PD- 96148A IRF7703GPbF l l l l l l l HEXFET® Power MOSFET Ultra Low On-Resistance P-Channel MOSFET Very Small SOIC Package Low Profile (< 1.2mm) Available in Tape & Reel Lead-Free Halogen-Free VDSS RDS(on) max (mW) ID -40V 28@VGS = -10V 45@VGS = -4.5V -6.0A -4.8A ' Description HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the ruggedized device design, that International Rectifier is well known for, provides the de- signer with an extremely efficient and reliable device for battery and load management. * ' 6 6 * 6 ' 6 6 ' TSSOP-8 The TSSOP-8 package has 45% less footprint area than the standard SO-8. This makes the TSSOP-8 an ideal device for applications where printed circuit board space is at a premium. The low profile (<1.2mm) allows it to fit easily into extremely thin environments such as portable electronics and PCMCIA cards. Absolute Maximum Ratings Parameter VDS ID @ TA = 25°C ID @ TA= 70°C IDM PD @TA = 25°C PD @TA = 70°C VGS TJ, TSTG Drain- Source Voltage Continuous Drain Current, VGS @ -10V Continuous Drain Current, VGS @ -10V Pulsed Drain Current Power Dissipation Power Dissipation Linear Derating Factor Gate-to-Source Voltage Junction and Storage Temperature Range Max. Units -40 -6.0 -4.7 -24 1.5 0.96 0.012 ± 20 -55 to + 150 V W/°C V °C Max. Units 83 °C/W A W Thermal Resistance Parameter RθJA www.irf.com Maximum Junction-to-Ambient 1 05/15/09 IRF7703GPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) ∆V(BR)DSS/∆TJ Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) gfs Gate Threshold Voltage Forward Transconductance IDSS Drain-to-Source Leakage Current V(BR)DSS IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. -40 ––– ––– ––– -1.0 10 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.030 ––– ––– ––– ––– ––– ––– ––– ––– 41 16 16 43 405 155 77 5220 416 337 Max. Units Conditions ––– V VGS = 0V, ID = -250µA ––– V/°C Reference to 25°C, ID = -1mA 28 VGS = -10V, ID = -6.0A mΩ 45 VGS = -4.5V, ID = -4.8A -3.0 V VDS = VGS, ID = -250µA ––– S VDS = -10V, ID = -6.0A -15 VDS = -32V, VGS = 0V µA -25 VDS = -32V, VGS = 0V, TJ = 70°C -100 VGS = -20V nA 100 VGS = 20V 62 ID = -6.0A 25 nC VDS = -20V 24 VGS = -4.5V ––– VDD = -20V ––– ID = -1.0A ns ––– RG = 6.0Ω ––– VGS = -10V ––– VGS = 0V ––– pF VDS = -25V ––– ƒ = 1.0kHz Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Min. Typ. Max. Units -1.5 -24 ––– ––– ––– ––– 34 56 -1.2 51 84 A V ns nC Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25°C, IS = -1.5A, VGS = 0V TJ = 25°C, IF = -1.5A di/dt = -100A/µs D S Notes: Repetitive rating; pulse width limited by max. junction temperature. Surface mounted on 1 in square Cu board Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF7703GPbF 10000 1000 VGS -15V -10V -4.5V -3.7V -3.5V -3.3V -3.0V BOTTOM -2.7V TOP 100 -I D, Drain-to-Source Current (A) -I D, Drain-to-Source Current (A) 1000 10 1 0.1 -2.7V 0.01 20µs PULSE WIDTH Tj = 25°C 0.001 100 10 -2.7V 1 20µs PULSE WIDTH Tj = 150°C 0.1 0.1 1 10 100 0.1 -VDS, Drain-to-Source Voltage (V) RDS(on) , Drain-to-Source On Resistance (Normalized) TJ = 150° C 10 TJ = 25 ° C 0.1 0.01 2.0 V DS= -15V 20µs PULSE WIDTH 2.5 3.0 3.5 4.0 4.5 -VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 10 100 Fig 2. Typical Output Characteristics 100 1 1 -VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics -I D , Drain-to-Source Current (A) VGS -15V -10V -4.5V -3.7V -3.5V -3.3V -3.0V BOTTOM -2.7V TOP 5.0 2.0 ID = -6.0A 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = -10V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( ° C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRF7703GPbF VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd C, Capacitance(pF) Coss = Cds + Cgd 10000 Ciss 1000 Coss Crss 20 -VGS , Gate-to-Source Voltage (V) 100000 100 1 10 12 8 4 0 60 100 -I D , Drain-to-Source Current (A) 100 TJ = 150 ° C 10 TJ = 25 ° C 1 0.1 0.4 V GS = 0 V 0.6 0.8 1.0 -VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 90 120 150 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage -ISD , Reverse Drain Current (A) 30 QG , Total Gate Charge (nC) -V DS, Drain-to-Source Voltage (V) 4 V DS= -32V V DS= -20V 16 0 100 ID = -6.0 OPERATION IN THIS AREA LIMITED BY RDS(on) 100µsec 10 1msec 10msec 1 Tc = 25°C Tj = 150°C Single Pulse 0.1 1.2 0 1 10 100 1000 -V DS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF7703GPbF 6.0 VDS VGS -ID , Drain Current (A) 4.8 RD D.U.T. RG - + 3.6 VDD VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 2.4 Fig 10a. Switching Time Test Circuit 1.2 td(on) tr t d(off) tf VGS 0.0 10% 25 50 75 100 125 150 TC , Case Temperature ( °C) 90% Fig 9. Maximum Drain Current Vs. Case Temperature VDS Fig 10b. Switching Time Waveforms 100 Thermal Response (Z thJC ) D = 0.50 0.20 10 0.10 0.05 0.02 0.01 1 PDM t1 SINGLE PULSE (THERMAL RESPONSE) 0.1 0.01 0.00001 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ =P DM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 0.05 0.040 R DS (on) , Drain-to-Source On Resistance ( Ω) RDS(on) , Drain-to -Source On Resistance ( Ω) IRF7703GPbF VGS = -4.5V 0.035 0.04 0.030 ID = -6.0A 0.03 0.025 0.02 VGS = -10V 0.020 0.01 3.0 5.0 7.0 9.0 11.0 13.0 15.0 0.015 0 5 -V GS, Gate -to -Source Voltage (V) Fig 12. Typical On-Resistance Vs. Gate Voltage 10 15 20 25 -I D , Drain Current (A) Fig 13. Typical On-Resistance Vs. Drain Current Current Regulator Same Type as D.U.T. 50KΩ QG QGS .2µF .3µF QGD D.U.T. +VDS VGS VG -3mA Charge Fig 14a. Basic Gate Charge Waveform 6 12V IG ID Current Sampling Resistors Fig 14b. Gate Charge Test Circuit www.irf.com IRF7703GPbF 150 130 2.5 110 ID = -250µA Power (W) -VGS(th) Gate threshold Voltage (V) 3.0 2.0 90 70 50 1.5 30 10 1.0 -75 -50 -25 0 25 50 75 100 125 T J , Temperature ( °C ) Fig 15. Typical Threshold Voltage Vs. Junction Temperature www.irf.com 150 0.00 0.01 0.10 Time (sec) Fig 16. Typical Power Vs. Time 7 IRF7703GPbF TSSOP8 Package Outline Dimensions are shown in milimeters (inches) ' GGG & $ % %27+6,'(6 ; ( ,1'(; 0$5. H % ; 0,//,0(7(56 0$; 0,1 120 %6& %6& %6& ' ( ( H ( ( 02$$',0(16,216 6 < 0 % 2 / $ $ $ E F / / DDD EEE FFF GGG FFF H $ ,1&+(6 120 0$; %6& %6& 0,1 + $ ;E & EEE $ ;F & $ % / DDD & 685) /($'$66,*10(176 ' 6 6 * 6,1*/( ',( ' 6 6 ' ' 6 6 * '8$/ ',( ' 6 6 * ;/ 127(6 ',0(16,21,1*$1'72/(5$1&,1*3(5$60(<0 ',0(16,216$5(6+2:1,10,//,0(7(56$1',1&+(6 &21752//,1*',0(16,210,//,0(7(5 '$7803/$1(+,6/2&$7('$66+2:1 '$780$$1'%72%('(7(50,1('$7'$7803/$1(+ ',0(16,216'$1'($5(0($685('$7'$7803/$1(+ ',0(16,21/,67+(/($'/(1*7+)2562/'(5,1*72$68%675$7( 287/,1(&21)250672-('(&287/,1(0$$ Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com IRF7703GPbF TSSOP8 Part Marking Information (;$03/( 7+,6,6$1,5)3%) 3$57180%(5 '$7(&2'(<:: $66(0%/<6,7(&2'( /27&2'( 3 /HDG)UHHLQGLFDWRU TSSOP-8 Tape and Reel Information PP PP )(('',5(&7,21 PP 127(6 7$3(5((/287/,1(&21)250672(,$(,$ Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.05/2009 www.irf.com 9