCHING ENERGY (mJ)
REVERSE RECOVERY ENERGY (mJ)
1
REVERSE RECOVERY ENERGY (mJ)
SWITCHING ENERGY (mJ)
Eon
1
10
100
Eon
10
Eoff
Err
1
1000
1
COLLECTOR CURRENT IC (A)
EMITTER CURRENT IE (A)
10
EXTERNAL GATE RESISTANCE
Publication Date : December 2013
7
100
RG
(Ω)
< IGBT MODULES >
CM100TX-24S1
HIGH POWER SWITCHING USE
INSULATED TYPE
PERFORMANCE CURVES
INVERTER PART
CAPACITANCE CHARACTERISTICS
(TYPICAL)
FREE WHEELING DIODE
REVERSE RECOVERY CHARACTERISTICS
(TYPICAL)
G-E short-circuited, T j =25 °C
VCC=600 V, VGE=±15 V, RG=6.2 Ω, INDUCTIVE LOAD
---------------: T j =150 °C, - - - - -: T j =125 °C
1000
100
Cies
(ns), I r r
CAPACITANCE
(A)
(nF)
10
1
Coes
trr
Cres
0.01
10
0.1
1
10
COLLECTOR-EMITTER VOLTAGE
100
VCE
10
1000
EMITTER CURRENT
IE
(A)
GATE CHARGE CHARACTERISTICS
(TYPICAL)
TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS
(MAXIMUM)
VCC=600 V, IC=100 A, Tj=25 °C
Single pulse, TC=25 °C
R t h ( j - c ) Q =0.24 K/W, R t h ( j - c ) D =0.37 K/W
Zth(j-c)
NORMALIZED TRANSIENT THERMAL RESISTANCE
VGE
15
10
5
0
0
100
(V)
20
(V)
100
trr
0.1
GATE-EMITTER VOLTAGE
Irr
50
100
150
GATE CHARGE
200
QG
250
300
(nC)
1
0.1
0.01
0.001
0.00001
0.0001
0.001
TIME
Publication Date : December 2013
8
0.01
(S)
0.1
1
10
< IGBT MODULES >
CM100TX-24S1
HIGH POWER SWITCHING USE
INSULATED TYPE
PERFORMANCE CURVES
NTC thermistor part
TEMPERATURE CHARACTERISTICS
(TYPICAL)
10
RESISTANCE
R
(kΩ)
100
1
0.1
-50
-25
0
25
50
TEMPERATURE
T
75
100
125
(°C)
Publication Date : December 2013
9
< IGBT MODULES >
CM100TX-24S1
HIGH POWER SWITCHING USE
INSULATED TYPE
Keep safety first in your circuit designs!
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more
reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors
may lead to personal injury, fire or property damage. Remember to give due consideration to safety when
making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary
circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
•These materials are intended as a reference to assist our customers in the selection of the Mitsubishi
semiconductor product best suited to the customer's application; they do not convey any license under any
intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
•Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.
•All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are subject
to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It
is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized
Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product
listed herein.
The information described here may contain technical inaccuracies or typographical errors. Mitsubishi
Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these
inaccuracies or errors.
Please also pay attention to information published by Mitsubishi Electric Corporation by various means,
including the Mitsubishi Semiconductor home page (www.MitsubishiElectric.com/semiconductors/).
•When using any or all of the information contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate all information as a total system before making
a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes
no responsibility for any damage, liability or other loss resulting from the information containedherein.
•Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or systems
for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
•The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or
in part these materials.
•If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other than
the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of
destination is prohibited.
•Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor
for further details on these materials or the products contained therein.
© 2013 MITSUBISHI ELECTRIC CORPORATION. ALL RIGHTS RESERVED.
Publication Date : December 2013
10