PD - 94339 IRFB13N50A SMPS MOSFET Applications l Switch Mode Power Supply (SMPS) l Uninterruptible Power Supply l High Speed Power Switching HEXFET® Power MOSFET VDSS RDS(on) max ID 0.450 Ω 14A 500V Benefits l Low Gate Charge Qg results in Simple Drive Requirement l Improved Gate, Avalanche and Dynamic dv/dt Ruggedness l Fully Characterized Capacitance and Avalanche Voltage and Current TO-220AB Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case ) Mounting torqe, 6-32 or M3 screw Max. Units 14 9.1 56 250 2.0 ± 30 9.2 -55 to + 150 A W W/°C V V/ns 300 °C 10 lbf•in (1.1N•m) Avalanche Characteristics Symbol EAS IAR EAR Parameter Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Typ. Max. Units ––– ––– ––– 560 14 25 mJ A mJ Typ. Max. Units ––– 0.50 ––– 0.50 ––– 62 °C/W Thermal Resistance Parameter RθJC RθCS RθJA www.irf.com Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient 1 12/10/01 IRFB13N50A Static @ TJ = 25°C (unless otherwise specified) Symbol V(BR)DSS RDS(on) VGS(th) Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage IDSS Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage ∆V(BR)DSS/∆TJ Min. Typ. Max. Units Conditions 500 ––– ––– V VGS = 0V, ID = 250µA ––– 0.55 ––– V/°C Reference to 25°C, I D = 1mA ––– ––– 0.450 Ω VGS = 10V, ID = 8.4A 2.0 ––– 4.0 V VDS = V GS, ID = 250µA ––– ––– 25 VDS = 500V, VGS = 0V µA ––– ––– 250 VDS = 400V, VGS = 0V, TJ = 125°C ––– ––– 100 VGS = 30V nA ––– ––– -100 VGS = -30V Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff. Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. 8.1 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– ––– ––– ––– 15 39 39 31 1910 290 11 2730 82 160 Max. Units Conditions ––– S VDS = 50V, ID = 8.4A 81 ID = 14A 20 nC VDS = 400V 36 VGS = 10V, See Fig. 6 and 13 ––– VDD = 250V ––– ID = 14A ns ––– RG = 7.5Ω ––– VGS = 10V,See Fig. 10 ––– VGS = 0V ––– VDS = 25V ––– pF ƒ = 1.0MHz, See Fig. 5 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 400V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 0V to 400V Diode Characteristics Symbol IS ISM VSD trr Q rr iRRM ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Reverse RecoveryCurrent Forward Turn-On Time Min. Typ. Max. Units ––– ––– 14 ––– ––– 56 A Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25°C, IS = 14A, VGS = 0V TJ = 125°C, IF = 14A di/dt = 100A/µs D S ––– ––– 1.5 V ––– 370 550 ns ––– 4.4 6.5 µC ––– 21 31 A Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes: Repetitive rating; pulse width limited by max. junction temperature. (See Fig. 11) Starting TJ = 25°C, L = 5.7mH, RG = 25Ω, IAS = 14A, dv/dt = 7.6V/ns. (See Figure 12a) Pulse width ≤ 300µs; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. ISD ≤ 14A, di/dt ≤ 250A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C. 2 www.irf.com IRFB13N50A TOP I D, Drain-to-Source Current (A) 10 BOTTOM 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V TOP I D, Drain-to-Source Current (A) 100 1 4.5V 0.1 BOTTOM 10 4.5V 1 20µs PULSE WIDTH T J= 25 ° C 0.01 0.1 1 10 20µs PULSE WIDTH T J= 150 ° C 0.1 100 0.1 V DS, Drain-to-Source Voltage (V) 3.0 100 V DS= 50V 20µs PULSE WIDTH 8 10 12 14 V GS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com I D = 14A 16 2.0 (Normalized) TJ = 25 °C 1 RDS(on) , Drain-to-Source On Resistance I D, Drain-to-Source Current (A) 10 6 100 2.5 TJ = 150 ° C 4 10 Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics 0.1 1 V DS, Drain-to-Source Voltage (V) 1.5 1.0 0.5 V GS = 10V 0.0 -60 -40 -20 0 20 40 60 TJ , Junction Temperature 80 100 120 140 ( ° C) Fig 4. Normalized On-Resistance vs. Temperature 3 160 IRFB13N50A 100000 12 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd VDS = 100V 10 Coss = Cds + Cgd Ciss 1000 Coss 100 10 Crss 7 5 2 1 0 1 10 100 1000 0 12 36 48 60 Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 1000 ID, Drain-to-Source Current (A) 100 TJ = 150 °C I SD, Reverse Drain Current (A) 24 QG , Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) TJ = 25 °C 1 V GS = 0 V 0.2 0.5 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 10 0.1 0.8 1.1 V SD,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 VDS = 400V VDS = 250V VGS , Gate-to-Source Voltage (V) C, Capacitance(pF) 10000 I D = 14A 1.4 10 100µsec 1msec 1 0.1 10msec Tc = 25°C Tj = 150°C Single Pulse 10 100 1000 10000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFB13N50A RD 15 VDS VGS D.U.T. 12 RG + I D , Drain Current (A) -VDD 9 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 6 Fig 10a. Switching Time Test Circuit VDS 3 90% 0 25 50 75 100 TC , Case Temperature 125 150 ( ° C) 10% VGS Fig 9. Maximum Drain Current vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms (Z thJC ) 1 D = 0.50 0.1 0.20 Thermal Response 0.10 0.05 0.02 0.01 0.01 SINGLE PULSE (THERMAL RESPONSE) P DM t1 t2 Notes: 1. Duty factor D = 2. Peak T 0.001 0.00001 0.0001 0.001 0.01 J t1/ t 2 = P DM x Z thJC +TC 0.1 1 t 1, Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFB13N50A 1150 ID TOP 6.3A 8.9A EAS , Single Pulse Avalanche Energy (mJ) 920 BOTTOM 14A 1 5V 690 D .U .T RG 460 D R IV E R L VDS + - VD D IA S 20V tp 230 A 0 .0 1 Ω Fig 12c. Unclamped Inductive Test Circuit 0 25 50 75 100 Starting Tj, Junction Temperature 125 150 ( ° C) Fig 12a. Maximum Avalanche Energy vs. Drain Current V (B R )D SS tp IAS Fig 12d. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. QG 50KΩ 12V VGS .2µF .3µF D.U.T. QGS + V - DS QGD VG VGS 3mA IG ID Current Sampling Resistors Fig 13a. Gate Charge Test Circuit 6 Charge Fig 13b. Basic Gate Charge Waveform www.irf.com IRFB13N50A Peak Diode Recovery dv/dt Test Circuit + D.U.T Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + - - + • • • • RG Driver Gate Drive P.W. + dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test Period D= - VDD P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFET® Power MOSFETs www.irf.com 7 IRFB13N50A TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2 .8 7 (.1 1 3 ) 2 .6 2 (.1 0 3 ) 1 0 .5 4 (.4 1 5 ) 1 0 .2 9 (.4 0 5 ) -B - 3 .7 8 (.1 4 9 ) 3 .5 4 (.1 3 9 ) 4 .6 9 (.1 8 5 ) 4 .2 0 (.1 6 5 ) -A - 1 .3 2 (.0 5 2 ) 1 .2 2 (.0 4 8 ) 6.4 7 (.2 5 5 ) 6.1 0 (.2 4 0 ) 4 1 5 .2 4 (.6 0 0 ) 1 4 .8 4 (.5 8 4 ) 1 .1 5 (.0 4 5 ) M IN 1 2 3 1 4 .0 9 (.5 5 5 ) 1 3 .4 7 (.5 3 0 ) 4 .0 6 (.1 6 0 ) 3 .5 5 (.1 4 0 ) 3X 1 .4 0 (.0 5 5 ) 3X 1 .1 5 (.0 4 5 ) L E A D A S S IG N M E N T S 1 - GATE 2 - D R A IN 3 - S OU RC E 4 - D R A IN 0 .9 3 (.0 3 7 ) 0 .6 9 (.0 2 7 ) 0 .3 6 (.0 1 4 ) 3X M B A M 0 .5 5 (.0 2 2 ) 0 .4 6 (.0 1 8 ) 2 .9 2 (.1 1 5 ) 2 .6 4 (.1 0 4 ) 2 .5 4 (.1 0 0) 2X N O TE S : 1 D IM E N S IO N IN G & T O L E R A N C IN G P E R A N S I Y 1 4 .5 M , 1 9 8 2 . 2 C O N T R O L L IN G D IM E N S IO N : IN C H 3 O U T L IN E C O N F O R M S T O J E D E C O U T L IN E T O -2 2 0 A B . 4 H E A T S IN K & L E A D M E A S U R E M E N T S D O N O T IN C L U D E B U R R S . TO-220AB Part Marking Information EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C" INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE PART NUMBER DATE CODE YEAR 7 = 1997 WEEK 19 LINE C Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.12/01 8 www.irf.com