IRF IRG7PH42UD-EP

PD - 97391B
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
•
•
•
•
•
•
•
•
Low VCE (ON) trench IGBT technology
Low switching losses
Square RBSOA
100% of the parts tested for ILM 
Positive VCE (ON) temperature co-efficient
Ultra fast soft recovery co-pak diode
Tight parameter distribution
Lead-Free
IRG7PH42UDPbF
IRG7PH42UD-EP
C
VCES = 1200V
IC = 45A, TC = 100°C
TJ(max) = 150°C
G
n-channel
Benefits
• High efficiency in a wide range of applications
• Suitable for a wide range of switching frequencies due to
low VCE (ON) and low switching losses
• Rugged transient performance for increased reliability
• Excellent current sharing in parallel operation
C
Applications
•
•
•
•
VCE(on) typ. = 1.7V
E
C
GC
U.P.S.
Welding
Solar Inverter
Induction Heating
E
E
GC
TO-247AD
IRG7PH42UD-EP
TO-247AC
IRG7PH42UDPbF
G
Gate
C
Collector
E
Emitter
Absolute Maximum Ratings
Parameter
Max.
Units
V
Continuous Collector Current (Silicon Limited)
1200
85
IC @ TC = 100°C
Continuous Collector Current (Silicon Limited)
45
INOMINAL
ICM
Nominal Current
Pulse Collector Current, VGE = 15V
90
ILM
Clamped Inductive Load Current, VGE = 20V
IF @ TC = 25°C
Diode Continous Forward Current
IF @ TC = 100°C
IFM
Diode Continous Forward Current
Diode Maximum Forward Current
d
120
VGE
Continuous Gate-to-Emitter Voltage
±30
V
PD @ TC = 25°C
Maximum Power Dissipation
320
W
VCES
Collector-to-Emitter Voltage
IC @ TC = 25°C
PD @ TC = 100°C
Maximum Power Dissipation
TJ
Operating Junction and
TSTG
Storage Temperature Range
g
30
c
A
120
85
45
130
-55 to +150
°C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter
Min.
Typ.
Max.
–––
–––
0.39
RθJC (Diode)
f
Thermal Resistance Junction-to-Case-(each Diode) f
–––
–––
0.56
RθCS
Thermal Resistance, Case-to-Sink (flat, greased surface)
–––
0.24
–––
RθJA
Thermal Resistance, Junction-to-Ambient (typical socket mount)
–––
40
–––
RθJC (IGBT)
1
Thermal Resistance Junction-to-Case-(each IGBT)
Units
°C/W
www.irf.com
10/26/09
IRG7PH42UDPbF/IRG7PH42UD-EP
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
V(BR)CES
Collector-to-Emitter Breakdown Voltage
Parameter
1200
—
—
∆V(BR)CES/∆TJ
Temperature Coeff. of Breakdown Voltage
—
0.18
—
VCE(on)
Collector-to-Emitter Saturation Voltage
—
1.7
2.0
—
2.1
—
V
IC = 30A, VGE = 15V, TJ = 150°C
3.0
—
6.0
V
VCE = VGE, IC = 1.0mA
VGE(th)
Gate Threshold Voltage
Max. Units
V
Conditions
VGE = 0V, IC = 100µA
e
V/°C VGE = 0V, IC = 2.0mA (25°C-150°C)
IC = 30A, VGE = 15V, TJ = 25°C
∆VGE(th)/∆TJ
Threshold Voltage temp. coefficient
—
-14
—
gfe
ICES
Forward Transconductance
—
32
—
S
VCE = 50V, IC = 30A, PW = 80µs
Collector-to-Emitter Leakage Current
—
4.4
150
µA
VGE = 0V, VCE = 1200V
—
1200
—
VFM
Diode Forward Voltage Drop
—
2.0
2.4
V
IF = 30A
—
2.2
—
IGES
Gate-to-Emitter Leakage Current
—
—
±100
nA
VGE = ±30V
mV/°C VCE = VGE, IC = 1.0mA (25°C - 150°C)
VGE = 0V, VCE = 1200V, TJ = 150°C
IF = 30A, TJ = 150°C
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Qg
Total Gate Charge (turn-on)
Parameter
—
157
Max. Units
Conditions
IC = 30A
236
VGE = 15V
Qge
Gate-to-Emitter Charge (turn-on)
—
21
32
Qgc
Gate-to-Collector Charge (turn-on)
—
69
104
VCC = 600V
Eon
Turn-On Switching Loss
—
2105
2374
IC = 30A, VCC = 600V, VGE = 15V
Eoff
Turn-Off Switching Loss
—
1182
1424
Etotal
Total Switching Loss
—
3287
3798
td(on)
Turn-On delay time
—
25
34
tr
Rise time
—
32
41
td(off)
Turn-Off delay time
—
229
271
tf
Fall time
—
63
86
Eon
Turn-On Switching Loss
—
2978
—
Eoff
Turn-Off Switching Loss
—
1968
—
Etotal
Total Switching Loss
—
4946
—
td(on)
Turn-On delay time
—
19
—
tr
Rise time
—
32
—
td(off)
Turn-Off delay time
—
290
—
tf
Fall time
—
154
—
Cies
Input Capacitance
—
3338
—
Coes
Output Capacitance
—
124
—
VCC = 30V
Cres
Reverse Transfer Capacitance
—
75
—
f = 1.0Mhz
TJ = 150°C, IC = 120A
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
nC
µJ
RG = 10Ω, L = 200µH,TJ = 25°C
Energy losses include tail & diode reverse recovery
ns
IC = 30A, VCC = 600V, VGE=15V
µJ
RG=10Ω, L=200µH, TJ = 150°C
e
Energy losses include tail & diode reverse recovery
ns
pF
VGE = 0V
VCC = 960V, Vp =1200V
Rg = 10Ω, VGE = +20V to 0V
Erec
trr
Reverse Recovery Energy of the Diode
—
1475
Diode Reverse Recovery Time
—
153
Irr
Peak Reverse Recovery Current
—
34
µJ
TJ = 150°C
—
ns
—
A
VCC = 600V, IF = 30A
Rg = 10Ω, L =1.0mH
—
Notes:
 VCC = 80% (VCES), VGE = 20V, L = 22µH, RG = 10Ω.
‚ Pulse width limited by max. junction temperature.
ƒ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
„ Rθ is measured at TJ of approximately 90°C.
… Calculated continuous current based on maximum allowable junction temperature.
Bond wire current limit is 78A. Note that current limitations arising from heating of
the device leads may occur with some lead mounting arrangements.
2
www.irf.com
IRG7PH42UDPbF/IRG7PH42UD-EP
60
For both:
Duty cycle : 50%
Tj = 150°C
Tsink = 90°C
Gate drive as specified
Power Dissipation = 95W
50
Load Current ( A )
40
30
Square wave:
60% of rated
voltage
20
I
10
Ideal diodes
0
0.1
1
10
100
f , Frequency ( kHz )
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
350
300
80
250
Ptot (W)
IC (A)
60
40
200
150
100
20
50
0
25
50
75
100
125
150
0
175
0
20
40
60
T C (°C)
80
100 120 140 160
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
1000
1000
100
IC (A)
10
100µsec
DC
1
IC (A)
100
10µsec
10
1msec
Tc = 25°C
Tj = 150°C
Single Pulse
1
0.1
1
10
100
VCE (V)
1000
Fig. 3 - Forward SOA
TC = 25°C, TJ ≤ 150°C; VGE =15V
www.irf.com
10000
10
100
1000
10000
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE = 20V
3
IRG7PH42UDPbF/IRG7PH42UD-EP
120
120
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
100
100
80
ICE (A)
ICE (A)
80
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
60
60
40
40
20
20
0
0
0
2
4
6
8
0
10
2
4
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
100
10
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
100
-40°C
25°C
150°C
80
IF (A)
ICE (A)
80
60
60
40
40
20
20
0
0
0
2
4
6
8
0.0
10
1.0
2.0
3.0
4.0
5.0
6.0
VF (V)
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 80µs
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
12
12
10
10
8
8
ICE = 15A
ICE = 30A
6
VCE (V)
VCE (V)
8
120
120
ICE = 60A
ICE = 15A
ICE = 30A
ICE = 60A
6
4
4
2
2
0
0
4
8
12
16
VGE (V)
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
4
6
VCE (V)
20
4
8
12
16
20
VGE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
www.irf.com
IRG7PH42UDPbF/IRG7PH42UD-EP
12
ICE, Collector-to-Emitter Current (A)
120
10
VCE (V)
8
ICE = 15A
ICE = 30A
ICE = 60A
6
4
2
100
80
T J = 25°C
T J = 150°C
60
40
20
0
0
4
8
12
16
4
20
6
10
12
VGE, Gate-to-Emitter Voltage (V)
VGE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V
Fig. 11 - Typical VCE vs. VGE
TJ = 150°C
1000
7000
6000
tF
Swiching Time (ns)
5000
Energy (µJ)
8
4000
EON
3000
2000
tdOFF
100
tR
EOFF
1000
tdON
0
10
0
10
20
30
40
50
60
0
10
20
30
40
50
60
IC (A)
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 150°C; L = 200µH; VCE = 600V, RG = 10Ω; VGE = 15V
Fig. 14 - Typ. Switching Time vs. IC
TJ = 150°C; L = 200µH; VCE = 600V, RG = 10Ω; VGE = 15V
6000
10000
Swiching Time (ns)
Energy (µJ)
5000
EON
4000
EOFF
3000
1000
td OFF
tF
100
tR
2000
tdON
1000
10
0
20
40
60
80
100
RG (Ω)
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 150°C; L = 200µH; VCE = 600V, ICE = 30A; VGE = 15V
www.irf.com
0
20
40
60
80
100
RG (Ω)
Fig. 16 - Typ. Switching Time vs. RG
TJ = 150°C; L = 200µH; VCE = 600V, ICE = 30A; VGE = 15V
5
IRG7PH42UDPbF/IRG7PH42UD-EP
50
40
RG = 5.0Ω
35
RG = 47Ω
RG = 10Ω
IRR (A)
IRR (A)
40
30
RG = 100Ω
20
30
25
10
20
15
20
25
30
35
40
45
50
55
60
0
20
40
IF (A)
60
80
100
RG (Ω)
Fig. 17 - Typ. Diode IRR vs. IF
TJ = 150°C
Fig. 18 - Typ. Diode IRR vs. RG
TJ = 150°C
40
9000
8000
35
60A
5.0Ω
7000
QRR (nC)
IRR (A)
10Ω
30
6000
47Ω
5000
30A
100Ω
4000
25
15A
3000
2000
20
0
200
400
600
800
1000
0
1200
200
400
600
800 1000 1200 1400
diF /dt (A/µs)
diF /dt (A/µs)
Fig. 19 - Typ. Diode IRR vs. diF/dt
VCC = 600V; VGE = 15V; IF = 30A; TJ = 150°C
Fig. 20 - Typ. Diode QRR vs. diF/dt
VCC = 600V; VGE = 15V; TJ = 150°C
3500
Energy (µJ)
RG = 5.0 Ω
3000
RG = 10 Ω
RG = 47Ω
2500
RG = 100Ω
2000
1500
1000
500
15
20
25
30
35
40
45
50
55
60
IF (A)
Fig. 21 - Typ. Diode ERR vs. IF
TJ = 150°C
6
www.irf.com
IRG7PH42UDPbF/IRG7PH42UD-EP
16
VGE, Gate-to-Emitter Voltage (V)
10000
Capacitance (pF)
Cies
1000
100
Coes
Cres
14
VCES = 600V
VCES = 400V
12
10
8
6
4
2
0
10
0
100
200
300
400
500
0
600
20
40
60
80 100 120 140 160 180
Q G, Total Gate Charge (nC)
VCE (V)
Fig. 23 - Typical Gate Charge vs. VGE
ICE = 30A; L = 600µH
Fig. 22 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
1
Thermal Response ( Z thJC )
D = 0.50
0.1
0.20
0.10
0.05
0.01
0.02
0.01
τJ
0.001
R1
R1
τJ
τ1
R2
R2
R3
R3
τC
τ
τ2
τ1
τ2
τ3
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
1E-005
0.1306
0.000313
0.1752
0.002056
0.0814
0.008349
0.0031
0.043100
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
τi (sec)
Ri (°C/W)
R4
R4
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.01
τJ
R1
R1
τJ
τ1
R2
R2
R3
R3
τC
τ
τ2
τ1
τ2
τ3
τ3
Ci= τi/Ri
Ci i/Ri
0.001
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
1E-005
0.0001
R4
R4
τ4
τ4
Ri (°C/W)
τi (sec)
0.1254
0.000515
0.0937
0.000515
0.1889
0.001225
0.1511
0.018229
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRG7PH42UDPbF/IRG7PH42UD-EP
L
L
DUT
0
80 V +
VCC
-
1K
DUT
VCC
Rg
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
diode clamp /
DUT
R=
VCC
ICM
L
-5V
VCC
DUT
DUT /
DRIVER
VCC
Rg
Rg
Fig.C.T.4 - Resistive Load Circuit
Fig.C.T.3 - Switching Loss Circuit
C force
100K
D1
22K
C sense
G force
DUT
0.0075µF
E sense
E force
Fig.C.T.5 - BVCES Filter Circuit
8
www.irf.com
IRG7PH42UDPbF/IRG7PH42UD-EP
800
tf
800
90% ICE
400
300
600
50
500
30
5% V CE
200
60
40
20
5% ICE
100
0
0.5
1.5
50
90% test
current
400
40
300
30
20
10% test
current
5% V CE
10
0
Eon Loss
-100
2
70
60
0
-10
1
TEST CURRENT
100
0
Eof f Loss
80
tr
200
10
0
90
700
VCE (V)
500
VCE (V)
80
70
600
-100
-0.5
900
I CE (A)
700
90
I CE (A)
900
9.4
9.6
time(µs)
9.8
10
-10
10.2
time (µs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 150°C using Fig. CT.4
40
E REC
30
tRR
20
I F (A)
10
0
10%
Peak
IRR
-10
-20
Peak
IRR
-30
-40
-0.25
0.00
0.25
0.50
0.75
1.00
time (µS)
Fig. WF3 - Typ. Diode Recovery Waveform
@ TJ = 150°C using Fig. CT.4
www.irf.com
9
IRG7PH42UDPbF/IRG7PH42UD-EP
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
(;$03/( 7+,6,6$1,5)3(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
,5)3(
+
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1(+
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
10
www.irf.com
IRG7PH42UDPbF/IRG7PH42UD-EP
TO-247AD Package Outline
Dimensions are shown in millimeters (inches)
TO-247AD Part Marking Information
(;$03/( 7+,6,6$1,5*3%.'(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
3$57180%(5
,17(51$7,21$/
5(&7,),(5
/2*2
+
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1(+
TO-247AD package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 10/2009
www.irf.com
11