SN65LVDS116 16-PORT LVDS REPEATER SLLS370A – SEPTEMBER 1999 – REVISED SEPTEMBER 1999 D D D D D D D D D D D DGG PACKAGE (TOP VIEW) One Receiver and Sixteen Line Drivers Meet or Exceed the Requirements of ANSI EIA/TIA-644 Standard Designed for Signaling Rates Up to 622 Mbps Enabling Logic Allows Separate Control of Each Bank of Four Channels or 2-Bit Selection of Any One of the Four Banks Low-Voltage Differential Signaling With Typical Output Voltage of 350 mV and a 100 Ω Load Electrically Compatible With LVDS, PECL, LVPECL, LVTTL, LVCMOS, GTL, BTL, CTT, SSTL, or HSTL Outputs With External Termination Networks Propagation Delay Times <4.7 ns Output Skew is < 300 ps and Part-to-Part Skew <1.5 ns Total Power Dissipation Typically 470 mW With All Ports Enabled and at 200 MHz Driver Outputs or Receiver Input is High Impedance when Disabled or With VCC <1.5 V Bus-Pin ESD Protection Exceeds 12 kV Packaged in Thin Shrink Small-Outline Package With 20 Mil Terminal Pitch GND VCC VCC GND ENA ENA NC NC NC ENB ENB NC NC NC GND VCC VCC GND A B NC ENC ENC S0 S1 SM END END GND VCC VCC GND description 1 64 2 63 3 62 4 61 5 60 6 59 7 58 8 57 9 56 10 55 11 54 12 53 13 52 14 51 15 50 16 49 17 48 18 47 19 46 20 45 21 44 22 43 23 42 24 41 25 40 26 39 27 38 28 A1Y A1Z A2Y A2Z A3Y A3Z A4Y A4Z B1Y B1Z B2Y B2Z B3Y B3Z B4Y B4Z C1Y C1Z C2Y C2Z C3Y C3Z C4Y C4Z D1Y D1Z D2Y D2Z D3Y D3Z D4Y D4Z 37 The SN65LVDS116 is one differential line reciever 29 36 connected to sixteen differential line drivers that 30 35 implement the electrical characteristics of 31 34 low-voltage differential signaling (LVDS). LVDS, 32 33 as specified in EIA/TIA-644, is a data signaling technique that offers the low-power, low-noise coupling, and switching speeds to transmit data at speeds up to 622 Mbps and relatively long distances. (Note: The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media, the noise coupling to the environment, and other system characteristics.) The intended application of this device and signaling technique is for point-to-point or multidrop baseband data transmission over controlled impedance media of approximately 100 Ω. The transmission media may be printed circuit board traces, backplanes, or cables. The large number of drivers integrated into the same substrate along with the low pulse skew of balanced signaling, allows extremely precise timing alignment of the signals repeated from the input. This is particularly advantageous in system clock distribution. The SN65LVDS116 is characterised for operation from –40°C to 85°C. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 1999, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SN65LVDS116 16-PORT LVDS REPEATER SLLS370A – SEPTEMBER 1999 – REVISED SEPTEMBER 1999 logic diagram (positive logic) A1Y A1Z A2Y S0 S1 SM A2Z A3Y ENA A3Z ENA A4Y A4Z B1Y B1Z B2Y B2Z B3Y ENB B3Z ENB B4Y B4Z A B C1Y C1Z C2Y C2Z C3Y ENC C3Z ENC C4Y C4Z D1Y D1Z D2Y D2Z D3Y END D3Z END D4Y D4Z 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN65LVDS116 16-PORT LVDS REPEATER SLLS370A – SEPTEMBER 1999 – REVISED SEPTEMBER 1999 FUNCTION TABLE OUTPUT INPUT VID = VA - VB X SM EN EN S1 S0 AY AZ BY BZ CY CZ DY DZ VID ≥100 mV –100 mV < VID < 100 mV H L X X H H L X X Z X H Z Z L H Z Z L H Z Z Z L H H H L X X ? ? ? ? L ? ? ? ? VID ≤ –100 mV X H H H X L X H X X L X Z H L Z Z H L H L H Z Z Z Z Z VID ≥ 100 mV –100 mV < VID < 100 mV L X L X X X L L L L H L ? ? Z Z Z Z Z Z Z Z Z Z Z VID ≤ –100 mV VID ≥ 100 mV L X X L L L Z H Z Z Z Z Z Z –100 mV < VID < 100 mV L L X X X X L H L H Z Z H L Z Z Z Z Z Z ? ? Z Z Z VID ≤ –100 mV VID ≥ 100 mV L X X L Z H Z Z L H Z Z Z Z –100 mV < VID < 100 mV L L X X X X H L Z Z Z Z H L Z Z H L Z Z Z Z ? ? Z Z VID ≤ –100 mV VID ≥ 100 mV L X X L X X H L Z Z Z Z L H Z Z H H Z Z Z Z Z Z H –100 mV < VID < 100 mV L X X L H H Z Z Z Z Z Z ? ? VID ≤ –100 mV L X X H H Z H = high level, L = low level, Z = high impedance, ? = indeterminate Z Z Z Z Z L H equivalent input and output schematic diagrams VCC VCC VCC 300 kΩ (EN and SM Only) 300 kΩ 300 kΩ Enable Inputs A Input B Input 50 Ω 10 kΩ 7V 5Ω Y or Z Output 7V 300 kΩ 7V 7V (EN, S0, and S1 Only) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SN65LVDS116 16-PORT LVDS REPEATER SLLS370A – SEPTEMBER 1999 – REVISED SEPTEMBER 1999 absolute maximum ratings over operating free-air temperature (unless otherwise noted)† Supply voltage range, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4 V Input voltage range, Enable inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 6 V A, B, Y or Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4 V Electrostatic discharge, Y, Z, and GND (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . Class 3, A:12 kV, B: 500 V All pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Class 3, A: 4 kV, B: 400 V Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential I/O bus voltages, are with respect to network ground terminal. 2. Tested in accordance with MIL-STD-883C Method 3015.7. DISSIPATION RATING TABLE PACKAGE TA ≤ 25°C POWER RATING DERATING FACTOR‡ ABOVE TA = 25°C TA = 85°C POWER RATING DGG 2094 mW 16.7 mW/°C 1089 mW ‡ This is the inverse of the junction-to-ambient thermal resistance when board-mounted (low-k) with no air flow. recommended operating conditions MIN NOM Supply voltage, VCC 3 3.3 High-level input voltage, VIH 2 Low-level input voltage, VIL Magnitude of differential input voltage, VID 0.1 V Ť Common–mode input voltage, VIC Operating free-air temperature, TA 4 ID 2 • DALLAS, TEXAS 75265 UNIT 3.6 V V 0.8 V 3.6 V V Ť –40 POST OFFICE BOX 655303 MAX Ť 2.4 – ID 2 Ť VCC – 0.8 85 V V °C SN65LVDS116 16-PORT LVDS REPEATER SLLS370A – SEPTEMBER 1999 – REVISED SEPTEMBER 1999 electrical characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS VITH+ VITH– Positive-going differential input voltage threshold VOD Differential output voltage magnitude ∆VOD Change in differential output voltage magnitude between logic states VOC(SS) Steady-state common-mode output voltage ∆VOC(SS) Change in steady-state common-mode output voltage between logic states VOC(PP) Peak-to-peak common-mode output voltage ICC Supply current II Input current (A or B inputs)‡ VI = 0 V VI = 2.4 V II(OFF) Power-off Input current (A or B inputs) VCC= 1.5 V, IIH High level input current High-level IIL Low level input current Low-level IOS Short circuit output current Short-circuit IOZ IO(OFF) High-impedance output current Negative-going differential input voltage threshold See Figure 1 and Table 1 RL= 100Ω, 100Ω VID= ±100 mV, mV See Figure 1 and Figure 2 See Figure 3 Enabled, MIN ENx, SM ENx, S0, S1 ENx, SM –100 247 340 50 1.125 1.375 –50 50 RL = 100Ω 50 150 84 115 3.2 6 –2 –20 –1.2 VI= 2.4 V 20 20 VIH = 2 V –20 10 VIL = 0 0.8 8V –10 ±24 ±12 VO = 0 V or VCC VCC = 1.5 V, VO = 3.6 V VI = 0.4 sin (4E6πt) + 0.5 V CIN UNIT mV 454 –50 VOY or VOZ = 0 V VOD = 0 V Power-off output current MAX 100 Disabled ENx, S0, S1 TYP† mV V mV mA µA µA µA µA mA ±1 µA ±1 µA Input capacitance (A or B inputs) 5 pF CO Output capacitance (Y or Z outputs) VI = 0.4 sin (4E6πt) + 0.5 V 9.4 † All typical values are at 25°C and with a 3.3 V supply. ‡ The non-algebraic convention, where the more positive (least negative) limit is designated minimum, is used in this data sheet for the input current (II) only. switching characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP† MAX tPLH tPHL Propagation delay time, low-to-high-level output 2.2 3.1 4.7 Propagation delay time, high-to-low-level output 2.2 3.1 4.7 tr tf Differential output signal rise time 0.3 0.8 1.2 0.3 0.8 1.2 tsk(p) tsk(o) tsk(pp) tPZH tPZL tPHZ RL = 100 Ω, CL = 10 pF, See Figure 4 Differential output signal fall time Pulse skew (|tPHL - tPLH|)‡ 140 500 Output skew, channel-to-channel§ Part-to-part skew¶ 100 300 Propagation delay time, high-impedance-to-high-level output 5.7 15 Propagation delay time, high-impedance-to-low-level output 7.7 15 3.2 15 1.5 Propagation delay time, high-level-to-high-impedance output See Figure 5 UNIT ns ns ps ns ns tPLZ Propagation delay time, low-level-to-high-impedance output 3.2 15 ns † All typical values are at 25°C and with a 3.3 V supply. ‡ tsk(p) is the magnitude of the time difference between the tPLH and tPHL of any output of a single device. § tsk(o) is the magnitude of the time difference between the tPLH or tPHL measured at any two outputs. ¶ tsk(pp) is the magnitude of the time difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SN65LVDS116 16-PORT LVDS REPEATER SLLS370A – SEPTEMBER 1999 – REVISED SEPTEMBER 1999 PARAMETER MEASUREMENT INFORMATION IIA IIB VID IOY A Y B Z IOZ VOD VOY GND VIA VOC VOZ VIB (VOY + VOZ)/2 Figure 1. Voltage and Current Definitions Table 1. Receiver Minimum and Maximum Input Threshold Test Voltages APPLIED VOLTAGES RESULTING DIFFERENTIAL INPUT VOLTAGE RESULTING COMMONMODE INPUT VOLTAGE VIA 1.25 V VIB 1.15 V VID 100 mV VIC 1.2 V 1.15 V 1.25 V -100 mV 1.2 V 2.4 V 2.3 V 100 mV 2.35 V 2.3 V 2.4 V -100 mV 2.35 V 0.1 V 0V 100 mV 0.05 V 0V 0.1 V -100 mV 0.05 V 1.5 V 0.9 V 600 mV 1.2 V 0.9 V 1.5 V -600 mV 1.2 V 2.4 V 1.8 V 600 mV 2.1 V 1.8 V 2.4 V -600 mV 2.1 V 0.6 V 0V 600 mV 0.3 V 0V 0.6 V -600 mV 0.3 V 3.75 kΩ Y VOD Input Z 100 Ω 3.75 kΩ ± Figure 2. VOD Test Circuit 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 0 V ≤ VTEST ≤ 2.4 V SN65LVDS116 16-PORT LVDS REPEATER SLLS370A – SEPTEMBER 1999 – REVISED SEPTEMBER 1999 PARAMETER MEASUREMENT INFORMATION Y 49.9 Ω ± 1% (2 Places) Input Input VI 1.4 V VI 1V Z 50 pF VOC(PP) VOC VOC(SS) VO NOTE A: All input pulses are supplied by a generator having the following characteristics: tr or tf ≤ 1 ns, pulse repetition rate (PRR) = 0.5 Mpps, Pulsewidth = 500 ±10 ns. CL includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T. The measurement of VOC(PP) is made on test equipment with a –3 dB bandwidth of at least 300 MHz. Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage A Y B Z Input 1.4 V 1.2 V 1V VIB Input VIA tPLH VOD tPHL 100 Ω ± 1 % VOD(H) Output CL = 10 pF (2 Places) 100% 80% 0V VOD(L) 20% 0% tf tr NOTE A: All input pulses are supplied by a generator having the following characteristics: tr or tf ≤ 1 ns, pulse repetition rate (PRR) = 50 Mpps, Pulsewidth = 10 ±0.2 ns . CL includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T. Figure 4. Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 SN65LVDS116 16-PORT LVDS REPEATER SLLS370A – SEPTEMBER 1999 – REVISED SEPTEMBER 1999 PARAMETER MEASUREMENT INFORMATION 49.9 Ω ± 1% (2 Places) Y 1 V or 1.4 V Z 1.4 V or 1 V + EN EN S0 S1 SM Inputs CL = 10 pF (2 Places) VOY VOZ 2V 1.4 V 0.8 V Input VOY or VOZ 1.2 V – tPZH tPHZ 100%, ≅ 1.4 V 1.3 V 0%, 1.2 V tPZL tPLZ 100%, 1.2 V VOZ 1.1 V or 0%, ≅ 1 V VOY NOTE A: All input pulses are supplied by a generator having the following characteristics: tr or tf ≤ 1 ns, pulse repetition rate (PRR) = 0.5 Mpps, Pulsewidth = 500 ±10 ns . CL includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T. Figure 5. Enable and Disable Time Circuit and Definitions 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN65LVDS116 16-PORT LVDS REPEATER SLLS370A – SEPTEMBER 1999 – REVISED SEPTEMBER 1999 TYPICAL CHARACTERISTICS SUPPLY CURRENT vs SWITCHING FREQUENCY LOW-TO-HIGH PROPAGATION DELAY TIME vs FREE-AIR TEMPERATURE 180 VCC = 3.6 V 160 VCC = 3.3 V 140 VCC = 3 V 120 100 All Outputs Loaded and Enabled 0 50 100 150 200 250 300 350 3.7 3.6 3.5 VCC = 3.3 V 3.4 VCC = 3 V VCC = 3.6 V 3.3 3.2 3.1 –50 400 –25 0 25 50 75 100 TA – Free–Air Temperature – °C f – Frequency – MHz Figure 6 Figure 7 HIGH-TO-LOW PROPAGATION DELAY TIME vs FREE-AIR TEMPERATURE t PHL – High-To-Low Propagation Delay Time – ns I CC – Supply Current – mA 200 80 3.8 t PLH – Low-To-High Propagation Delay Time – ns 220 3.7 3.6 3.5 3.4 3.3 VCC = 3.3 V VCC = 3.6 V VCC = 3 V 3.2 3.1 3.0 2.9 –50 –25 0 25 50 75 100 TA – Free–Air Temperature – °C Figure 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 SN65LVDS116 16-PORT LVDS REPEATER SLLS370A – SEPTEMBER 1999 – REVISED SEPTEMBER 1999 TYPICAL CHARACTERISTICS Figure 9. Typical Differential Eye Pattern at 400 Mbps PEAK-TO-PEAK OUTPUT JITTER vs SIGNALING RATE 800 VID = 600 mV, VIC = 0.3 V VID = 100 mV, VIC = 0.05 V VID = 400 mV, VIC = 1.4 V Peak-To-Peak Output Jitter – ps 700 600 500 400 300 200 100 VID = 600 mV, VIC = 2.1 V VID = 100 mV, VIC = 2.35 V 0 0 50 100 150 200 250 300 350 400 450 500 Signaling Rate – Mbps Figure 10. Typical Peak-To-Peak Output Jitter vs VID and VIC 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN65LVDS116 16-PORT LVDS REPEATER SLLS370A – SEPTEMBER 1999 – REVISED SEPTEMBER 1999 APPLICATION INFORMATION An LVDS receiver can be used to receive various other types of logic signals. Figure 11 through Figure 19 show the termination circuits for SSTL, HSTL, GTL, BTL, LVPECL, PECL, CMOS, and TTL. VDD 25 Ω 50 Ω A 50 Ω B 1/2 VDD 0.1 µF LVDS Receiver Figure 11. Stub-Series Terminated (SSTL) or High-Speed Transceiver Logic (HSTL) VDD 50 Ω A 50 Ω B 1.35 V < VTT < 1.65 V 0.1 µF LVDS Receiver Figure 12. Center-Tap Termination (CTT) 1.14 V < VTT < 1.26 V VDD 1 kΩ 50 Ω 50 Ω A B 2 kΩ 0.1 µF LVDS Receiver Figure 13. Gunning Transceiver Logic (GTL) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 SN65LVDS116 16-PORT LVDS REPEATER SLLS370A – SEPTEMBER 1999 – REVISED SEPTEMBER 1999 APPLICATION INFORMATION Z0 Z0 A B 1.47 V < VTT < 1.62 V 0.1 µF LVDS Receiver Figure 14. Backplane Transceiver Logic (BTL) 3.3 V 3.3 V 50 Ω ECL 120 Ω 120 Ω 33 Ω 33 Ω A 50 Ω B 51 Ω 51 Ω LVDS Receiver Figure 15. Low-Voltage Positive Emitter-Coupled Logic (LVPECL) 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN65LVDS116 16-PORT LVDS REPEATER SLLS370A – SEPTEMBER 1999 – REVISED SEPTEMBER 1999 APPLICATION INFORMATION 5V 5V 50 Ω ECL 82 Ω 82 Ω 100 Ω 100 Ω A 50 Ω B 33 Ω 33 Ω LVDS Receiver Figure 16. Positive Emitter-Coupled Logic (PECL) 3.3 V 3.3 V 7.5 kΩ A B 7.5 kΩ 0.1 µF LVDS Receiver Figure 17. 3.3-V CMOS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 SN65LVDS116 16-PORT LVDS REPEATER SLLS370A – SEPTEMBER 1999 – REVISED SEPTEMBER 1999 APPLICATION INFORMATION 5V 5V 10 kΩ 560 Ω A B 560 Ω 3.3 kΩ 0.1 µF LVDS Receiver Figure 18. 5-V CMOS 5V 5V 10 kΩ 470 Ω A B 3.3 V 4 kΩ 0.1 µF Figure 19. TTL 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 LVDS Receiver SN65LVDS116 16-PORT LVDS REPEATER SLLS370A – SEPTEMBER 1999 – REVISED SEPTEMBER 1999 MECHANICAL DATA DGG (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 48 PINS SHOWN 0,27 0,17 0,50 48 0,08 M 25 6,20 6,00 8,30 7,90 0,15 NOM Gage Plane 1 0,25 24 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 48 56 64 A MAX 12,60 14,10 17,10 A MIN 12,40 13,90 16,90 DIM 4040078 / F 12/97 NOTES: B. C. D. E. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof. Copyright 1999, Texas Instruments Incorporated