HUFA76645S3ST_F085 Data Sheet September 2010 75A, 100V, 0.015 Ohm, N-Channel, Logic Level UltraFET® Power MOSFET Packaging Features JEDEC TO-263AB DRAIN (FLANGE) GATE SOURCE • Ultra Low On-Resistance - rDS(ON) = 0.014Ω, VGS = 10V - rDS(ON) = 0.015Ω, VGS = 5V • Simulation Models - Temperature Compensated PSPICE® and SABER™ Electrical Models - Spice and SABER Thermal Impedance Models - www.fairchildsemi.com • Peak Current vs Pulse Width Curve • UIS Rating Curve • Switching Time vs RGS Curves Symbol D • Qualified to AEC Q101 • RoHS Compliant Ordering Information PART NUMBER PACKAGE BRAND HUFA76645S3ST_F085 TO-263AB 76645S G S Absolute Maximum Ratings NOTE: When ordering, use the entire part number. Add the suffix T to obtain the variant in tape and reel, e.g., HUFA76645S3ST. TC = 25oC, Unless Otherwise Specified HUFA76645S3ST_F085 UNITS Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS 100 V Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR 100 V Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±16 V Drain Current Continuous (TC = 25oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC = 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC = 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC = 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM 75 75 63 62 Figure 4 A A A A Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIS Figures 6, 17, 18 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 2.07 W W/oC Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG -55 to 175 oC Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief TB334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg 300 260 oC oC NOTES: 1. TJ = 25oC to 150oC. CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/ Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html. All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification. ©2010 Fairchild Semiconductor Corporation HUFA76645S3ST_F085 Rev. A HUFA76645S3ST_F085 Electrical Specifications TC = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS ID = 250µA, VGS = 0V (Figure 12) 100 - - V ID = 250µA, VGS = 0V , T C = -40oC (Figure 12) 90 - - V OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current BVDSS IDSS IGSS VDS = 95V, VGS = 0V - - 1 µA VDS = 90V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±16V - - ±100 nA ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 11) 1 - 3 V Drain to Source On Resistance rDS(ON) ID = 75A, VGS = 10V (Figures 9, 10) - 0.012 0.014 Ω ID = 63A, VGS = 5V (Figure 9) - 0.013 0.015 Ω ID = 62A, VGS = 4.5V (Figure 9) - 0.0135 0.0155 Ω TO-220 and TO-263 - - 0.48 oC/W - - 62 oC/W THERMAL SPECIFICATIONS Thermal Resistance Junction to Case RθJC Thermal Resistance Junction to Ambient RθJA SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time Turn-On Delay Time tON td(ON) - 490 ns 17 - ns tr - 310 - ns - 46 - ns tf - 155 - ns tOFF - - 300 ns - - 175 ns - 11 - ns - 106 - ns Fall Time Turn-Off Time - td(OFF) Rise Time Turn-Off Delay Time VDD = 50V, ID = 62A VGS = 4.5V, RGS = 2.4Ω (Figures 15, 21, 22) SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time tON td(ON) tr Turn-Off Delay Time Fall Time Turn-Off Time VDD = 50V, ID = 75A VGS = 10V, RGS = 2.4Ω (Figures 16, 21, 22) td(OFF) - 69 - ns tf - 175 - ns tOFF - - 365 ns GATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) VGS = 0V to 10V Gate Charge at 5V Qg(5) VGS = 0V to 5V Qg(TH) VGS = 0V to 1V Threshold Gate Charge VDD = 50V, ID = 63A, Ig(REF) = 1.0mA - 127 153 nC - 70 84 nC - 3.8 4.6 nC Gate to Source Gate Charge Qgs - 10 - nC Gate to Drain “Miller” Charge Qgd - 34 - nC - 4400 - pF - 900 - pF - 280 - pF MIN TYP MAX UNITS (Figures 14, 19, 20) CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) Source to Drain Diode Specifications PARAMETER Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge ©2010 Fairchild Semiconductor Corporation SYMBOL TEST CONDITIONS ISD = 63A - - 1.25 V ISD = 30A - - 1.0 V trr ISD = 63A, dISD/dt = 100A/µs - - 128 ns QRR ISD = 63A, dISD/dt = 100A/µs - - 520 nC VSD HUFA76645S3ST_F085 Rev. A HUFA76645S3ST_F085 Typical Performance Curves 80 VGS = 10V 1.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 60 VGS = 4.5V 40 20 0.2 0 0 0 25 50 75 100 125 150 175 25 50 TC , CASE TEMPERATURE (oC) 75 100 125 150 175 TC, CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 ZθJC, NORMALIZED THERMAL IMPEDANCE 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE IDM, PEAK CURRENT (A) 2000 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 1000 175 - TC 150 I = I25 VGS = 10V 100 50 VGS = 5V TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10-5 10-4 10-3 10-2 10-1 100 101 t, PULSE WIDTH (s) FIGURE 4. PEAK CURRENT CAPABILITY ©2010 Fairchild Semiconductor Corporation HUFA76645S3ST_F085 Rev. A HUFA76645S3ST_F085 Typical Performance Curves (Continued) 500 IAS, AVALANCHE CURRENT (A) ID, DRAIN CURRENT (A) 500 100 100µs OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 10 1ms 10ms SINGLE PULSE TJ = MAX RATED TC = 25oC 1 1 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 100 STARTING TJ = 25oC STARTING TJ = 150oC 1 10 100 0.001 300 0.01 0.1 1 10 tAV, TIME IN AVALANCHE (ms) VDS, DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Fairchild Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY FIGURE 5. FORWARD BIAS SAFE OPERATING AREA 150 150 ID, DRAIN CURRENT (A) 125 ID, DRAIN CURRENT (A) PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V 100 75 50 TJ = 175oC 25 VGS = 10V VGS = 5V 125 VGS = 4V 100 75 VGS = 3V 50 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC 25 TJ = 25oC TJ = -55oC 0 0 1.5 2.0 2.5 3.0 3.5 4.0 0 2 1 VGS, GATE TO SOURCE VOLTAGE (V) 3 4 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 7. TRANSFER CHARACTERISTICS FIGURE 8. SATURATION CHARACTERISTICS 3.0 ID = 75A NORMALIZED DRAIN TO SOURCE ON RESISTANCE 25 rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) VGS = 3.5V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC 20 ID = 50A 15 ID = 20A PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 75A 2.5 2.0 1.5 1.0 0.5 10 2 4 6 8 10 VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT ©2010 Fairchild Semiconductor Corporation -80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE HUFA76645S3ST_F085 Rev. A HUFA76645S3ST_F085 Typical Performance Curves (Continued) 1.2 1.2 ID = 250µA NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE NORMALIZED GATE THRESHOLD VOLTAGE VGS = VDS, ID = 250µA 1.0 0.8 0.6 1.1 1.0 0.9 0.4 -80 -40 0 40 80 120 160 -80 200 -40 TJ, JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 40 80 120 160 200 FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE 10 VGS , GATE TO SOURCE VOLTAGE (V) 10000 CISS = CGS + CGD C, CAPACITANCE (pF) 0 TJ , JUNCTION TEMPERATURE (oC) COSS ≅ CDS + CGD 1000 CRSS = CGD 100 70 VGS = 0V, f = 1MHz 0.1 1 10 VDD = 50V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 75A ID = 50A ID = 20A 2 0 0 100 30 60 90 120 150 Qg, GATE CHARGE (nC) VDS , DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 1200 1200 VGS = 10V, VDD = 50V, ID = 75A VGS = 4.5V, VDD = 50V, ID = 62A 1000 SWITCHING TIME (ns) SWITCHING TIME (ns) 1000 tr 800 600 400 tf td(OFF) 200 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 15. SWITCHING TIME vs GATE RESISTANCE ©2010 Fairchild Semiconductor Corporation tf 400 tr td(ON) td(ON) 10 600 200 0 0 td(OFF) 800 0 50 0 10 20 30 40 50 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 16. SWITCHING TIME vs GATE RESISTANCE HUFA76645S3ST_F085 Rev. A HUFA76645S3ST_F085 Test Circuits and Waveforms VDS BVDSS L tP VARY tP TO OBTAIN REQUIRED PEAK IAS + RG VDS IAS VDD VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 18. UNCLAMPED ENERGY WAVEFORMS VDS VDD RL Qg(TOT) VDS VGS = 10V VGS Qg(5) + VDD VGS = 5V VGS DUT VGS = 1V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + VGS VDD - 10% 10% 0 DUT 90% RGS VGS VGS 0 FIGURE 21. SWITCHING TIME TEST CIRCUIT ©2010 Fairchild Semiconductor Corporation 10% 50% 50% PULSE WIDTH FIGURE 22. SWITCHING TIME WAVEFORM HUFA76645S3ST_F085 Rev. A HUFA76645S3ST_F085 PSPICE Electrical Model .SUBCKT HUFA76645 2 1 3 ; rev 7 June 1999 CA 12 8 7.4e-9 CB 15 14 7.4e-9 CIN 6 8 4.13e-9 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD LDRAIN DPLCAP DRAIN 2 5 10 5 51 ESLC 11 - RDRAIN 6 8 EVTHRES + 19 8 + LGATE GATE 1 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD + 50 - IT 8 17 1 EVTEMP RGATE + 18 22 9 20 21 EBREAK 17 18 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN 8 SOURCE 3 7 RSOURCE RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 8.3e-3 RGATE 9 20 0.96 RLDRAIN 2 5 10 RLGATE 1 9 51 RLSOURCE 3 7 44 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 2.5e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B DBREAK + RSLC2 ESG LDRAIN 2 5 1e-9 LGATE 1 9 5.1e-9 LSOURCE 3 7 4.4e-9 RLDRAIN RSLC1 51 EBREAK 11 7 17 18 121 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RLSOURCE S1A 12 S2A 13 8 14 13 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 - 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD - IT 14 + + EGS 19 VBAT 5 8 EDS - + 8 22 RVTHRES VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*200),3.2))} .MODEL DBODYMOD D (IS = 3.6e-12 RS = 2.24e-3 TRS1 = 2e-3 TRS2 = 1.03e-6 CJO = 4.5e-9 TT = 5.1e-8 M = 0.60) .MODEL DBREAKMOD D (RS = 2.5e- 1TRS1 = 1e- 4TRS2 = 1e-7) .MODEL DPLCAPMOD D (CJO = 5.4e- 9IS = 1e-3 0Vj = 1.0 M = 0.9) .MODEL MMEDMOD NMOS (VTO = 1.77 KP = 7 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 0.96) .MODEL MSTROMOD NMOS (VTO = 2.11 KP = 200 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.5 KP = 0.12 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 9.6 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.05e- 3TC2 = -5e-7) .MODEL RDRAINMOD RES (TC1 = 8.8e-3 TC2 = 1.7e-5) .MODEL RSLCMOD RES (TC1 = 4e-3 TC2 = 1.5e-5) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 2e-6) .MODEL RVTHRESMOD RES (TC1 = -1.9e-3 TC2 = -8e-6) .MODEL RVTEMPMOD RES (TC1 = -1.7e- 3TC2 = 1e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -4.5 VOFF= -2.0) VON = -2.0 VOFF= -4.5) VON = -1.0 VOFF= 0.5) VON = 0.5 VOFF= -1.0) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2010 Fairchild Semiconductor Corporation HUFA76645S3ST_F085 Rev. A HUFA76645S3ST_F085 SABER Electrical Model REV 7 June 1999 template hufa76645 n2,n1,n3 electrical n2,n1,n3 { var i iscl d..model dbodymod = (is = 3.6e-12, cjo = 4.5e-9, tt = 5.1e-8, m = 0.60) d..model dbreakmod = () d..model dplcapmod = (cjo = 5.4e-9, is = 1e-30, vj=1.0, m = 0.9 ) m..model mmedmod = (type=_n, vto = 1.77, kp = 7, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 2.11, kp = 200, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.5, kp = 0.12, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -4.5, voff = -2.0) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2.0, voff = -4.5) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1.0, voff = 0.5) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -1.0) LDRAIN DPLCAP 10 RSLC1 51 c.ca n12 n8 = 7.4e-9 c.cb n15 n14 = 7.4e-9 c.cin n6 n8 = 4.13e-9 RLDRAIN RDBREAK RSLC2 72 ISCL RDRAIN 6 8 ESG EVTHRES + 19 8 + i.it n8 n17 = 1 LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 MWEAK MSTRO CIN DBODY EBREAK + 17 18 MMED m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u 71 11 16 6 RLGATE res.rbreak n17 n18 = 1, tc1 = 1.05e-3, tc2 = -5e-7 res.rdbody n71 n5 = 2.24e-3, tc1 = 2e-3, tc2 = 1.03e-6 res.rdbreak n72 n5 = 2.5e-1, tc1 = 1e-4, tc2 = 1e-7 res.rdrain n50 n16 = 8.3e-3, tc1 = 8.8e-3, tc2 = 1.7e-5 res.rgate n9 n20 = 0.96 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 51 res.rlsource n3 n7 = 44 res.rslc1 n5 n51 = 1e-6, tc1 = 4e-3, tc2 = 1.5e-5 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 2.5e-3, tc1 = 1e-3, tc2 = 2e-6 res.rvtemp n18 n19 = 1, tc1 = -1.7e-3, tc2 = 1e-7 res.rvthres n22 n8 = 1, tc1 = -1.9e-3, tc2 = -8e-6 21 RDBODY DBREAK 50 - d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 5.1e-9 l.lsource n3 n7 = 4.4e-9 DRAIN 2 5 - 8 LSOURCE 7 SOURCE 3 RSOURCE RLSOURCE S1A 12 S2A 14 13 13 8 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 + 6 8 EGS 19 CB + - - IT 14 VBAT 5 8 EDS - + 8 22 RVTHRES spe.ebreak n11 n7 n17 n18 = 121 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/200))** 3.2)) } } ©2010 Fairchild Semiconductor Corporation HUFA76645S3ST_F085 Rev. A HUFA76645S3ST_F085 SPICE Thermal Model th JUNCTION REV 7 June 1999 HUFA76645T CTHERM1 th 6 6.4e-3 CTHERM2 6 5 3.0e-2 CTHERM3 5 4 1.4e-2 CTHERM4 4 3 1.6e-2 CTHERM5 3 2 5.5e-2 CTHERM6 2 tl 1.5 RTHERM1 th 6 3.4e-3 RTHERM2 6 5 8.6e-3 RTHERM3 5 4 2.3e-2 RTHERM4 4 3 1.3e-1 RTHERM5 3 2 1.8e-1 RTHERM6 2 tl 3.9e-2 RTHERM1 CTHERM1 6 RTHERM2 CTHERM2 5 RTHERM3 CTHERM3 SABER Thermal Model SABER thermal model HUFA76645T template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 6.4e-3 ctherm.ctherm2 6 5 = 3.0e-2 ctherm.ctherm3 5 4 = 1.4e-2 ctherm.ctherm4 4 3 = 1.6e-2 ctherm.ctherm5 3 2 = 5.5e-2 ctherm.ctherm6 2 tl = 1.5 4 RTHERM4 CTHERM4 3 RTHERM5 rtherm.rtherm1 th 6 = 3.4e-3 rtherm.rtherm2 6 5 = 8.6e-3 rtherm.rtherm3 5 4 = 2.3e-2 rtherm.rtherm4 4 3 = 1.3e-1 rtherm.rtherm5 3 2 = 1.8e-1 rtherm.rtherm6 2 tl = 3.9e-2 CTHERM5 2 RTHERM6 CTHERM6 } tl ©2010 Fairchild Semiconductor Corporation CASE HUFA76645S3ST_F085 Rev. A TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. AccuPower™ Auto-SPM™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK® EfficientMax™ ESBC™ F-PFS™ FRFET® SM Global Power Resource Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ OptoHiT™ OPTOLOGIC® OPTOPLANAR® ® Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™ FlashWriter®* FPS™ ® PDP SPM™ Power-SPM™ PowerTrench® PowerXS™ Programmable Active Droop™ QFET® QS™ Quiet Series™ RapidConfigure™ ™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™ Sync-Lock™ ® * The Power Franchise® TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TriFault Detect™ TRUECURRENT™* μSerDes™ UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ XS™ * Trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Advance Information Formative / In Design Preliminary First Production No Identification Needed Full Production Obsolete Not In Production Definition Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I48 © Fairchild Semiconductor Corporation www.fairchildsemi.com