STPS2150 ® POWER SCHOTTKY RECTIFIER Table 1: Main Product Characteristics IF(AV) 2A VRRM 150 V Tj (max) 175°C VF(max) 0.67 V FEATURES AND BENEFITS ■ ■ ■ ■ ■ Negligible switching losses Low forward voltage drop for higher efficiency and extented battery life Low thermal resistance Surface mount miniature package Avalanche capability specified DESCRIPTION 150V Power Schottky rectifier are suited for switch Mode Power Supplies on up to 24V rails and high frequency converters. Packaged in SMA and Axial, this device is intended for use in consumer and computer applications like TV, STB, PC and DVD where low drop forward voltage in required to reduce power dissipation. SMA (JEDEC DO-214AC) STPS2150A Table 2: Order Codes Part Number STPS2150A STPS2150 STPS2150RL DO-15 STPS2150 Marking 2150 STPS2150 STPS2150 Table 3: Absolute Ratings (limiting values) Symbol Parameter VRRM Repetitive peak reverse voltage IF(RMS) RMS forward voltage IF(AV) IFSM PARM Tstg Tj dV/dt Average forward current SMA DO-15 Surge non repetitive forward SMA current DO-15 Repetitive peak avalanche power TL = 145°C δ = 0.5 TL = 130°C δ = 0.5 Half wave, single phase, 50Hz tp = 1µs Tj = 25°C Storage temperature range Maximum operating junction temperature * Critical rate of rise of reverse voltage (rated VR, Tj = 25°C) Value 150 Unit V 15 A 2 A 75 150 2400 W -65 to + 150 °C 175 °C 10000 V/µs A 1 dPt ot * : --------------- > -------------------------- thermal runaway condition for a diode on its own heatsink Rth ( j – a ) dTj August 2004 REV. 4 1/6 STPS2150 Table 4: Thermal Resistance Symbol Parameter Rth(j-l) Junction to lead Value 20 30 SMA DO-15 Lead length = 10 mm Unit °C/W Table 5: Static Electrical Characteristics Symbol Parameter Tests conditions Tj = 25°C VR = VRRM Reverse leakage current Tj = 125°C IR * Tj = 25°C VF * Tj = 125°C Forward voltage drop Tj = 25°C Tj = 125°C Min. IF = 2A IF = 4A Typ 0.5 Max. 1.5 Unit µA 0.5 1.5 mA 0.78 0.82 0.62 0.67 0.86 0.89 0.70 0.75 V * tp = 380 µs, δ < 2% Pulse test: 2 To evaluate the conduction losses use the following equation: P = 0.59 x IF(AV) + 0.04 IF (RMS) Figure 1: Average forward power dissipation versus average forward current Figure 2: Average forward current versus ambient temperature (δ = 0.5) PF(AV)(W) IF(AV)(A) 1.6 δ = 0.2 δ = 0.1 2.2 δ = 0.5 Rth(j-a)=Rth(j-I) 2.0 δ = 0.05 1.4 SMA 1.8 DO-15 1.2 1.6 δ=1 1.4 1.0 Rth(j-a)=100°C/W 1.2 0.8 1.0 0.6 0.8 0.4 0.6 T T 0.4 0.2 IF(AV)(A) δ=tp/T 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 Figure 3: Normalized avalanche derating versus pulse duration 0.2 tp δ=tp/T 0.0 2.0 0 2.2 power Tamb(°C) tp 25 50 75 100 125 150 Figure 4: Normalized avalanche derating versus junction temperature PARM(tp) PARM(1µs) 175 power PARM(tp) PARM(25°C) 1 1.2 1 0.1 0.8 0.6 0.4 0.01 0.2 0.01 2/6 Tj(°C) tp(µs) 0.001 0.1 1 0 10 100 1000 25 50 75 100 125 150 STPS2150 Figure 5: Non repetitive surge peak forward current versus overload duration (maximum values) (SMA) Figure 6: Non repetitive surge peak forward current versus overload duration (maximum values) (DO-15) IM(A) IM(A) 10 10 9 9 8 8 7 7 6 6 5 Ta=25°C 5 Ta=25°C 4 Ta=75°C 4 Ta=75°C 3 2 3 2 IM Ta=125°C IM Ta=125°C 1 t t(s) δ=0.5 t 1 0 t(s) δ=0.5 0 1.E-03 1.E-02 1.E-01 1.E+00 Figure 7: Relative variation of thermal impedance junction to ambient versus pulse duration (epoxy printed circuit board, e(Cu)=35µm, recommended pad layout) (SMA) 1.E-03 Zth(j-c)/Rth(j-c) 0.9 0.9 0.8 0.8 0.7 0.7 0.6 δ = 0.5 0.5 0.5 0.4 0.4 δ = 0.2 0.2 δ = 0.1 1.E+00 Zth(j-c)/Rth(j-c) 1.0 0.3 1.E-01 Figure 8: Relative variation of thermal impedance junction to ambient versus pulse duration (DO-15) 1.0 0.6 1.E-02 T 0.1 δ=tp/T tp(s) Single pulse δ = 0.5 0.3 δ = 0.2 0.2 δ = 0.1 T 0.1 tp δ=tp/T tp(s) Single pulse tp 0.0 0.0 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 Figure 9: Reverse leakage current versus reverse voltage applied (typical values) 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 Figure 10: Junction capacitance versus reverse voltage applied (typical values) IR(µA) C(nF) 1.E+04 1000 F=1MHz VOSC=30mVRMS Tj=25°C Tj=150°C 1.E+03 Tj=125°C 1.E+02 Tj=100°C 1.E+01 100 Tj=75°C Tj=50°C 1.E+00 Tj=25°C 1.E-01 VR(V) VR(V) 10 1.E-02 0 25 50 75 100 125 150 1 10 100 1000 3/6 STPS2150 Figure 11: Forward voltage drop versus forward current (maximum values, high level) (SMA) Figure 12: Forward voltage drop versus forward current (maximum values, low level) (DO-15) IFM(A) IFM(A) 2.0 100 Tj=125°C (maximum values) 1.8 Tj=125°C (maximum values) 1.6 1.4 Tj=125°C (typical values) Tj=125°C (typical values) 1.2 Tj=25°C (maximum values) 1.0 10 Tj=25°C (maximum values) 0.8 0.6 0.4 0.2 VFM(V) 0.0 VFM(V) 1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Figure 13: Thermal resistance junction to ambient versus copper surface under each lead (Epoxy printed circuit board FR4, copper thickness: 35µm) (SMA) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 Figure 14: Thermal resistance versus lead length (DO-15) Rth(j-a)(°C/W) Rth(°C/W) 140 120 Rth(j-a) 120 100 100 80 80 60 60 Rth(j-I) 40 40 20 20 Lleads(mm) S(cm²) 0 0 0 4/6 1 2 3 4 5 5 10 15 20 25 STPS2150 Figure 15: SMA Package Mechanical Data DIMENSIONS REF. E1 D E A1 A2 C L b Millimeters Inches Min. Max. Min. Max. A1 1.90 2.03 0.075 0.080 A2 0.05 0.20 0.002 0.008 b 1.25 1.65 0.049 0.065 c 0.15 0.41 0.006 0.016 E 4.80 5.60 0.189 0.220 E1 3.95 4.60 0.156 0.181 D 2.25 2.95 0.089 0.116 L 0.75 1.60 0.030 0.063 Figure 16: SMA Foot Print Dimensions (in millimeters) 1.65 1.45 2.40 1.45 5/6 STPS2150 Figure 17: DO-15 Package Mechanical Data C C A D B DIMENSIONS Millimeters Inches Min. Max. Min. Max. 6.05 6.75 0.238 0.266 2.95 3.53 0.116 0.139 26 31 1.024 1.220 0.71 0.88 0.028 0.035 REF. A B C D Table 6: Ordering Information Ordering type STPS2150A STPS2150 STPS2150RL ■ Marking 2150 STPS2150 STPS2150 Package SMA DO-15 DO-15 Weight 0.068 g 0.4 g 0.4 g Base qty 5000 2000 5000 Delivery mode Tape & reel Ammopack Tape & reel Epoxy meets UL94, V0 Table 7: Revision History Date Jul-2003 Revision 3A Aug-2004 4 Description of Changes Last update. SMA package dimensions update. Reference A1 max. changed from 2.70mm (0.106inc.) to 2.03mm (0.080). Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2004 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 6/6