Freescale Semiconductor Technical Data MPXAZ4100A Rev 1, 05/2005 Integrated Silicon Pressure Sensor for Manifold Absolute Pressure Applications On-Chip Signal Conditioned, Temperature Compensated and Calibrated The Freescale MPXAZ4100A series Manifold Absolute Pressure (MAP) sensor for engine control is designed to sense absolute air pressure within the intake manifold. This measurement can be used to compute the amount of fuel required for each cylinder. The small form factor and high reliability of on-chip integration makes the Freescale MAP sensor a logical and economical choice for automotive system designers. The MPXAZ4100A series piezoresistive transducer is a state-of-the-art, monolithic, signal conditioned, silicon pressure sensor. This sensor combines advanced micromachining techniques, thin film metallization, and bipolar semiconductor processing to provide an accurate, high level analog output signal that is proportional to applied pressure. Figure 1 shows a block diagram of the internal circuitry integrated on a pressure sensor chip. MPXAZ4100A SERIES INTEGRATED PRESSURE SENSOR 20 TO 105 kPA (2.9 TO 15.2 psi) 0.3 TO 4.9 V OUTPUT SMALL OUTLINE PACKAGES MPXA4100A6U/6T1 CASE 482-01 Features • • • • • • Resistant to high humidity and common automotive media 1.8% Maximum Error Over 0° to 85°C Specifically Designed for Intake Manifold Absolute Pressure Sensing in Engine Control Systems Ideally Suited for Microprocessor or Microcontroller Based Systems Temperature Compensated Over –40°C to +125°C Durable Thermoplastic (PPS) Surface Mount Package MPXA4100AC6U/AC6T1 CASE 482A-01 PIN NUMBER(1) Typical Applications 1 N/C 5 N/C • • 2 VS 6 N/C 3 GND 7 N/C 4 VOUT 8 N/C Manifold Sensing for Automotive Systems Also Ideal for Non-Automotive Applications ORDERING INFORMATION Device Type Options Case No. MPX Series Order No. Packing Options Device Marking Rails MPXAZ4100A SMALL OUTLINE PACKAGE (MPXAZ4100A SERIES) Basic Absolute, Elements Element Only 482 MPXAZ4100A6U Absolute, Element Only 482 MPXAZ4100A6T1 Ported Absolute, Axial Elements Port Absolute, Axial Port 482A MPXAZ4100AC6U Tape & Reel MPXAZ4100A Rails MPXAZ4100A 482A MPXAZ4100AC6T1 Tape & Reel MPXAZ4100A © Freescale Semiconductor, Inc., 2005. All rights reserved. 1. Pins 1, 5, 6, 7, and 8 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead. VS Thin Film Temperature Compensation and Gain Stage #1 Sensing Element GND Gain Stage #2 and Ground Reference Shift Circuitry Vout Pins 1, 5, 6, 7, and 8 are NO CONNECTS for small outline package devices. Figure 1. Fully Integrated Pressure Sensor Schematic Table 1. Maximum Ratings(1) Rating Symbol Value Unit Maximum Pressure (P1 > P2) PMAX 400 kPa Storage Temperature TSTG –40 to +125 °C TA –40 to +125 °C Operating Temperature 1. Exposure beyond the specified limits may cause permanent damage or degradation to the device. MPXAZ4100A 2 Sensors Freescale Semiconductor Table 2. Operating Characteristics (VS = 5.1 Vdc, TA = 25°C unless otherwise noted, P1 > P2. Decoupling circuit shown in Figure 3 required to meet electrical specifications.) Characteristic Pressure Range(1) Supply Voltage(2) Supply Current Symbol Min Typ Max Unit POP 20 — 105 kPa VS 4.85 5.1 5.35 Vdc Io — 7.0 10 mAdc Minimum Pressure Offset @ VS = 5.1 Volts(3) (0 to 85°C) Voff 0.225 0.306 0.388 Vdc Full Scale Output @ VS = 5.1 Volts(4) (0 to 85°C) VFSO 4.870 4.951 5.032 Vdc Full Scale Span @ VS = 5.1 Volts(5) (0 to 85°C) VFSS — 4.59 — Vdc Accuracy(6) (0 to 85°C) — — — ±1.8 %VFSS V/P — 54 — mV/kPa tR — 1.0 — ms Io+ — 0.1 — mAdc — — 20 — ms — — ±0.5 — %VFSS Sensitivity Response Time(7) Output Source Current at Full Scale Output Warm-Up Time(8) Offset Stability(9) 1. 1.0 kPa (kiloPascal) equals 0.145 psi. 2. Device is ratiometric within this specified excitation range. 3. Offset (Voff) is defined as the output voltage at the minimum rated pressure. 4. Full Scale Output (VFSO) is defined as the output voltage at the maximum or full rated pressure. 5. Full Scale Span (VFSS) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure. 6. Accuracy (error budget) consists of the following: • Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range. • Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied. • Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the minimum or maximum rated pressure, at 25°C. • TcSpan: Output deviation over the temperature range of 0 to 85°C, relative to 25°C. • TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85°C, relative to 25°C. • Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of VFSS, at 25°C. 7. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure. 8. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the Pressure has been stabilized. 9. Offset Stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test. MPXAZ4100A Sensors Freescale Semiconductor 3 Figure 2 illustrates an absolute sensing chip in the basic chip carrier (Case 482). Figure 4 shows the sensor output signal relative to pressure input. Typical, minimum, and maximum output curves are shown for operation over a temperature range of 0° to 85°C using the decoupling circuit shown in Figure 3. The output will saturate outside of the specified pressure range. A gel die coat isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the sensor diaphragm. The gel die coat and durable polymer package provide a media resistant barrier that allows the sensor to operate reliably in high humidity conditions as well as environments containing common automotive media. Contact the factory for more information regarding media compatibility in your specific application. Figure 3 shows the recommended decoupling circuit for interfacing the output of the integrated sensor to the A/D input of a microprocessor or microcontroller. Proper decoupling of the power supply is recommended. Fluoro Silicone Gel Die Coat Die Stainless Steel Cap P1 Wire Bond Thermoplastic Case Lead Frame Absolute Element Die Bond Sealed Vacuum Reference Figure 2. Cross Sectional Diagram SOP (not to scale) +5 V Output Vout Vs IPS 1.0 µF 0.01 µF GND 470 pF Figure 3. Recommended Power Supply Decoupling and Output Filtering (For additional output filtering, please refer to Application Note AN1646.) 5.0 4.5 4.0 Output (Volts) 3.5 3.0 2.5 2.0 1.5 Transfer Function: Vout = Vs* (.01059*P-.152) ± Error VS = 5.1 Vdc Temperature = 0 to 85°C 20 kPa TO 105 kPa MPXAZ4100A TYP MAX MIN 1.0 0.5 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 0 Pressure (ref: to sealed vacuum) in kPa Figure 4. Output versus Absolute Pressure MPXAZ4100A 4 Sensors Freescale Semiconductor Transfer Function (MPXAZ4100A) Nominal Transfer Value: Vout = VS (P x 0.01059 - 0.1518) ± (Pressure Error x Temp. Factor x 0.01059 x VS) VS = 5.1 V ± 0.25 Vdc Temperature Error Band MPXAZ4100A Series 4.0 3.0 Temperature Error Factor - 2.0 Temp Multiplier 40 0 to 85 +125 3 1 3 1.0 0.0 -40 -20 0 20 40 60 80 100 120 140 Temperature in °C NOTE: The Temperature Multiplier is a linear response from 0°C to-40°C and from 85°C to 125°C. Pressure Error Band Error Limits for Pressure 3.0 Pressure Error (kPa) 2.0 1.0 0.0 -1.0 20 40 60 80 100 120 Pressure (in kPa) -2.0 -3.0 Pressure Error (Max) 20 to 105 (kPa) ±1.5 (kPa) MPXAZ4100A Sensors Freescale Semiconductor 5 INFORMATION FOR USING THE SMALL OUTLINE PACKAGE (CASE 482) MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct footprint, the packages will self align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads. 0.100 TYP 8X 2.54 0.660 16.76 0.060 TYP 8X 1.52 0.300 7.62 0.100 TYP 8X 2.54 inch mm SCALE 2:1 Figure 5. SOP Footprint (Case 482) MPXAZ4100A 6 Sensors Freescale Semiconductor PACKAGE DIMENSIONS -A- D 8 PL 0.25 (0.010) 4 5 M T B S A S NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006). 5. ALL VERTICAL SURFACES 5˚ TYPICAL DRAFT. -BG 8 1 S N H C J -TSEATING PLANE PIN 1 IDENTIFIER K M DIM A B C D G H J K M N S INCHES MIN MAX 0.415 0.425 0.415 0.425 0.212 0.230 0.038 0.042 0.100 BSC 0.002 0.010 0.009 0.011 0.061 0.071 0˚ 7˚ 0.405 0.415 0.709 0.725 MILLIMETERS MIN MAX 10.54 10.79 10.54 10.79 5.38 5.84 0.96 1.07 2.54 BSC 0.05 0.25 0.23 0.28 1.55 1.80 0˚ 7˚ 10.29 10.54 18.01 18.41 CASE 482-01 ISSUE O SMALL OUTLINE PACKAGE -A- D 4 0.25 (0.010) 5 N 8 PL M T B S A S NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006). 5. ALL VERTICAL SURFACES 5˚ TYPICAL DRAFT. -BG 8 1 S W V C H J -TK M PIN 1 IDENTIFIER DIM A B C D G H J K M N S V W INCHES MIN MAX 0.415 0.425 0.415 0.425 0.500 0.520 0.038 0.042 0.100 BSC 0.002 0.010 0.009 0.011 0.061 0.071 0˚ 7˚ 0.444 0.448 0.709 0.725 0.245 0.255 0.115 0.125 MILLIMETERS MIN MAX 10.54 10.79 10.54 10.79 12.70 13.21 0.96 1.07 2.54 BSC 0.05 0.25 0.23 0.28 1.55 1.80 0˚ 7˚ 11.28 11.38 18.01 18.41 6.22 6.48 2.92 3.17 SEATING PLANE CASE 482A-01 ISSUE A SMALL OUTLINE PACKAGE MPXAZ4100A Sensors Freescale Semiconductor 7 How to Reach Us: Home Page: www.freescale.com E-mail: [email protected] USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 [email protected] Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) [email protected] Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 [email protected] MPXAZ4100A Rev. 1 05/2005 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2005. All rights reserved.