GP1A17 GP1A17 Wide Gap Type, OPIC Photointerrupter ■ Features ■ Outline Dimensions 1. Built-in Schmidt trigger circuit 2. Wide gap between light emitter and detector ( 10mm ) 3. Operating supply voltage V CC : 4.5 to 17V 4. TTL and CMOS compatible output ( Unit : mm ) Internal connection diagram Voltage regulator Amp. 1 Anode 5 ( 10kΩ ) 4 2 Cathode 2 - C2.0 (2.5) ( Detector center ) 2 - φ 3.2± 0.2 32.0± 0.3 18.6 10.0 0.3 3.0 1A17 5- 0.45 ± 0.2 6.0 ± 0.2 2.0 Slit width (Both sides of detector and emitter ) (1.5) (1.27) (15.24) 2 4 3 1 5 (1.27) * Unspecified tolerances shall be as follows ; Dimensions Tolerance d<=6.0 ± 0.1 6.0< d<=18.0 ± 0.2 18.0< d<=25.0 ± 0.25 * ( ): Reference dimensions *“ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip. ■ Absolute Maximum Ratings Parameter Forward current *1 Peak forward current Input Reverse voltage Power dissipation Supply voltage Output Output current Power dissipation Operating tamperature Storage temperture *2 Soldering temperature ( Ta = 25˚C ) Symbol IF I FM VR P V CC IO PO T opr T stg Tsol Rating 50 1 6 75 - 0.5 to + 17 50 250 - 25 to + 85 - 40 to + 100 260 6.0MIN. ■ Applications 1. Copiers 2. Analyzers, measuring instruments, etc. 3 25.4± 0.2 3 V CC 4 VO 5 GND 5.0MIN. 2 15.2 1 Unit mA A V mW V mA mW ˚C ˚C ˚C *1 Pules width <=100 µ s, Duty ratio = 0.01 *2 For 5 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ” GP1A17 ■ Electro-optical Charcateristics Input Transfer characteristics Response time Output ( Ta = 25˚C ) Parameter Forward voltage Reverse current Operating supply voltage Low level output voltage High level output voltage Low level supply current High level supply current *3 “ Low→High” threshold input current *4 Hysteresis “Low→High” propagation delay time “High→Low” propagation delay time Rise time Fall time Symbol VF IR V CC V OL V OH I CCL I CCH Conditions I F = 7mA V R = 3V I OL = 16mA, VCC= 5V, I F = 0 V CC= 5V, I F = 7mA V CC= 5V, I F = 0 V CC= 5V, I F = 7mA MIN. 4.5 4.9 - TYP. 1.13 0.15 2.5 1.0 MAX. 1.4 10 17 0.4 5.0 3.0 Unit V µA V V V mA mA I FLH V CC= 5V - 3.0 7.0 mA I FHL /I FLH t PLH t PHL tr tf Vcc= 5V 0.55 - 0.65 3 5 0.1 0.05 0.95 9 15 0.5 0.5 - V CC= 5V I F = 7mA R L = 280Ω µs *3 I FLH represents forward current when output goes from low to high. *4 I FHL represents forward current when output goes from high to low. Hysteresis stands for IFHL /I FLH . ■ Recommended Operating Conditions Parameter Low level output current Forward current Symbol I OL IF Operating temperature Ta = 0 to + 70˚C MAX. 16 20 Unit mA mA Fig. 2 Output Power Dissipation vs. Ambient Temperature 60 300 50 250 Output power dissipation PO ( mW ) Forward current I F ( mA ) Fig. 1 Forward Current vs. Ambient Temperature MIN. 10 40 30 20 10 0 - 25 0 25 50 75 Ambient temperature Ta ( ˚C ) 85 100 200 150 100 50 0 - 25 0 25 50 75 85 Ambient temperature Ta ( ˚C ) 100 GP1A17 Fig. 4 Forward Current vs. Forward Voltage 60 500 50 200 Forward current I F ( mA ) Low level output current I OL ( mA ) Fig. 3 Low Level Output Current vs. Ambient Temperature 40 30 20 25˚C 0˚C - 25˚C T a = 75˚C 50˚C 100 50 20 10 5 10 2 0 - 25 1 0 25 50 75 85 100 0 0.5 1 Ambient temperature T a ( ˚C ) Fig. 5 Relative Threshold Input Current vs. Supply Voltage 2.5 3 3.5 1.4 Relative threshold input current I FHL /I FLH Relative threshold input current I FHL /I FLH 2 Fig. 6 Relative Threshold Input Current vs. Ambient Temperature 1.2 T a = 25˚C 1.0 I FLH 0.8 I FHL 0.6 I FLH = 1 at V CC = 5V 0.4 10 5 0 15 V CC = 5V 1.2 I FLH 1.0 I FHL 0.8 0.6 I FLH = 1 at Ta= 25˚C 0.4 - 25 0.2 20 0 Supply voltage VCC ( V) 25 50 75 100 Ambient temperature Ta ( ˚C ) Fig. 7 Low Level Output Voltage vs. Low Level Output Current Fig. 8 Low Level Output Voltage vs. Ambient Temperature 0.4 1.0 V CC = 5V V CC = 5V T a = 25˚C 0.5 Low level output voltage VOL ( V) Low level output voltage VOL ( V) 1.5 Forward voltage VF ( V) 0.2 0.1 0.05 0.02 0.01 1 2 5 10 20 50 Low level output current I OL ( mA ) 100 0.3 I OL = 30mA 0.2 16mA 5mA 0.1 0 - 25 0 25 50 75 Ambient temperature Ta ( ˚C ) 100 GP1A17 Fig. 9 Supply Current vs. Supply Voltage Fig.10 Propagation Delay Time vs. Forward Current 7 Propagation delay time tPLH ,t PHL ( µ s ) 7 Supply current ICCL/ICCH ( mA ) 6 5 T a =- 25˚C 4 25˚C 3 85˚C I CCL 2 1 T a =- 25˚C 25˚C I CCH t PHL 6 5 4 3 t PLH 2 V CC = 5V R L = 280Ω 1 T a = 25˚C 85˚C 0 0 2 4 6 8 10 12 14 16 0 20 10 30 Forward current IF ( mA ) Supply voltage VCC ( V ) Fig.11 Rise Time, Fall Time vs. Load Resistance Rise time, fall time t r , t f ( µ s ) 0.5 V CC = 5V I F = 7mA T a = 25˚C 0.4 0.3 tr 0.2 0.1 tf 0 0.2 0.5 2 1 5 10 Load resistance R L ( kΩ ) Test Circuit for Response Time Voltage regulator 10k Ω VIN t r= tf= 0.01µ s ZO= 50Ω Amp. 47 Ω + 5V Input 50% 280 Ω tPLH VO 0.01 µ F tPHL 90% Output 10% tr tf VOH 1.5V VOL ■ Precautions for Use ( 1 ) In order to stabilize power supply line, connect a by-pass capacitor of more than 0.01 µF between Vcc and GND near the device. ( 2 ) As for other general cautions, refer to the chapter “Precautions for Use” . 40 50