ETC UPD78013HGK-XXX-8A8

DATA SHEET
MOS INTEGRATED CIRCUIT
µPD78011H, 78012H, 78013H, 78014H
8-BIT SINGLE-CHIP MICROCONTROLLER
DESCRIPTION
The µPD78011H, 78012H, 78013H, and 78014H are the products in the µPD78014H subseries within the 78K/0 series.
Compared with the older µPD78018F subseries, this subseries reduces the EMI (Electro Magnetic Interface) noise
generated from the microcontroller.
Functions are described in detail in the following User's Manual, which should be read when carring out design
work.
µPD78014H Subseries User's Manual: Planned to publish
78K/0 Series User’s Manual – Instruction: IEU-1372
FEATURES
• Low EMI noise model
• Large on-chip ROM & RAM
Item
Product Name
•
•
•
•
•
•
•
Program
Memory
(ROM)
µPD78011H
8K bytes
µPD78012H
16K bytes
µPD78013H
24K bytes
µPD78014H
32K bytes
Data Memory
Internal HighSpeed RAM
512 bytes
Internal
Buffer RAM
32 bytes
Package
• 64-pin plastic shrink DIP (750 mil)
• 64-pin plastic QFP (14 × 14 mm)
1024 bytes
• 64-pin plastic LQFP (12 × 12 mm)
External memory expansion space : 64K bytes
Instruction execution time can be varied from high-speed (0.4 µs) to ultra-low-speed (122 µs)
I/O ports: 53 (N-ch open-drain : 4)
8-bit resolution A/D converter : 8 channels
Serial interface : 2 channels
Timer : 5 channels
Supply voltage : VDD = 1.8 to 5.5 V
APPLICATION FIELD
Cellular phone, pager, VCR, audio, camera, home appliances, etc.
The information in this document is subject to change without notice.
Document No. U11898EJ1V0DS00 (1st edition)
Date Published January 1997 N
Printed in Japan
©
1997
µPD78011H, 78012H, 78013H, 78014H
ORDERING INFORMATION
Part Number
µPD78011HCW-×××
µPD78011HGC-×××-AB8
µPD78011HGK-×××-8A8
µPD78012HCW-×××
µPD78012HGC-×××-AB8
µPD78012HGK-×××-8A8
µPD78013HCW-×××
µPD78013HGC-×××-AB8
µPD78013HGK-×××-8A8
µPD78014HCW-×××
µPD78014HGC-×××-AB8
µPD78014HGK-×××-8A8
Remark ××× indicates ROM code No.
2
Package
64-pin
64-pin
64-pin
64-pin
64-pin
64-pin
64-pin
64-pin
64-pin
64-pin
64-pin
64-pin
plastic
plastic
plastic
plastic
plastic
plastic
plastic
plastic
plastic
plastic
plastic
plastic
shrink DIP (750 mil)
QFP (14 × 14 mm)
LQFP (12 × 12 mm)
shrink DIP (750 mil)
QFP (14 × 14 mm)
LQFP (12 × 12 mm)
shrink DIP (750 mil)
QFP (14 × 14 mm)
LQFP (12 × 12 mm)
shrink DIP (750 mil)
QFP (14 × 14 mm)
LQFP (12 × 12 mm)
µPD78011H, 78012H, 78013H, 78014H
DEVELOPMENT OF 78K/0 SERIES
The following products are available in the 78K/0 series. The parts numbers enclosed in a frame are subseries
names.
Products under mass production
Products under development
The Y subseries supports the I2C bus.
For control applications
µ PD78078Y
µ PD78078
100 pins
µ PD78070A
100 pins
µ PD780018
Note
100 pins
µ PD78070AY
µ PD780018Y
Note
Adds timer to µ PD78054 and reinforces external interface function
ROM-less model of µ PD78078
Reinforces serial I/O of µ PD78078 and limits functions
80 pins
µ PD78058F
µ PD78058FY
Low EMI noise model of µ PD78054
80 pins
µ PD78054
µ PD780034
µ PD78054Y
µ PD780034Y
Adds UART and D/A to µ PD78014 and reinforces I/O
64 pins
64 pins
µ PD780024
µ PD780024Y
Reinforces serial I/O of µ PD78018F. Low EMI noise model
64 pins
µ PD780964
Reinforces A/D of µ PD780924
64 pins
µ PD780924
UART as inverter control circuit. Low EMI noise model
64 pins
µ PD78014H
64 pins
µ PD78018F
64 pins
µ PD78014
64 pins
µ PD780001
64 pins
µ PD78002
42/44 pins
µ PD78083
Reinforces A/D of µ PD780024
Low EMI noise model of µ PD78018F
µ PD78018FY
µ PD78014Y
Low voltage (1.8 V) model of µ PD78014 with many variations of ROM and RAM
Adds A/D and 16-bit timer to µ PD78002
Adds A/D to µ PD78002
µ PD78002Y
Basic subseries for control applications
UART. Low voltage (1.8 V) model
For FIPTM driving
78K/0
series
100 pins
µ PD780208
80 pins
µ PD78044F
Adds 6-bit U/D counter to µ PD78024. Total display outputs : 34 pins
64 pins
µ PD78024
Basic subseries for FIP driving. Total display outputs : 26 pins
Reinforces I/O and FIP C/D of µ PD78044F. Total display outputs : 53 pins
For LCD driving
100 pins
µ PD780308
µ PD780308Y
Reinforces SIO of µ PD78064 with expanded ROM and RAM
100 pins
µ PD78064B
µ PD78064
µ PD78064Y
Basic subseries for LCD driving. UART
100 pins
Low EMI noise model of µ PD78064
Supporting IEBusTM
µ PD78098
80 pins
Adds IEBus controller to µ PD78054
For LV
64 pins
µ PD78P0914
PWM output, LV digital code decoder, and Hsync counter
Note Under planning
3
µPD78011H, 78012H, 78013H, 78014H
The major differences between the respective subseries are shown below.
Functions
Subseries
For
Control
For FIP
driving
For LCD
driving
IEBus
support
For LV
ROM
Capacity
µPD78078
µPD78070A
µPD780018
32 K-60 K
–
48 K-60 K
µPD78058F
µPD78054
µPD780034
µPD780024
16 K-60 K
8 K-32 K
µPD780964
µPD780924
µPD78014H
µPD78018F
µPD78014
µPD780001
µPD78002
µPD78083
µPD780208
µPD78044F
µPD78024
µPD780308
µPD78064B
µPD78064
µPD78098
8-bit 16-bit Watch WDT
4ch
1ch
1ch
1ch
8-bit 10-bit 8-bit
A/D A/D D/A
8ch
—
3ch
2ch
8
8
8
8
K-60 K
K-32 K
K
K-16 K
32
16
24
48
K-60
K-40
K-32
K-60
K
K
K
K
32 K
16 K-32 K
32 K-60 K
µPD78P0914 32 K
2ch
—
2ch
Note 10-bit timer: 1 channel
4
Timer
2ch
Note
—
—
8ch
8ch
—
—
8ch
8ch
—
—
Serial
Interface
I/O
3ch (UART: 1ch) 88
61
2chs
88
(time-division
3-wire: 1 ch)
3ch (UART: 1ch) 69
pins
pins
pins
VDD
MIN.
Value
External
Expansion
1.8 V
2.7 V
pins
3chs
51 pins
(UART: 1 ch,
time-division
3-wire: 1 ch)
2ch (UART: 2ch) 47 pins
1ch
1ch
2ch
53 pins
—
1ch
pins
pins
pins
pins
pins
pins
pins
2.0 V
1.8 V
2.7 V
1.8 V
2.7 V
2ch
1ch
—
1ch
—
1ch
2ch
1ch
1ch
1ch
—
8ch
8ch
—
—
1ch
8ch
—
—
2ch
1ch
1ch
1ch
8ch
—
2ch
6ch
—
—
1ch
8ch
—
—
39
53
1ch (UART: 1ch) 33
2ch
74
68
54
3ch
57
(time-division
UART: 1 ch)
2ch (UART: 1ch)
—
1.8 V
2.7 V
—
—
1.8 V
—
2.0 V
3ch (UART: 1ch) 69 pins
2.7 V
2ch
4.5 V
54 pins
µPD78011H, 78012H, 78013H, 78014H
OVERVIEW OF FUNCTION
Item
µPD78011H
Product Name
ROM
High-speed
RAM
Buffer RAM
Internal
memory
8K bytes
µPD78012H
µPD78013H
µPD78014H
16K bytes
24K bytes
32K bytes
512 bytes
1024 bytes
32 bytes
Memory space
64K bytes
General-purpose registers
8 bits × 32 registers (8 bits × 8 registers × 4 banks)
Instruction cycle
On-chip instruction execution time cycle modification function
When main system
clock selected
When subsystem
clock selected
0.4 µs/0.8 µs/1.6 µs/3.2 µs/6.4 µs (at 10.0 MHz operation)
122 µs (at 32.768 kHz operation)
Instruction set
•
•
•
•
I/O ports
Total
• CMOS input
• CMOS I/O
• N-channel open-drain I/O
(15 V withstand voltage)
16-bit operation
Multiplication/division (8 bits × 8 bits,16 bits ÷ 8 bits)
Bit manipulation (set, reset, test, boolean operation)
BCD correction, etc.
: 53
: 02
: 47
: 04
A/D converter
• 8-bit resolution × 8 channels
• Operable over a wide power supply voltage range: AVDD = 1.8 to 5.5 V
Serial interface
• 3-wire serial I/O/SBI /2-wire serial I/O mode selectable: 1 channel
• 3-wire serial I/O mode (on-chip max. 32 bytes automatic data transmit/receive function): 1 channel
Timer
•
•
•
•
Timer output
3 (14-bit PWM output × 1)
Clock output
39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz (at main system clock: 10.0 MHz
operation), 32.768 kHz (at subsystem clock: 32.768 kHz operation)
Buzzer output
2.4 kHz, 4.9 kHz, 9.8 kHz (at main system clock: 10.0 MHz operation)
16-bit timer/event counter
8-bit timer/event counter
Watch timer
Watchdog timer
Vectored
Maskable
Internal
: 8, External : 4
interrupt
Non-maskable
Internal
:1
sources
Software
1
Test input
Internal
Supply voltage
VDD = 1.8 to 5.5 V
Operating ambient
temperature
TA = –40 to +85°C
Package
:
:
:
:
1
2
1
1
channel
channels
channel
channel
: 1, External : 1
• 64-pin plastic shrink DIP (750 mil)
• 64-pin plastic QFP (14 × 14 mm)
• 64-pin plastic LQFP (12 × 12 mm)
5
µPD78011H, 78012H, 78013H, 78014H
TABLE OF CONTENTS
1.
PIN CONFIGURATION (Top View) ......................................................................................................... 7
2.
BLOCK DIAGRAM ................................................................................................................................... 10
3.
PIN FUNCTIONS ...................................................................................................................................... 11
3.1 PORT PINS ........................................................................................................................................................ 11
3.2 OTHER PORTS ................................................................................................................................................. 12
3.3 PIN I/O CIRCUIT AND RECOMMENDED CONNECTION OF UNUSED PINS ................................................ 14
4.
MEMORY SPACE .................................................................................................................................... 16
5.
PERIPHEL HARDWARE FUNCTION FEATURES ................................................................................ 17
5.1
5.2
5.3
5.4
5.5
5.6
5.7
6.
PORTS ...............................................................................................................................................................
CLOCK GENERATOR .......................................................................................................................................
TIMER/EVENT COUNTER ................................................................................................................................
CLOCK OUTPUT CONTROL CIRCUIT ............................................................................................................
BUZZER OUTPUT CONTROL CIRCUIT ...........................................................................................................
A/D CONVERTER ..............................................................................................................................................
SERIAL INTERFACES ......................................................................................................................................
17
18
19
21
21
22
23
INTERRUPT FUNCTIONS AND TEST FUNCTIONS .............................................................................. 25
6.1 INTERRUPT FUNCTIONS ................................................................................................................................. 25
6.2 TEST FUNCTIONS ............................................................................................................................................ 28
7.
EXTERNAL DEVICE EXPANTION FUNCTIONS ................................................................................... 29
8.
STANDBY FUNCTIONS ........................................................................................................................... 29
9.
RESET FUNCTIONS ................................................................................................................................ 29
10. INSTRUCTION SET ................................................................................................................................. 30
11. ELECTRICAL SPECIFICATIONS ............................................................................................................ 33
12. PACKAGE DRAWINGS ........................................................................................................................... 57
13. RECOMMENDED SOLDERING CONDITIONS ..................................................................................... 60
APPENDIX A. DEVELOPMENT TOOLS ......................................................................................................... 62
APPENDIX B. RELATED DOCUMENTS ........................................................................................................ 64
6
µPD78011H, 78012H, 78013H, 78014H
1. PIN CONFIGURATION (Top View)
• 64-Pin Plastic Shrink DIP (750 mil)
µPD78011HCW-×××, 78012HCW-×××, 78013HCW-×××, 78014HCW-×××
P20/SI1
1
64
AV REF
P21/SO1
2
63
AV DD
P22/SCK1
3
62
P17/ANI7
P23/STB
4
61
P16/ANI6
P24/BUSY
5
60
P15/ANI5
P25/SI0/SB0
6
59
P14/ANI4
P26/SO0/SB1
7
58
P13/ANI3
P27/SCK0
8
57
P12/ANI2
P30/TO0
9
56
P11/ANI1
10
55
P10/ANI0
P32/TO2
11
54
AV SS
P33/TI1
12
53
P04/XT1
P31/TO1
P34/TI2
13
52
XT2
P35/PCL
14
51
IC
P36/BUZ
15
50
X1
P37
16
49
X2
V SS
17
48
V DD
P40/AD0
18
47
P03/INTP3
P41/AD1
19
46
P02/INTP2
P42/AD2
20
45
P01/INTP1
P43/AD3
21
44
P00/INTP0/TI0
P44/AD4
22
43
RESET
P45/AD5
23
42
P67/ASTB
P46/AD6
24
41
P66/WAIT
P47/AD7
25
40
P65/WR
P50/A8
26
39
P64/RD
P51/A9
27
38
P63
P52/A10
28
37
P62
P53/A11
29
36
P61
P54/A12
30
35
P60
P55/A13
31
34
P57/A15
V SS
32
33
P56/A14
Cautions 1. Always connect the IC (Internally Connected) pin to VSS directly.
2. The AVDD pin is multiplexed with an A/D converter power pin and a port power pin. In an application where the noise generated from the microcontroller must be reduced, connect the AVDD pin
to a power supply of the same voltage as VDD.
3. The AVSS pin is multiplexed with an A/D converter ground pin and a port ground pin. In an
application where the noise generated from the microcontroller must be reduced, connect AVSS
pin to a ground line separate from VSS.
7
µPD78011H, 78012H, 78013H, 78014H
• 64-Pin Plastic QFP (14 × 14 mm)
µPD78011HGC-×××-AB8, 78012HGC-×××-AB8, 78013HGC-×××-AB8, 78014HGC-×××-AB8
P27/SCK0
P26/SO0/SB1
P25/SI0/SB0
P24/BUSY
P23/STB
P22/SCK1
P21/SO1
P20/SI1
AV REF
AV DD
P17/ANI7
P16/ANI6
P15/ANI5
P14/ANI4
P13/ANI3
P12/ANI2
• 64-Pin Plastic LQFP (12 × 12 mm)
µPD78011HGK-×××-8A8, 78012HGK-×××-8A8, 78013HGK-×××-8A8, 78014HGK-×××-8A8
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
P30/TO0
1
P11/ANI1
P31/TO1
2
47
P10/ANI0
P32/TO2
3
46
AV SS
P33/TI1
4
45
P04/XT1
P34/TI2
5
44
XT2
P35/PCL
6
43
IC
P36/BUZ
7
42
X1
P37
8
41
X2
V SS
P44/AD4
14
35
RESET
P45/AD5
15
34
P67/ASTB
P46/AD6
16
17
P66/WAIT
18
19
20
21
22
23
24
25
26
27
28
29
30
31
33
32
P65/WR
P00/INTP0/TI0
P64/RD
36
P63
13
P62
P43/AD3
P61
P01/INTP1
P60
37
P57/A15
12
P56/A14
P42/AD2
V SS
P02/INTP2
P55/A13
38
P54/A12
11
P53/A11
P41/AD1
P52/A10
P03/INTP3
P51/A9
V DD
39
P50/A8
40
10
P47/AD7
9
P40/AD0
Cautions 1. Always connect the IC (Internally Connected) pin to VSS directly.
2. The AVDD pin is multiplexed with an A/D converter power pin and a port power pin. In an application where the noise generated from the microcontroller must be reduced, connect the AVDD pin
to a power supply of the same voltage as VDD.
3. The AVSS pin is multiplexed with an A/D converter ground pin and a port ground pin. In an
application where the noise generated from the microcontroller must be reduced, connect AVSS
pin to a ground line separate from VSS.
8
µPD78011H, 78012H, 78013H, 78014H
A8-A15
AD0-AD7
ANI0-ANI7
: Address Bus
: Address/Data Bus
: Analog Input
ASTB
AVDD
: Address Strobe
: Analog Power Supply
AVREF
AVSS
: Analog Reference Voltage
: Analog Ground
BUSY
BUZ
: Busy
: Buzzer Clock
IC
INTP0-INTP3
: Internally Connected
: Interrupt from Peripherals
P00-P04
P10-P17
: Port 0
: Port 1
P20-P27
P30-P37
: Port 2
: Port 3
P40-P47
P50-P57
: Port 4
: Port 5
P60-P67
PCL
: Port 6
: Programmable Clock
RD
RESET
: Read Strobe
: Reset
SB0, SB1
SCK0, SCK1
: Serial Bus
: Serial Clock
SI0, SI1
SO0, SO1
: Serial Input
: Serial Output
STB
TI0-TI2
: Strobe
: Timer Input
TO0-TO2
VDD
: Timer Output
: Power Supply
VSS
WAIT
: Ground
: Wait
WR
X1, X2
: Write Strobe
: Crystal (Main System Clock)
XT1, XT2
: Crystal (Subsystem Clock)
9
µPD78011H, 78012H, 78013H, 78014H
2. BLOCK DIAGRAM
TO0/P30
TI0/INTP0/P00
P00
16-bit TIMER/
EVENT COUNTER
PORT0
P01-P03
P04
TO1/P31
TI1/P33
TO2/P32
TI2/P34
8-bit TIMER/
EVENT COUNTER 1
8-bit TIMER/
EVENT COUNTER 2
WATCHDOG TIMER
WATCH TIMER
78K/0
CPU CORE
SI0/SB0/P25
SO0/SB1/P26
PORT1
P10-P17
PORT2
P20-P27
PORT3
P30-P37
PORT4
P40-P47
PORT5
P50-P57
PORT6
P60-P67
ROM
SERIAL
INTERFACE 0
SCK0/P27
SI1/P20
SO1/P21
SCK1/P22
AD0/P40AD7/P47
SERIAL
INTERFACE 1
STB/P23
A8/P50A15/P57
BUSY/P24
RAM
ANI0/P10ANI7/P17
EXTERNAL
ACCESS
RD/P64
WR/P65
WAIT/P66
A/D CONVERTER
ASTB/P67
AVREF
RESET
INTP0/P00INTP3/P03
INTERRUPT
CONTROL
X1
SYSTEM
CONTROL
X2
XT1
BUZ/P36
BUZZER OUTPUT
PCL/P35
CLOCK OUTPUT
CONTROL
XT2
VDD VSS AVDD AVSS IC
Remark Internal ROM & RAM capacity varies depending on the product.
10
µPD78011H, 78012H, 78013H, 78014H
3. PIN FUNCTIONS
3.1 PORT PINS (1/2)
Pin Name
I/O
Input
P00
Input/
output
P01
P02
Function
Port 0
5-bit I/O port
On Reset
DualFunction Pin
Input only
Input
INTP0/TI0
Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up
resistor can be used by software.
Input
INTP1
INTP2
P03
INTP3
P04Note 1
Input
Input only
P10 to P17
Input/
output
Port 1
8-bit input/output port.
Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used
by software.Note 2
P20
Input/
output
Port 2
8-bit input/output port.
Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used
by software.
P21
P22
P23
Input
XT1
Input
ANI0 to ANI7
Input
SI1
SO1
SCK1
STB
P24
BUSY
P25
SI0/SB0
P26
SO0/SB1
P27
SCK0
Input/
output
P30
P31
P32
P33
Port 3
8-bit input/output port.
Input/output can be specified in 1-bit units.
When used as an input port, on-chip pull-up resistor can be used
by software.
Input
TO0
TO1
TO2
TI1
P34
TI2
P35
PCL
P36
BUZ
P37
—
P40 to P47
Input/
output
Port 4
8-bit input/output port.
Input/output can be specified in 8-bit unit.
When used as an input port, on-chip pull-up resistor can be used
by software.
Test input flag (KRIF) is set to 1 by falling edge detection.
Input
AD0 to AD7
Notes 1. When using the P04/XT1 pin as an input port pin, set bit 6 (FRC) of the processor clock control register
(PCC) to 1 (do not use the internal feedback resistor of the subsystem clock oscillation circuit).
2. When using the P10/ANI0 through P17/ANI7 pins as the analog input pins of the A/D converter, the internal
pull-up resistors are automatically not used.
11
µPD78011H, 78012H, 78013H, 78014H
3.1 PORT PINS (2/2)
Pin Name
I/O
Function
P50 to P57
Input/
output
Port 5
8-bit input/output port.
LED can be driven directly.
Input/output can be specified bit-wise.
When used as an input port, on-chip pull-up resistor can be used by
software.
Input
P60
Input/
output
Port 6
8-bit input/output port.
Input/output can be specified
bit-wise.
Input
P61
P62
N-ch open-drain input/output port.
On-chip pull-up resistor can be
specified by mask option.
LED can be driven directly.
P63
On Reset
P64
P66
A8 to A15
RD
When used as an input port, on-chip
pull-up resistor can be used by software.
P65
DualFunction Pin
WR
WAIT
P67
ASTB
Caution Do not manipulate the pins multiplexed with a port pin as follows during A/D conversion; otherwise,
the rated total error during A/D conversion may not be satisfied.
<1> Rewriting the contents of the output latch when the pin is used as an output port pin.
<2> Changing the output level of the pin used as an output pin even when the pin is not used as a
port pin.
3.2 OTHER PORTS (1/2)
Pin Name
INTP0
I/O
Input
INTP1
INTP2
INTP3
Function
External interrupt request input by which the effective edge (rising
edge, falling edge, or both rising edge and falling edge) can be
specified.
On Reset
DualFunction Pin
Input
P00/TI0
P01
P02
P03
Falling edge detection external interrupt request input.
Serial interface serial data input.
Input
Serial interface serial data output.
Input
Input
/output
Serial interface serial data input/output.
Input
Input
/output
Serial interface serial clock input/output.
STB
Output
Serial interface automatic transmit/receive strobe output.
Input
P23
BUSY
Input
Serial interface automatic transmit/receive busy input.
Input
P24
SI0
Input
P20
SI1
SO0
Output
SO1
SB0
SB1
SCK0
SCK1
12
P25/SB0
P26/SB1
P21
P25/SI0
P26/SO0
Input
P27
P22
µPD78011H, 78012H, 78013H, 78014H
3.2 OTHER PORTS (2/2)
Pin Name
TI0
I/O
Input
Function
External count clock input to 16-bit timer (TM0).
TI1
External count clock input to 8-bit timer (TM1).
TI2
External count clock input to 8-bit timer (TM2).
TO0
Output
16-bit timer (TM0) output (multiplexed with 14-bit PWM output).
TO1
8-bit timer (TM1) output.
TO2
8-bit timer (TM2) output.
PCL
BUZ
Output
Output
On Reset
Input
DualFunction Pin
P00/INTP0
P33
P34
Input
P30
P31
P32
Clock output (for main system clock, subsystem clock trimming).
Input
P35
Buzzer output.
Input
P36
P40 to P47
AD0 to AD7
Input
/output
Low-order address/data bus at external memory expansion.
Input
A8 to A15
Output
High-order address bus at external memory expansion.
Input
P50 to P57
RD
Output
External memory read operation strobe signal output.
Input
P64
WR
External memory write operation strobe signal output.
P65
Input
Wait insertion at external memory access.
Input
P66
ASTB
Output
Strobe output which latches the address information output at port 4 and
port 5 to access external memory.
Input
P67
ANI0 to ANI7
Input
A/D converter analog input.
Input
P10 to P17
AVREF
Input
A/D converter reference voltage input.
—
—
AVDD
—
A/D converter analog power supply (multiplexed with a port power pin).
—
—
AVSS
—
A/D converter ground potential (multiplexed with a port ground pin).
—
—
RESET
Input
System reset input.
—
—
X1
Input
Main system clock oscillation crystal connection.
—
—
X2
—
—
—
XT1
Input
Input
P04
XT2
—
—
—
VDD
—
Positive power supply (except port pins).
—
—
VSS
—
Ground potential (except port pins).
—
—
IC
—
Internal connection. Connected to VSS directly.
—
—
WAIT
Subsystem clock oscillation crystal connection.
Cautions 1. The AVDD pin is multiplexed with an A/D converter power pin and a port power pin. In an application where the noise generated from the microcontroller must be reduced, connect the AVDD pin
to a power supply of the same voltage as VDD.
2. The AVSS pin is multiplexed with an A/D converter ground pin and a port ground pin. In an
application where the noise generated from the microcontroller must be reduced, connect AVSS
pin to a ground line separate from VSS.
13
µPD78011H, 78012H, 78013H, 78014H
3.3 PIN I/O CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS
The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1.
For the input/output circuit configuration of each type, see Figure 3-1.
Table 3-1. Input/Output Circuit Type of Each Pin
Pin Name
Input/output
Circuit Type
I/O
Recommended Connection when Not Used
P00/INTP0/TI0
2
Input
Connected to VSS .
P01/INTP1
8-D
Input/output
Individually connected to VSS via resistor.
P04/XT1
16
Input
Connected to VDD or VSS.
P10/ANI0 to P17/ANI7
11-C
Input/output
Individually connected to VDD or VSS via resisitor.
P20/SI1
8-D
P21/SO1
5-J
P22/SCK1
8-D
P23/STB
5-J
P24/BUSY
8-D
P25/SI0/SB0
10-C
P02/INTP2
P03/INTP3
P26/SO0/SB1
P27/SCK0
P30/TO0
5-J
P31/TO1
P32/TO2
P33/TI1
8-D
P34/TI2
P35/PCL
5-J
P36/BUZ
P37
P40/AD0 to P47/AD7
5-O
Individually connected to VDD via resistor.
P50/A8 to P57/A15
5-J
Individually connected to VDD or VSS via resistor.
P60 to P63
13-I
Individually connected to VDD via resistor.
P64/RD
5-J
Individually connected to VDD or VSS via resistor.
P65/WR
P66/WAIT
P67/ASTB
RESET
2
Input
XT2
16
—
AVREF
—
—
Leave open.
Connected to VSS .
AVDD
Connected to VDD .
AVSS
Connected to VSS .
IC
Connected to VSS directly.
14
µPD78011H, 78012H, 78013H, 78014H
Figure 3-1. Pin Input/Output Circuits
Type 10-C
Type 2
AV DD
pullup
enable
P-ch
IN
AVDD
data
P-ch
IN / OUT
Schmitt-Triggered Input with Hysteresis Characteristic
open drain
output disable
N-ch
AVSS
Type 5-J
Type 11-C
AVDD
pullup
enable
AV DD
pullup
enable
P-ch
P-ch
AVDD
P-ch
data
AVDD
IN / OUT
data
output
disable
Comparator
P-ch
IN / OUT
output
disable
N-ch
N-ch
P-ch
AVSS
+
–
N-ch
AVSS
VREF (Threshold Voltage)
AVSS
input
enable
input
enable
Type 5-O
Type 13-I
AV DD
Mask
Option
AVDD
pullup
enable
data
P-ch
data
output disable
AVDD
IN / OUT
N-ch
AVSS
AV DD
P-ch
IN / OUT
output
disable
RD
N-ch
P-ch
AVSS
Middle-High Voltage Input Buffer
Type 8-D
Type 16
AVDD
feedback
cut-off
pullup
enable
P-ch
P-ch
AV DD
data
P-ch
IN / OUT
output
disable
N-ch
AVSS
XT1
XT2
15
µPD78011H, 78012H, 78013H, 78014H
4. MEMORY SPACE
The memory map of the µPD78011H, 78012H, 78013H, 78014H is shown in Figure 4-1.
Figure 4-1. Memory Map
FFFFH
Special Function Registers
(SFR) 256 × 8 Bits
FF00H
FEFFH General-Purpose Registers
32 × 8 Bits
FEE0H
FEDFH
Internal High-Speed RAMNote
mmmmH
mmmmH–1
nnnnH
Use Prohibited
Program Area
FAE0H
Data
Memory
Space
FADFH
FAC0H
FABFH
1000H
0FFFH
Buffer RAM 32 × 8 Bits
CALLF Entry Area
Use Prohibited
0800H
07FFH
FA80H
FA7FH
Program Area
Program
Memory
Space
nnnnH+1
nnnnH
0080H
007FH
External Memory
CALLT Table Area
0040H
003FH
Internal ROMNote
Vector Table Area
0000H
0000H
Note
Internal ROM and internal high-speed RAM capacities vary depending on the product (see the table below).
Product Name
16
Intenal ROM End Address
nnnnH
µPD78011H
1FFFH
µPD78012H
3FFFH
µPD78013H
5FFFH
µPD78014H
7FFFH
Internal High-Speed RAM
Start Address
mmmmH
FD00H
FB00H
µPD78011H, 78012H, 78013H, 78014H
5. PERIPHERAL HARDWARE FUNCTION FEATURES
5.1 PORTS
The I/O port has the following three types
• CMOS input (P00, P04)
:
• CMOS input/output (P01 to P03, port 1 to port 5, P64 to P67)
• N-ch open-drain input/output(15V withstand voltage) (P60 to P63)
: 47
: 4
Total
2
: 53
Table 5-1. Functions of Ports
Port Name
Port 0
Pin Name
Function
P00, P04
Dedicated Input port
P01 to P03
Input/output ports. Input/output can be specified bit-wise.
Port 1
P10 to P17
Port 2
P20 to P27
Port 3
P30 to P37
Port 4
P40 to P47
Port 5
P50 to P57
Port 6
P60 to P63
P64 to P67
When used as an input port, pull-up resistor can be used by software.
Input/output ports. Input/output can be specified bit-wise.
When used as an input port, pull-up resistor can be used by software.
Input/output ports. Input/output can be specified bit-wise.
When used as an input port, pull-up resistor can be used by software.
Input/output ports. Input/output can be specified bit-wise.
When used as an input port, pull-up resistor can be used by software.
Input/output ports. Input/output can be specified in 8-bit units.
When used as an input port, pull-up resistor can be used by software.
Test input flag (KRIF) is set to 1 by falling edge detection.
Input/output ports. Input/output can be specified bit-wise.
When used as an input port, pull-up resistor can be used by software.
LED can be driven directly.
N-ch open-drain input/output port. Input/output can be specified bit-wise.
On-chip pull-up resistor can be specified by mask option.
LED can be driven directly.
Input/output ports. Input/output can be specified bit-wise.
When used as an input port, pull-up resistor can be used by software.
17
µPD78011H, 78012H, 78013H, 78014H
5.2 CLOCK GENERATOR
There are two types of clock generator: main system clock and subsystem clock.
The instruction exection time can be changed.
• 0.4µs/0.8µs/1.6µs/3.2µs/6.4µs (Main system clock: at 10.0 MHz operation)
• 122µs (Subsystem clock: at 32.768 KHz operation)
Figure 5-1. Clock Generator Block Diagram
XT1/P04
XT2
Subsystem
Clock
Osicillator
Watch Timer
Clock Output
Function
fXT
Prescaler
X1
X2
Main
System
Clock
Osicillator
fX
Clock to
Peripheral
Hardware
Prescaler
fX
fX
fX
fX
2
22
23
24
STOP
Selector
Standby
Control
Circuit
Wait
Control
Circuit
INTP0
Sampling Clock
18
CPU Clock
(fCPU)
µPD78011H, 78012H, 78013H, 78014H
5.3 TIMER/EVENT COUNTER
The following five channels are incorporated in the timer/event counter.
• 16-bit timer/event counter
: 1 channel
• 8-bit timer/event counter
• Watch timer
: 2 channels
: 1 channel
• Watchdog timer
: 1 channel
Table 5-2. Types and Functions of Timer/Event Counter
16-bit Timer/Event
Counter
Type
Functions
8-bit Timer/Event
Counter
Watch Timer
Watchdog Timer
Interval timer
1 channel
2 channels
1 channel
1 channel
Externanal event counter
1 channel
2 channels
–
–
Timer output
1 output
2 outputs
–
–
PWM output
1 output
–
–
–
1 input
–
–
–
1 output
2 outputs
–
–
Interrupt request
2
2
1
1
Test input
–
–
1
–
Pulse width mesurement
Sqare wave output
Figure 5-2. 16-bit Timer/Enent Counter Block Diagram
Internal Bus
16-Bit Compare
Register (CR00)
PWM
Pulse
Output
Control
Circuit
Match
fX/2
fX/22
fX/23
TI0/INTP0/P00
Selector
Edge
Detection
Circuit
INTTM0
Output
Control
Circuit
TO0/P30
16-Bit Timer
Register (TM0)
Clear
Selector
INTP0
16-Bit Capture
Register (CR01)
Internal Bus
19
µPD78011H, 78012H, 78013H, 78014H
Figure 5-3. 8-bit Timer/Enent Counter Block Diagram
Internal Bus
INTIM1
8-Bit Compare
Register (CR10)
8-Bit Compare
Register (CR20)
Selector
Match
Output
Control
Circuit
INTTM2
fX/22–fX/210
fX/212
TO2/P32
Selector
8-Bit Timer
Register 1 (TM1)
TI1/P33
Clear
8-Bit Timer
Register 2 (TM2)
Selector
Clear
fX/22–fX/210
Selector
fX/212
Selector
TI2/P34
Output
Control
Circuit
TO1/P31
Internal Bus
Figure 5-4. Watch Timer Block Diagram
Selector
fX/28
Selector
fW
Selector
Prescaler
fXT
fW
24
fW
25
fW
26
fW
27
fW
28
INTWT
fW
213
fW
29
Selector
20
5-Bit Counter
fW
214
INTTM3
µPD78011H, 78012H, 78013H, 78014H
Figure 5-5. Watchdog Timer Block Diagram
fX
24
Prescaler
fX
25
fX
26
fX
27
fX
28
fX
29
fX
210
fX
212
INTWDT
Maskable
Interrupt Request
Selector
Control
Circuit
8-Bit Counter
RESET
INTWDT
Non-Maskable
Interrupt Request
5.4 CLOCK OUTPUT CONTROL CIRCUIT
The clock with the following frequencies can be output for clock output.
• 39.1 kHz/78.1 kHz/156 kHz/313 kHz/625 kHz/1.25 MHz (Main system clock: at 10.0 MHz operation)
• 32.768 kHz (Subsystem clock: at 32.768 kHz operation)
Figure 5-6. Clock Output Control Block Diagram
fX/23
fX/24
fX/25
Selector
fX/26
Synchronization
Circuit
Output Control
Circuit
PCL/P35
fX/27
fX/28
fXT
5.5 BUZZER OUTPUT CONTROL CIRCUIT
The clock with the following frequencies can be output for buzzer output.
• 2.4 kHz/4.9 kHz/9.8 kHz (Main system clock: at 10.0 MHz operation)
Figure 5-7. Buzzer Output Control Block Diagram
fX/210
fX/211
Selector
Output Control
Circuit
BUZ/P36
fX/212
21
µPD78011H, 78012H, 78013H, 78014H
5.6 A/D CONVERTER
The A/D converter has on-chip eight 8-bit resolution channels.
There are the following two method to start A/D conversion.
• Hardware starting
• Software starting
Figure 5-8. A/D Converter Block Diagram
Series Resistor String
AVDD
Sample & Hold Circuit
ANI0/P10
AVREF
ANI1/P11
Voltage Comparator
ANI2/P12
ANI3/P13
Tap
Selector
Selector
ANI4/P14
ANI5/P15
ANI6/P16
Succesive Approximation
Register (SAR)
ANI7/P17
INTP3/P03
Falling
Edge
Detector
Control
Circuit
AVSS
INTAD
INTP3
A/D Conversion
Result Register (ADCR)
Internal Bus
Caution Do not manipulate the pins multiplexed with a port pin (refer to 3.1 PORT PINS) during A/D conversion;
otherwise, the rated total error during A/D conversion may not be satisfied.
<1> Rewriting the contents of the output latch when the pin is used as an output port pin.
<2> Changing the output level of the pin used as an output pin even when the pin is not used as a port
pin.
22
µPD78011H, 78012H, 78013H, 78014H
5.7 SERIAL INTERFACES
There are two on-chip clocked serial interfaces as follows.
• Serial Interface channel 0
• Serial Interface channel 1
Table 5-3. Type and Function of Serial Interface
Function
Serial Interface Channel 0
Serial Interface Channel 1
3-wire serial I/O mode
O (MSB/LSB-first switchable)
O (MSB/LSB-first switchable)
3-wire serial I/O mode with automatic data transmit/
–
O (MSB/LSB-first switchable)
SBI (Serial Bus Interface) mode
O (MSB-first)
–
2-wire serial I/O mode
O (MSB-first)
–
receive function
Figure 5-9. Serial Interface Channel 0 Block Diagram
Internal Bus
SI0/SB0/P25
Selector
SO0/SB1/P26
Selector
SCK0/P27
Serial I/O Shift
Register 0 (SIO0)
Bus Release/Command/
Acknowledge Detection
Circuit
Serial Clock Counter
Output
Latch
Busy/Acknowledge
Output Circuit
Interrupt
Request
Signal
Generator
INTCSI0
fx/22–fx/29
Serial Clock
Control Circuit
Selector
TO2
23
µPD78011H, 78012H, 78013H, 78014H
Figure 5-10. Serial Interface Channel 1 Block Diagram
Internal Bus
Automatic Data Transmit/
Receive Address Pointer
(ADTP)
SI1/P20
Buffer RAM
Serial I/O Shift Register 1 (SIO1)
SO1/P21
STB/P23
BUSY/P24
SCK/P22
Handshake
Control
Circuit
Serial Clock Counter
Interrupt Request
Signal Generator
INTCSI1
fX/22 – fX/29
Serial Clock Control Circuit
24
Selector
TO2
µPD78011H, 78012H, 78013FH, 78014H
6. INTERRUPT FUNCTIONS AND TEST FUNCTIONS
6.1 INTERRUPT FUNCTIONS
There are the 14 interrupt sources of 3 different kind as shown below.
• Non-maskable
:
• Maskable
• Software
: 12
: 1
1
Table 6-1. Interrupt Source List
Interrupt Type
Default
Priority Note 1
Interrupt Source
Name
Trigger
Non-maskable
–––
INTWDT
Watchdog timer overflow (with watchdog
timer mode 1 selected)
Maskable
0
INTWDT
Watchdog timer overflow (with interval
timer mode selected)
1
INTP0
2
Software
Pin input edge detection
Internal/
External
Vector Table
Address
Basic
Configuratin
Type Note 2
Internal
0004H
(A)
(B)
0006H
(C)
INTP1
0008H
(D)
3
INTP2
000AH
4
INTP3
000CH
5
INTCSI0
Serial interface channel 0 transfer end
6
INTCSI1
Serial interface channel 1 transfer end
0010H
7
INTTM3
Reference time interval signal from
watch timer
0012H
8
INTTM0
16 bit timer/event counter match signal
generation
0014H
9
INTTM1
8-bit timer/event counter 1 match signal
generation
0016H
10
INTTM2
8-bit timer/event counter 2 match signal
generation
0018H
11
INTAD
A/D converter conversion end
001AH
–––
BRK
BRK instruction execution
External
Internal
–
000EH
003EH
(B)
(E)
Notes 1. The default pririty is the priority applicable when more than one maskable interrupt is generated. 0 is the highest
priority and 11, the lowest.
2. Basic configuration types (A) to (E) correspond to (A) to (E) on the next page.
25
µPD78011H, 78012H, 78013H, 78014H
Figure 6-1. Basic Interrupt Function Configuration (1/2)
(A) Internal Non-Maskable Interrupt
Internal Bus
Interrupt
Request
Vector Table
Address
Generator
Priority Control
Circuit
Standby Release
Signal
(B) Internal Maskable Interrupt
Internal Bus
MK
Interrupt
Request
PR
IE
ISP
Vector Table
Address
Generator
Priority Control
Circuit
IF
Standby Release
Signal
(C) External Maskable Interrupt (INTP0)
Internal Bus
Sampling Clock
Select Register
(SCS)
Interrupt
Request
Sampling
Clock
External Interrupt
Mode Register
(INTM0)
Edge
Detector
MK
IF
IE
PR
Priority Control
Circuit
ISP
Vector Table
Address
Generator
Standby Release
Signal
26
µPD78011H, 78012H, 78013FH, 78014H
Figure 6-1. Basic Interrupt Function Configuration (2/2)
(D) External Maskable Interrupt (Except INTP0)
Internal Bus
External Interrupt
Mode Register
(INTM0)
Interrupt
Request
Edge
Detector
MK
IE
PR
Priority Control
Circuit
IF
ISP
Vector Table
Address
Generator
Standby Release
Signal
(E)
Software Interrupt
Internal Bus
Interrupt
Request
IF
IE
ISP
MK
PR
Priority Control
Circuit
Vector Table
Address
Generator
: Interrupt request flag
: Interrupt enable flag
: In-service priority flag
: Interrupt mask flag
: Priority spcification flag
27
µPD78011H, 78012H, 78013H, 78014H
6.2 TEST FUNCTIONS
There are two test functions as shown in Table 6-2.
Table 6-2. Test Source List
Test Source
Internal/External
Name
Trigger
INTWT
Watch timer overflow
Internal
INTPT4
Port 4 falling edge detection
External
Figure 6-2. Test Function Basic Configuration
Internal Bus
MK
Test
Input
IF
: Test input flag
MK : Test mask flag
28
IF
Standby Release
Signal
µPD78011H, 78012H, 78013FH, 78014H
7. EXTERNAL DEVICE EXPANSION FUNCTIONS
The external device expansion function is used to connect external devices to areas other than the internal ROM, RAM
and SFR.
Ports 4 to 6 are used for connection with external devices.
8. STANDBY FUNCTIONS
There are the following two standby functions to reduce the current dissipation.
• HALT mode
: The CPU operating clock is stopped. The average consumption current can be reduced by intermittent
operation in combination with the normal operat ing mode.
• STOP mode
: The main system clock oscillation is stopped. The whole operation by the main system clock
is stopped, so that the system operates withultra-low power consumption using only the subsystem
clock.
Figure 8-1. Standby Functions
CSS=1
Main System
Clock Operation
Interrupt
Request
CSS=0
HALT
Instruction
STOP
Instruction
Interrupt
Request
STOP Mode
(Main system clock
oscillation stopped)
HALT Mode
(Clock supply to CPU is
stopped, oscillation)
Subsystem Clock
OperationNote
Interrupt
Request
HALT
Instruction
HALT ModeNote
(Clock supply to CPU is
stopped, oscillation)
Note The power consumption can be reduced by stopping the main system clock. When the CPU is operating on the
subsystem clock, set the MCC to stop the main system clock. The STOP instruction cannot be used.
Caution
When the main system clock is stopped and the system is operated by the subsystem clock, the
subsystem clock should be switched again to the main system clock after the oscillation stabilization
time is secured by the program by the program.
9. RESET FUNCTIONS
There are the following two reset methods.
• External reset input by RESET pin.
• Internal reset by watchdog timer runaway time detection.
29
µPD78011H, 78012H, 78013H, 78014H
10. INSTRUCTION SET
(1) 8-Bit Instruction
MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL,
RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ
2nd Operand
#byte
A
r Note
sfr
saddr
!addr16
MOV
XCH
ADD
ADDC
SUB
SUBC
AND
OR
XOR
CMP
MOV
XCH
MOV
XCH
ADD
ADDC
SUB
SUBC
AND
OR
XOR
CMP
MOV
XCH
ADD
ADDC
SUB
SUBC
AND
OR
XOR
CMP
PSW
[DE]
[HL]
MOV
XCH
MOV
XCH
ADD
ADDC
SUB
SUBC
AND
OR
XOR
CMP
1st Operand
A
ADD
ADDC
SUB
SUBC
AND
OR
XOR
CMP
r
MOV
MOV
[HL+byte]
[HL+B] $adder16
[HL+C]
MOV
XCH
ADD
ADDC
SUB
SUBC
AND
OR
XOR
CMP
1
None
ROR
ROL
RORC
ROLC
MOV
ADD
ADDC
SUB
SUBC
AND
OR
XOR
INC
DEC
CMP
r1
DBNZ
sfr
MOV
sadder
MOV MOV
ADD
ADDC
SUB
SUBC
AND
OR
XOR
CMP
!adder16
PSW
MOV
DBNZ
INC
DEC
MOV
MOV
MOV
[DE]
MOV
[HL]
MOV
[HL+byte]
[HL+B]
[HL+C]
MOV
PUSH
POP
ROR4
ROL4
X
MULU
C
DIVUW
Note Except r=A
30
µPD78011H, 78012H, 78013FH, 78014H
(2) 16-Bit Instruction
MOVW, XCHW ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW
2nd Operand
1st Operand
AX
#byte
AX
rp Note
ADDW
MOVW
SUBW
XCHW
saddrp
MOVW
!addr16
MOVW
SP
MOVW
None
MOVW
CMPW
rp
MOVW
MOVWNote
sfrp
MOVW
MOVW
sadderp
MOVW
MOVW
MOVW
MOVW
!adder16
SP
INCW, DECW
PUSH, POP
MOVW
Note Only when rp=BC, DE, HL.
(3) Bit Manipulation Instruction
MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR
2nd Operand
A.bit
sfr.bit
saddr.bit
PWS.bit
[HL].bit
CY
$addr16
None
1st Operand
A.bit
MOV1
BT
BF
BTCLR
SET1
CLR1
sfr.bit
MOV1
BT
BF
BTCLR
SET1
CLR1
saddr.bit
MOV1
BT
BF
BTCLR
SET1
CLR1
PSW.bit
MOV1
BT
BF
BTCLR
SET1
CLR1
[HL].bit
MOV1
BT
BF
BTCLR
SET1
CLR1
CY
MOV1
AND1
OR1
XOR1
MOV1
AND1
OR1
XOR1
MOV1
AND1
OR1
XOR1
MOV1
AND1
OR1
XOR1
MOV1
AND1
OR1
XOR1
SET1
CLR1
NOT1
31
µPD78011H, 78012H, 78013H, 78014H
(4) Call Instruction/Branch Instruction
CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ
2nd Operand
AX
!addr16
!addr11
[addr5]
$addr16
1st Operand
Basic instruction
Compound instruction
BR
CALL, BR
CALLF
CALLT
BR, BC, BNC,
BZ, BNZ
BT, BF, BTCLR,
DBNZ
(5) Other Instruction
ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP
32
µPD78011H, 78012H, 78013H, 78014H
11. ELECTRICAL SPECIFICATIONS
Absolute Maximum Ratings (TA = 25 °C)
Parameter
Supply voltage
Input voltage
Symbol
Rating
Unit
VDD
–0.3 to + 7.0
V
AVDD
–0.3 to VDD + 0.3
V
AVREF
–0.3 to VDD + 0.3
V
AVSS
–0.3 to + 0.3
V
–0.3 to VDD + 0.3
V
–0.3 to +16
V
–0.3 to VDD + 0.3
V
AV SS –0.3 to AVREF + 0.3
V
1 pin
–10
mA
P10 to P17, P20 to P27, P30 to P37 total
–15
mA
P01 to P03, P40 to P47, P50 to P57, P60 to P67 total
–15
mA
Peak value
30
mA
rms
15
mA
Peak value
100
mA
rms
70
mA
100
mA
VI1
Test Conditions
P00 to P04, P10 to P17, P20 to P27, P30 to P37
P40 toP47, P50 to P57, P64 to P67, X1, X2, XT2
VI2
Output voltage
VO
Analog input
voltage
VAN
Output
current high
IOH
Output
current low
P60 to P67
P10 to P17
1 pin
P40 to P47, P50 to P55 total
IOLNote
Open-drain
Analog input pin
P01 to P03, P56, P57,
Peak value
P60 to P67 total
rms
70
mA
P01 to P03,
Peak value
50
mA
P64 to P67 total
rms
20
mA
P10 to P17, P20 to P27, P30 to P37 Peak value
50
mA
total
20
mA
rms
Operating ambient
temperature
TA
–40 to +85
°C
Storage
temperature
Tstg
–65 to +150
°C
Note rms should be calculated as follows: [rms] = [peak value] × √duty
Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter or
even momentarily. That is, the absolute maximuam ratings are rated values at which the product is on
the verge of suffering physical damage, and therefore the product must be used under conditions which
ensure that the absolute maximum ratings are not exceeded.
33
µPD78011H, 78012H, 78013H, 78014H
Capacitance ( TA = 25 °C, VDD = VSS = 0 V )
Parameter
Symbol
Input capacitance
CIN
Test Conditions
MIN.
TYP.
f = 1 MHz Unmeasured pins returned to 0 V
I/O capacitance
MAX.
Unit
15
pF
15
pF
20
pF
P01 to P03, P10 to P17,
f = 1 MHz Unmeasured P20 to P27, P30 toP37,
CIO
pins returned to 0 V
P40 toP47, P50 to P57,
P64 to P67
P60 to P63
Remark
The characteristics of a dual-function pin and a port pin are the same unless specified otherwise.
Main System Clock Oscillation Circuit Characteristics ( TA = –40 to +85 °C, VDD = 1.8 to 5.5 V)
Resonator
Ceramic
resonator
Recommended
Circuit
X1
X2 IC
Parameter
Oscillator
frequency (fX) Note 1
R1
C1
Crystal
resonator
X1
C1
C2
X2 IC
C2
Test Conditions
MIN.
TYP.
MAX.
2.7 V ≤ VDD ≤ 5.5 V
1
10
1.8 V ≤ VDD < 2.7 V
1
5
Unit
MHz
Oscillation
stabilization time Note 2
After VDD reaches oscillator voltage range MIN.
Oscillator
frequency (fX) Note 1
2.7 V ≤ VDD ≤ 5.5 V
1
10
1.8 V ≤ VDD < 2.7 V
1
5
Oscillation
stabilization time Note 2
VDD = 4.5 to 5.5 V
4
ms
MHz
10
ms
30
External
clock
X1
X2
µ PD74HCU04
X1 input
frequency (fX) Note 1
1.0
10.0
MHz
X1 input
high/low level width
(tXH , tXL)
45
500
ns
Notes 1. Indicates only oscillation circuit characteristics. Refer to AC Characteristics for instruction execution time.
2. Time required to stabilize oscillation after reset or STOP mode release.
Cautions 1. When using the main system clock oscillator, wirinin the area enclosed with the dotted line should
be carried out as follows to avoid an adverse effect from wiring capacitance.
● Wiring should be as short as possible.
● Wiring should not cross other signal lines.
● Wiring should not be placed close to a varying high current.
● The potential of the oscillator capacitor ground should be the same as VSS.
● Do not ground wiring to a ground pattern in which a high current flows.
● Do not fetch a signal from the oscillator.
2. When the main system clock is stopped and the system is operated by the subsystem clock, the
subsystem clock should be switched again to the main system clock after the oscillation stabilization
time is secured by the program.
34
µPD78011H, 78012H, 78013H, 78014H
Subsystem Clock Oscillation Circuit Characteristics (TA = –40 to +85 °C, VDD = 1.8 to 5.5 V)
Resonator
Crystal
resonator
Recommended
Circuit
XT1 XT2 IC
Parameter
Test Conditions
Oscillator
frequency (fXT) Note 1
MIN.
TYP.
MAX.
Unit
32
32.768
35
kHz
1.2
2
R2
C3
External
clock
XT1
C4
XT2
Oscillation
stabilization time Note 2
V DD = 4.5 to 5.5 V
s
10
XT1 input
frequency (fXT) Note 1
32
100
kHz
XT1 input
high/low level width
(tXTH , tXTL)
5
15
µs
Notes 1. Indicates only oscillation circuit characteristics. Refer to AC Characteristics for instruction execution time.
2. Time required to stabilize oscillation after VDD reaches oscillator voltage MIN.
Cautions 1. When using the subsystem clock oscillator, wiring in the area enclosed with the dotted line should
be carried out as follows to avoid an adverse effect from wiring capacitance.
● Wiring should be as short as possible.
● Wiring should not cross other signal lines.
● Wiring should not be placed close to a varying high current.
● The potential of the oscillator capacitor ground should be the same as VSS.
● Do not ground wiring to a ground pattern in which a high current flows.
● Do not fetch a signal from the oscillator.
2. The subsystem clock oscillation circuit is a circuit with a low amplification level,more prone to
misoperation due to noise than the main system clock.
Particular care is therefore required with the wiring method when the subsystem clock is used.
35
µPD78011H, 78012H, 78013H, 78014H
DC Characteristics (TA = –40 to +85 °C, VDD = 1.8 to 5.5 V)
Parameter
Input voltage
Symbol
VIH1
high
Test Conditions
MAX.
Unit
0.7 VDD
VDD
V
0.8 VDD
VDD
V
P00-P03, P20, P22, P24-P27, P33, VDD = 2.7 to 5.5 V
0.8 VDD
VDD
V
P34, RESET
0.85 VDD
VDD
V
VDD = 2.7 to 5.5 V
0.7 VDD
15
V
0.8 VDD
15
V
VDD = 2.7 to 5.5 V
VDD – 0.5
VDD
V
VDD – 0.2
VDD
V
P10-P17, P21, P23, P30-P32,
VDD = 2.7 to 5.5 V
MIN.
TYP.
P35-P37, P40-P47, P50-P57,
P64-67
VIH2
VIH3
P60-P63
(N-ch open-drain)
VIH4
VIH5
Input voltage
VIL1
low
X1, X2
4.5 V ≤ VDD ≤ 5.5 V
0.8 VDD
VDD
V
2.7 V ≤ VDD < 4.5 V
0.9 VDD
VDD
V
1.8 V ≤ VDD < 2.7 V Note
0.9 VDD
VDD
V
0
0.3 VDD
V
P64-67
0
0.2 VDD
V
P00-P03, P20, P22, P24-P27, P33, VDD = 2.7 to 5.5 V
0
0.2 VDD
V
XT1/P04, XT2
P10-P17, P21, P23, P30-P32,
VDD = 2.7 to 5.5 V
P35-P37, P40-P47, P50-P57,
VIL2
P34, RESET
VIL3
VIL4
VIL5
Output
VOH1
voltage high
Output
VOL1
P60-P63
X1, X2
XT1/P04, XT2
0
0.15 VDD
V
4.5 V ≤ VDD ≤ 5.5 V
0
0.3 VDD
V
2.7 V ≤ VDD < 4.5 V
0
0.2 VDD
V
0
0.1 VDD
V
0
0.4
V
0
0.2
V
0
0.2 VDD
V
VDD = 2.7 to 5.5 V
4.5 V ≤ VDD ≤ 5.5 V
2.7 V ≤ VDD < 4.5 V
0
0.1 VDD
V
1.8 V ≤ VDD < 2.7 V Note
0
0.1 VDD
V
VDD = 4.5 to 5.5 V, IOH = –1 mA
VDD – 1.0
V
IOH = –100 µA
VDD – 0.5
V
P50 to P57, P60 to P63
voltage low
VDD = 4.5 to 5.5 V,
0.4
2.0
V
0.4
V
0.2 VDD
V
0.5
V
IOL = 15 mA
P01 to P03, P10 to P17, P20 to P27
VOL2
VDD = 4.5 to 5.5 V,
P30 to P37, P40 to P47, P64 to P67
IOL = 1.6 mA
SB0, SB1, SCK0
VDD = 4.5 to 5.5 V, open-drain
pulled-up (R = 1 KΩ)
VOL3
Note
When using XT1/P04 as P04, input the inverse of P04 to XT2 using an inverter.
Remark
36
IOL = 400 µA
The characteristics of a dual-function pin and a port pin are the same unless specified otherwise.
µPD78011H, 78012H, 78013H, 78014H
DC Characteristics (TA = –40 to +85 °C, VDD = 1.8 to 5.5 V)
Parameter
Symbol
Input leakage ILIH1
Test Conditions
MAX.
Unit
3
µA
X1, X2, XT1/P04, XT2
20
µA
VIN = 15 V
P60 to P63
80
µA
VIN = 0 V
P00 to P03, P10 to P17,
–3
µA
–20
µA
–3 Note
µA
VOUT = VDD
3
µA
VOUT = 0 V
–3
µA
VIN = VDD
current high
MIN.
TYP.
P00 to P03, P10 to P17,
P20 to P27, P30 to P37,
P40 to P47, P50 to P57,
P60 to P67, RESET
ILIH2
ILIH3
Input leakege ILIL1
current low
P20 to P27, P30 to P37,
P40 to P47, P50 to P57,
P60 to P67, RESET
ILIL2
X1, X2, XT1/P04, XT2
ILIL3
P60 to P63
Output leakage ILOH1
current high
Output leakage ILOL
current low
Mask option
R1
VIN = 0 V, P60 to P63
20
40
90
kΩ
R2
VIN = 0 V, P01 to P03, P10 to P17, P20 to P27, P30 to P37,
15
40
90
kΩ
pull-up resister
Software
pull-up resister
P40 to P47, P50 to P57, P60 to P67
Note For P60-P63, if pull-up resistor is not provided (specifiable by mask option) a low-level input leak current of –200
µA (MAX.) flows only during the 3 clocks (no-wait time) after an instruction has been executed to read out port 6 (P6)
or port mode register 6 (PM6). Outside the period of 3 clocks following execution a read-out instruction, the current
is –3 µA (MAX.).
Remark
The characteristics of a dual-function pin and a port pin are the same unless specified otherwise.
37
µPD78011H, 78012H, 78013H, 78014H
DC Characteristics (TA = –40 to +85 °C, VDD = 1.8 to 5.5 V)
Parameter
Supply
current
Symbol
IDD1
Note 1
IDD2
IDD3
Test Conditions
IDD5
IDD6
TYP.
MAX.
Unit
10.00 MHz crystal
VDD = 5.0 V ± 10 % Note 2
9.0
18.0
mA
oscillation operation mode
VDD = 3.0 V ± 10 %
Note 3
1.3
2.6
mA
10.00 MHz crystal
VDD = 5.0 V ± 10 %
Note 2
2.0
4.0
mA
oscillation HALT mode
VDD = 3.0 V ± 10 % Note 3
1.0
2.0
mA
VDD = 5.0 V ± 10 % Note 3
60
120
µA
VDD = 3.0 V ± 10 %
Note 3
35
70
µA
VDD = 2.0 V ± 10 %
Note 4
24
48
µA
32.768 kHz crystal
VDD = 5.0 V ± 10 % Note 3
25
50
µA
oscillation HALT mode
VDD = 3.0 V ± 10 %
Note 3
5
15
µA
VDD = 2.0 V ± 10 %
Note 4
2
10
µA
1
30
µA
0.5
10
µA
0.3
10
µA
32.768 kHz crystal
oscillation operation mode
IDD4
MIN.
Note 4
XT1 = VDD
VDD = 5.0 V ± 10 %
STOP mode when using feedback
VDD = 3.0 V ± 10 %
resistor
VDD = 2.0 V ± 10 %
XT1 = VDD
VDD = 5.0 V ± 10 %
0.1
30
µA
STOP mode when not using
VDD = 3.0 V ± 10 %
0.05
10
µA
feedback resistor
VDD = 2.0 V ± 10 %
0.05
10
µA
Note 4
Note 4
Notes 1. Current flowing into the VDD and AVDD pins. However, the current flowing into the A/D converter and internal pullup resistors is not included.
2. When operating at high-speed mode (when the processor clock control register (PCC) is set to 00H)
3. When operating at low-speed mode (when the PCC is set to 04H)
4. When main system clock stopped.
38
µPD78011H, 78012H, 78013H, 78014H
AC Characteristics
(1) Basic Operation (TA = –40 to +85 °C, VDD = 1.8 to 5.5 V)
Parameter
Symbol
Test Conditions
MIN.
TYP.
MAX.
Unit
3.5 V ≤ VDD ≤ 5.5 V
0.4
64
µs
(Min. instruction
2.7 V ≤ VDD < 3.5 V
0.8
64
µs
execution time)
1.8 V ≤ VDD < 2.7 V
2.0
64
µs
125
µs
Cycle time
TCY
Operating on main system clock
Operating on subsystem clock
TI0 input
frequency
TI1, TI2 input
40
2/fsam+0.1
µs
Note
µs
µs
tTIH0
3.5 V ≤ VDD ≤ 5.5 V
tTIL0
2.7 V ≤ VDD < 3.5 V
2/fsam+0.2
1.8 V ≤ VDD < 2.7 V
2/fsam+0.5 Note
fTI1
VDD = 4.5 to 5.5 V
frequency
TI1, TI2 input
122
Note
tTIH1
VDD = 4.5 to 5.5 V
0
4
MHz
0
275
kHz
100
ns
1.8
µs
3.5 V ≤ VDD ≤ 5.5 V
2/fsam+0.1 Note
µs
2.7 V ≤ VDD < 3.5 V
2/fsam+0.2 Note
µs
1.8 V ≤ VDD < 2.7 V
Note
µs
high/low-level
tTIL1
width
Interrupt input tINTH
high/low-level
INTP0
tINTL
width
INTP1-INTP3, KR0-KR7
RESET low
tRSL
VDD = 2.7 to 5.5 V
VDD = 2.7 to 5.5 V
level width
2/fsam+0.5
10
µs
20
µs
10
µs
20
µs
Note In combination with bits 0 (SCS0) and 1 (SCS1) of sampling clock select register, selection of fsam is possible
between fX/2N+1, fX/64 and fx/128 (when N= 0 to 4).
39
µPD78011H, 78012H, 78013H, 78014H
TCY vs VDD (At main system clock operation)
60.0
Operation Guaranteed
Range
Cycle Time TCY [ µ S]
10.0
5.0
1.0
0.5
0.1
0
1.0
3.0 3.5 4.0
2.0
1.8
2.7
Supply voltage VDD [V]
40
5.0 5.5 6.0
µPD78011H, 78012H, 78013H, 78014H
(2) Read/Write Operation (TA = –40 to +85 °C, VDD = 2.7 to 5.5 V)
Parameter
Symbol
Test Conditions
MIN.
MAX.
Unit
ASTB high-level width
tASTH
0.5tCY
ns
Address setup time
tADS
0.5tCY–30
ns
Address hold time
tADH
50
ns
Data input time from address
Data input time from RD↓
tADD1
(2.5+2n)tCY–50
ns
tADD2
(3+2n)tCY–100
ns
tRDD1
(1+2n)tCY–25
ns
(2.5+2n)tCY–100
ns
tRDD2
Read data hold time
tRDH
0
ns
RD low-level width
tRDL1
(1.5+2n)tCY–20
ns
tRDL2
(2.5+2n) tCY–20
ns
WAIT↓ input time from RD↓
tRDWT1
0.5tCY
ns
tRDWT2
1.5tCY
ns
WAIT↓ input time from WR↓
tWRWT
0.5tCY
ns
WAIT low-level width
tWTL
(0.5+2n)tCY+10
(2+2n)tCY
ns
Write data setup time
tWDS
100
ns
Write data hold time
tWDH
20
ns
WR low-level width
tWRL1
(2.5+2n) tCY –20
ns
RD↓ delay time from ASTB↓
tASTRD
0.5tCY–30
ns
WR↓ delay time from ASTB↓
tASTWR
1.5tCY–30
ns
ASTB↑ delay time from
RD↑ in external fetch
tRDAST
tCY–10
tCY+40
ns
Address hold time from
RD↑ in external fetch
tRDADH
tCY
tCY+50
ns
Write data output time from RD↑
tRDWD
0.5tCY+5
0.5tCY+30
ns
0.5tCY+15
0.5tCY+90
ns
30
ns
Load resistor ≥ 5 kΩ
VDD = 4.5 to 5.5 V
Write data output time from WR↓
tWRWD
VDD = 4.5 to 5.5 V
5
15
90
ns
Address hold time from WR↑
tWRADH
VDD = 4.5 to 5.5 V
tCY
tCY+60
ns
tCY
tCY+100
ns
RD↑ delay time from WAIT↑
tWTRD
0.5tCY
2.5tCY+80
ns
WR↑ delay time from WAIT↑
tWTWR
0.5tCY
2.5tCY+80
ns
Remarks 1. tCY = TCY/4
2. n indicates number of waits.
41
µPD78011H, 78012H, 78013H, 78014H
(3) Serial Interface (TA = –40 to +85 °C, VDD = 1.8 to 5.5 V)
(a) Serial Interface Channel 0
(i) 3-wire serial I/O mode (SCK0... Internal clock output)
Parameter
SCK0 cycle time
Symbol
tKCY1
SCK0 high/low-level
tKH1
width
tKL1
SI0 setup time
tSIK1
(to SCK0↑)
SI0 hold time
Conditions
MIN.
TYP.
MAX.
Unit
4.5 V ≤ VDD ≤ 5.5 V
800
ns
2.7 V ≤ VDD < 4.5 V
1600
ns
2.0 V ≤ VDD < 2.7 V
3200
ns
4800
ns
tKCY1/2–50
ns
VDD = 4.5 to 5.5 V
tKCY1/2–100
ns
4.5 V ≤ VDD ≤ 5.5 V
100
ns
2.7 V ≤ VDD < 4.5 V
150
ns
2.0 V ≤ VDD < 2.7 V
300
ns
400
ns
400
ns
tKSI1
(from SCK0↑)
SO0 output delay time
tKSO1
C = 100 pF Note
300
ns
MAX.
Unit
from SCK0↓
Note C is the load capacitance of SCK0 and SO0 output line.
(ii) 3-wire serial I/O mode (SCK0... External clock input)
Parameter
SCK0 cycle time
Symbol
tKCY2
Test Conditions
MIN.
TYP.
4.5 V ≤ VDD ≤ 5.5 V
800
ns
2.7 V ≤ VDD < 4.5 V
1600
ns
2.0 V ≤ VDD < 2.7 V
3200
ns
4800
ns
SCK0 high/low-level
tKH2
4.5 V ≤ VDD ≤ 5.5 V
400
ns
width
tKL2
2.7 V ≤ VDD < 4.5 V
800
ns
2.0 V ≤ VDD < 2.7 V
1600
ns
2400
ns
100
ns
150
ns
400
ns
SI0 setup time
tSIK2
VDD = 2.0 to 5.5 V
(to SCK0↑)
SI0 hold time
tKSI2
(from SCK0↑)
SO0 output delay time
tKSO2
C = 100 pF Note VDD = 2.0 to 5.5 V
tR2
When external device
tF2
expansion function is used
from SCK0↓
SCK0 rise, fall time
When external
When 16-bit timer
300
ns
500
ns
160
ns
700
ns
1000
ns
device expansion output function is
function is not
used
used
When 16-bit timer
output function is
not used
Note C is the load capacitance of SO0 output line.
42
µPD78011H, 78012H, 78013H, 78014H
(iii) SBI mode (SCK0... Internal clock output)
Parameter
SCK0 cycle time
Symbol
tKCY3
SCK0 high/low-level
tKH3
width
tKL3
SB0, SB1 setup time
tSIK3
(to SCK0↑)
SB0, SB1 hold time
Test Conditions
MIN.
TYP.
MAX.
Unit
4.5 V ≤ VDD ≤ 5.5 V
800
ns
2.0 V ≤ VDD < 4.5 V
3200
ns
4800
ns
VDD = 4.5 to 6.0 V
tKCY3/2–50
ns
tKCY3/2–150
ns
4.5 V ≤ VDD ≤ 5.5 V
100
ns
2.0 V ≤ VDD < 4.5 V
300
ns
400
ns
tKCY3/2
ns
tKSI3
(from SCK0↑)
SB0, SB1output delay
tKSO3
R = 1 kΩ,
C = 100 pF Note
time from SCK0↓
VDD = 4.5 to 5.5 V
0
250
ns
0
1000
ns
SB0, SB1↓ from SCK0↑ tKSB
tKCY3
ns
SCK0↓ from SB0, SB1↓ tSBK
tKCY3
ns
SB0, SB1 high-level
tSBH
tKCY3
ns
tSBL
tKCY3
ns
width
SB0, SB1 low-level
width
Note R and C are the load resistors and load capacitance of the SB0, SB1 and SCK0 output line.
43
µPD78011H, 78012H, 78013H, 78014H
(iv) SBI mode (SCK0... External clock input)
Parameter
SCK0 cycle time
Symbol
tKCY4
Test Conditions
MIN.
TYP.
MAX.
Unit
4.5 V ≤ VDD ≤ 5.5 V
800
ns
2.0 V ≤ VDD < 4.5 V
3200
ns
4800
ns
SCK0 high/low-level
tKH4
4.5 V ≤ VDD ≤ 5.5 V
400
ns
width
tKL4
2.0 V ≤ VDD < 4.5 V
1600
ns
2400
ns
4.5 V ≤ VDD ≤ 5.5 V
100
ns
2.0 V ≤ VDD < 4.5 V
300
ns
400
ns
tKCY4/2
ns
SB0, SB1 setup time
tSIK4
(to SCK0↑)
SB0, SB1 hold time
tKSI4
(from SCK0↑)
SB0, SB1 output delay
tKSO4
time from SCK0↓
R = 1 kΩ,
C = 100 pF
VDD = 4.5 to 5.5 V
Note
0
300
ns
0
1000
ns
SB0, SB1↓ from SCK0↑ tKSB
tKCY4
ns
SCK0↓ from SB0, SB1↓ tSBK
tKCY4
ns
SB0, SB1 high-level
tSBH
tKCY4
ns
tSBL
tKCY4
ns
width
SB0, SB1 low-level
width
SCK0 rise, fall time
tR4
When external device
tF4
expansion function is used
When external
When 16-bit timer
160
ns
700
ns
1000
ns
device expansion output function is
function is not
used
used
When 16-bit timer
output function is
not used
Note R and C are the load resistors and load capacitance of the SB0 and SB1 output line.
44
µPD78011H, 78012H, 78013H, 78014H
(v) 2-wire serial I/O mode (SCK0... Internal clock output)
Parameter
SCK0 cycle time
SCK0 high-level width
Symbol
tKCY5
tKH5
Test Conditions
MIN.
TYP.
MAX.
Unit
2.7 V ≤ VDD ≤ 5.5 V
1600
ns
C = 100 pF Note 2.0 V ≤ VDD < 2.7 V
3200
ns
4800
ns
R = 1 kΩ,
VDD = 2.7 to 5.5 V
tKCY5/2–160
ns
tKCY5/2–190
ns
tKCY5/2–50
ns
SCK0 low-level width
tKL5
VDD = 4.5 to 5.5 V
tKCY5/2–100
ns
SB0, SB1 setup time
tSIK5
4.5 V ≤ VDD ≤ 5.5 V
300
ns
2.7 V ≤ VDD < 4.5 V
350
ns
2.0 V ≤ VDD < 2.7 V
400
ns
(to SCK0↑)
SB0, SB1 hold time
500
ns
tKSI5
600
ns
tKSO5
0
(from SCK0↑)
SB0, SB1 output delay
300
ns
time from SCK0↓
Note R and C are the load resistors and load capacitance of the SCK0, SB0 and SB1 output line.
45
µPD78011H, 78012H, 78013H, 78014H
(vi) 2-wire serial I/O mode (SCK0... External clock input)
Parameter
SCK0 cycle time
SCK0 high-level width
SCK0 low-level width
SB0, SB1 setup time
Symbol
tKCY6
tKH6
tKL6
tSIK6
Test Conditions
TYP.
MAX.
Unit
2.7 V ≤ VDD ≤ 5.5 V
1600
ns
2.0 V ≤ VDD < 2.7 V
3200
ns
4800
ns
2.7 V ≤ VDD ≤ 5.5 V
650
ns
2.0 V ≤ VDD < 2.7 V
1300
ns
2100
ns
2.7 V ≤ VDD ≤ 5.5 V
800
ns
2.0 V ≤ VDD < 2.7 V
1600
ns
2400
ns
100
ns
VDD = 2.0 to 5.5 V
(to SCK0↑)
SB0, SB1 hold time
MIN.
tKSI6
150
ns
tKCY6/2
ns
(from SCK0↑)
SB0, SB1 output delay
tKSO6
time from SCK0↓
SCK0 rise, fall time
4.5 V ≤ VDD ≤ 5.5 V
0
300
ns
C = 100 pF Note 2.0 V ≤ VDD < 4.5 V
0
500
ns
0
800
ns
160
ns
700
ns
1000
ns
R = 1 kΩ,
tR6
When external device
tF6
expansion function is used
When external
When 16-bit timer
device expansion output function is
function is not
used
used
When 16-bit timer
output function is
not used
Note R and C are the load resistors and load capacitance of the SB0 and SB1 output line.
46
µPD78011H, 78012H, 78013H, 78014H
(b) Serial Interface Channel 1
(i) 3-wire serial I/O mode (SCK1... Internal clock output)
Parameter
SCK1 cycle time
Symbol
tKCY7
SCK1 high/low-level
tKH7
width
tKL7
SI1 setup time
tSIK7
(to SCK1↑)
SI1 hold time
Test Conditions
MIN.
TYP.
MAX.
Unit
4.5 V ≤ VDD ≤ 5.5 V
800
ns
2.7 V ≤ VDD < 4.5 V
1600
ns
2.0 V ≤ VDD < 2.7 V
3200
ns
4800
ns
VDD = 4.5 to 5.5 V
tKCY7/2–50
ns
tKCY7/2–100
ns
4.5 V ≤ VDD ≤ 5.5 V
100
ns
2.7 V ≤ VDD < 4.5 V
150
ns
2.0 V ≤ VDD < 2.7 V
300
ns
400
ns
400
ns
tKSI7
(from SCK1↑)
SO1 output delay time
tKSO7
C = 100 pF Note
300
ns
MAX.
Unit
from SCK1↓
Note C is the load capacitance of SCK1 and SO1 output line.
(ii) 3-wire serial I/O mode (SCK1... External clock input)
Parameter
SCK1 cycle time
Symbol
tKCY8
Test Conditions
MIN.
TYP.
4.5 V ≤ VDD ≤ 5.5 V
800
ns
2.7 V ≤ VDD < 4.5 V
1600
ns
2.0 V ≤ VDD < 2.7 V
3200
ns
4800
ns
400
ns
SCK1 high/low-level
tKH8
4.5 V ≤ VDD ≤ 5.5 V
width
tKL8
2.7 V ≤ VDD < 4.5 V
800
ns
2.0 V ≤ VDD < 2.7 V
1600
ns
2400
ns
SI1 setup time
tSIK8
VDD = 2.0 to 5.5 V
(to SCK1↑)
SI1 hold time
tKSI8
100
ns
150
ns
400
ns
(from SCK1↑)
SO0 output delay time
tKSO8
C = 100 pF Note VDD = 2.0 to 5.5 V
from SCK1↓
SCK1 rise, fall time
tR8
When external device
tF8
expansion function is used
When external
When 16-bit timer
300
ns
500
ns
160
ns
700
ns
1000
ns
device expansion output function is
function is not
used
used
When 16-bit timer
output function is
not used
Note C is the load capacitance of SO1 output line.
47
µPD78011H, 78012H, 78013H, 78014H
(iii) 3-wire serial I/O mode with automatic transmit/receive function (SCK1... Internal clock output)
Parameter
SCK1 cycle time
Symbol
tKCY9
SCK1 high/low-level
tKH9
width
tKL9
SI1 setup time
tSIK9
(to SCK1↑)
SI1 hold time
Test Conditions
MIN.
TYP.
MAX.
Unit
4.5 V ≤ VDD ≤ 5.5 V
800
ns
2.7 V ≤ VDD < 4.5 V
1600
ns
2.0 V ≤ VDD < 2.7 V
3200
ns
4800
ns
tKCY9/2–50
ns
tKCY9/2–100
ns
4.5 V ≤ VDD ≤ 5.5 V
100
ns
2.7 V ≤ VDD < 4.5 V
150
ns
2.0 V ≤ VDD < 2.7 V
300
ns
400
ns
400
ns
VDD = 4.5 to 5.5 V
tKSI9
(from SCK1↑)
SO1 output delay time
tKSO9
C = 100 pF Note
300
ns
tKCY9/2–100
tKCY9/2+100
ns
2.7 V ≤ VDD ≤ 5.5 V
tKCY9–30
tKCY9+30
ns
2.0 V ≤ VDD < 2.7 V
tKCY9–60
tKCY9+60
ns
tKCY9–90
tKCY9+90
ns
from SCK1↓
STB↑ from SCK1↑
tSBD
Strobe signal
tSBW
high-level width
Busy signal setup time
tBYS
100
ns
4.5 V ≤ VDD ≤ 5.5 V
100
ns
(from busy signal
2.7 V ≤ VDD < 4.5 V
150
ns
detection timing)
2.0 V ≤ VDD < 2.7 V
200
ns
300
ns
(to busy signal
detection timing)
Busy signal hold time
SCK1↓ from busy
tBYH
tSPS
inactive
Note C is the load capacitance of SCK1 and SO1 output line.
48
2tKCY9
ns
µPD78011H, 78012H, 78013H, 78014H
(iv) 3-wire serial I/O mode with automatic transmit/receive function (SCK1... External clock input)
Parameter
SCK1 cycle time
Symbol
tKCY10
Test Conditions
MIN.
TYP.
MAX.
Unit
4.5 V ≤ VDD ≤ 5.5 V
800
ns
2.7 V ≤ VDD < 4.5 V
1600
ns
2.0 V ≤ VDD < 2.7 V
3200
ns
4800
ns
SCK1 high/low-level
tKH10,
4.5 V ≤ VDD ≤ 5.5 V
400
ns
width
tKL10
2.7 V ≤ VDD < 4.5 V
800
ns
2.0 V ≤ VDD < 2.7 V
1600
ns
2400
ns
100
ns
150
ns
400
ns
SI1 setup time
tSIK10
VDD = 2.0 to 5.5 V
(to SCK1↑)
SI1 hold time
tKSI10
(from SCK1↑)
SO1 output delay time
tKSO10
C = 100 pF Note VDD = 2.0 to 5.5 V
tR10, tF10
When external device expansion
from SCK1↓
SCK1 rise, fall time
300
ns
500
ns
160
ns
1000
ns
function is used
When external device expansion
function is not used
Note C is the load capacitance of the SO1 output line.
49
µPD78011H, 78012H, 78013H, 78014H
AC Timing Test Point (Excluding X1, XT1 Input)
0.8 VDD
0.8 VDD
Test Points
0.2 VDD
0.2 VDD
Clock Timing
1/fX
tXL
tXH
VIH4 (MIN.)
X1 Input
VIL4 (MAX.)
1/fXT
tXTL
tXTH
VIH5 (MIN.)
VIL5 (MAX.)
XT1 Input
TI Timing
tTIH0
tTIL0
TI0
1/fTI1
tTIL1
TI1,TI2
50
tTIH1
µPD78011H, 78012H, 78013H, 78014H
Read/Write Operation
External fetch (No wait):
A8-A15
Higher 8-Bit Address
tADD1
Hi-Z
Lower 8-Bit
AD0-AD7
Address
tADS
tADH
Operation Code
tRDD1
tRDADH
tASTH
tRDAST
ASTB
RD
tASTRD
tRDL1
tRDH
External fetch (Wait insertion):
A8-A15
Higher 8-Bit Address
tADD1
Lower 8-Bit
Address
AD0-AD7
tADS
tADH
Hi-Z
Operation Code
tRDADH
tRDD1
tASTH
tRDAST
ASTB
RD
tASTRD
tRDL1
tRDH
WAIT
tRDWT1
tWTL
tWTRD
51
µPD78011H, 78012H, 78013H, 78014H
External data access (No wait):
A8-A15
Higher 8-Bit Address
tADD2
Lower 8-Bit
Address
AD0-AD7
tADS
Hi-Z
Read Data
Hi-Z
Hi-Z
Write Data
tRDD2
tADH
tASTH
tRDH
ASTB
RD
tASTRD
tRDWD
tRDL2
tWDS
tWDH
tWRWD
tWRADH
WR
tASTWR
tWRL1
External data access (Wait insertion):
A8-A15
Higher 8-Bit Address
tADD2
Lower 8-Bit
Address
AD0-AD7
Hi-Z
Read Data
Hi-Z
Hi-Z
Write Data
tADS
tADH
tASTH
tRDD2
tRDH
ASTB
tASTRD
RD
tRDL2
tRDWD
tWDH
tWDS
tWRWD
WR
tASTWR
tWRL1
tWRADH
WAIT
tRDWT2
tWTL
tWTRD
tWTL
tWRWT
52
tWTWR
µPD78011H, 78012H, 78013H, 78014H
Serial Transfer Timing
3-wire serial I/O mode:
tKCYm
tKLm
tKHm
tFn
tRn
SCK0,SCK1
tSIKm
SI0,SI1
tKSIm
Input Data
tKSOm
Output Data
SO0,SO1
m = 1, 2, 7, 8
n = 2, 8
SBI mode (Bus release signal transfer):
tKCY3, 4
tKL3, 4
tKH3, 4
tR4
tF4
SCK0
tKSB
tSBL
tSBH
tSIK3, 4
tSBK
tKSI3, 4
SB0, SB1
tKSO3, 4
SBI Mode (command signal transfer):
tKCY3, 4
tKL3, 4
tR4
tKH3, 4
tF4
SCK0
tKSB
tSIK3, 4
tSBK
tKSI3, 4
SB0, SB1
tKSO3, 4
53
µPD78011H, 78012H, 78013H, 78014H
2-wire serial I/O mode:
tKCY5,6
tKL5,6
tR6
tKH5,6
tF6
SCK0
tSIK5,6
tKSO5,6
tKSI5,6
SB0, SB1
3-wire serial I/O mode with automatic transmit/receive function:
SO1
SI1
D2
D1
D2
D7
D0
D1
D7
D0
tSIK9,10
tKSI9,10
tKSO9,10
tKH9,10
tF10
SCK1
tKL9,10
tKCY9,10
tR10
tSBD
tSBW
STB
3-wire serial I/O mode with automatic transmit/receive function (busy processing):
SCK1
7
8
9
Note
10
tBYS
Note
Note
tBYH
BUSY
(Active High)
Note The signal is not actually driven low here; it is shown as such to indicate the timing.
54
1
10 + n
tSPS
µPD78011H, 78012H, 78013H, 78014H
A/D converter characteristics (TA = –40 to +85 °C, AVDD = VDD = 1.8 to 5.5 V, AVSS = VSS = 0 V)
Parameter
Symbol
Test Conditions
MIN.
TYP.
MAX.
Unit
8
8
8
bit
2.7 V ≤ AVREF ≤ AVDD
0.6
%
1.8 V ≤ AVREF ≤ 2.7 V
1.4
%
Resolution
Overall error Note
Conversion time
tCONV
Sampling time
2.0 V ≤ AVDD < 5.5 V
19.1
200
µs
1.8 V ≤ AVDD < 2.0 V
38.2
200
µs
µs
tSAMP
24/fX
Analog input voltage
VIAN
AVSS
AVREF
V
Reference voltage
AVREF
1.8
AVDD
V
AVREF–AVSS resistance
RAIREF
4
14
kΩ
Note Overall error excluding quantization error (±1/2 LSB). It is indicated as a ratio to the full-scale value.
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = –40 to +85 °C)
Parameter
Symbol
Data retention supply
Test Conditions
VDDDR
MIN.
TYP.
1.8
MAX.
Unit
5.5
V
10
µA
voltage
Data retention supply
IDDDR
current
VDDDR = 1.8 V
0.1
Subsystem clock stop and feedback resister disconnected
Release signal set time
Oscillation stabilization
wait time
tSREL
tWAIT
µs
0
18
Release by RESET
2 /fX
ms
Release by interrupt
Note
ms
Note In combination with bit 0 to bit 2 (OSTS0 to OSTS2) of oscillation stabilization time select register, selection of 213/
fX and 215/fX to 218/fX is possible.
Data Retention Timing (STOP Mode Release by RESET)
Internal Reset Operation
HALT Mode
Operating Mode
STOP Mode
Data Retension Mode
VDD
VDDDR
tSREL
STOP Instruction Execution
RESET
tWAIT
55
µPD78011H, 78012H, 78013H, 78014H
Data Retention Timing (Standby Release Signal : STOP Mode Release by Interrupt Signal)
HALT Mode
Operating Mode
STOP Mode
Data Retension Mode
VDD
VDDDR
tSREL
STOP Instruction Execition
Standby Release Signal
(Interrupt Request)
tWAIT
Interrupt Input Timing
tINTL
INTP0-INTP2
tINTL
INTP3
RESET Input Timing
tRSL
RESET
56
tINTH
µPD78011H, 78012H, 78013H, 78014H
12. PACKAGE DRAWINGS
64 PIN PLASTIC SHRINK DIP (750 mil)
64
33
1
32
A
K
H
G
J
I
L
F
D
N
M
NOTE
B
C
M
ITEM MILLIMETERS
R
INCHES
1) Each lead centerline is located within 0.17 mm (0.007 inch) of
its true position (T.P.) at maximum material condition.
A
58.68 MAX.
2.311 MAX.
B
1.78 MAX.
0.070 MAX.
2) Item "K" to center of leads when formed parallel.
C
1.778 (T.P.)
0.070 (T.P.)
D
0.50±0.10
0.020 +0.004
–0.005
F
0.9 MIN.
0.035 MIN.
G
3.2±0.3
0.126±0.012
H
0.51 MIN.
0.020 MIN.
I
4.31 MAX.
0.170 MAX.
J
5.08 MAX.
0.200 MAX.
K
19.05 (T.P.)
0.750 (T.P.)
L
17.0
0.669
M
0.25 +0.10
–0.05
0.010 +0.004
–0.003
N
0.17
0.007
R
0~15°
0~15°
P64C-70-750A,C-1
Remark
Dimensions and materials of ES products are the same as those of mass-production products.
57
µPD78011H, 78012H, 78013H, 78014H
64 PIN PLASTIC QFP (
14)
A
B
33
32
48
49
F
Q
5°±5°
S
D
C
detail of lead end
64
1
G
17
16
H
I M
J
M
P
K
N
L
P64GC-80-AB8-2
NOTE
Each lead centerline is located within 0.15
mm (0.006 inch) of its true position (T.P.) at
maximum material condition.
Remark
58
ITEM
MILLIMETERS
INCHES
A
17.6 ± 0.4
0.693 ± 0.016
B
14.0 ± 0.2
0.551+0.009
–0.008
C
14.0 ± 0.2
0.551+0.009
–0.008
D
17.6 ± 0.4
0.693 ± 0.016
F
1.0
0.039
G
1.0
0.039
H
0.35 ± 0.10
0.014 +0.004
–0.005
I
0.15
0.006
J
0.8 (T.P.)
0.031 (T.P.)
K
1.8 ± 0.2
0.071 ± 0.008
L
0.8 ± 0.2
0.031+0.009
–0.008
M
0.15+0.10
–0.05
0.006+0.004
–0.003
N
0.10
0.004
P
2.55
0.100
Q
0.1 ± 0.1
0.004 ± 0.004
S
2.85 MAX.
0.112 MAX.
Dimensions and materials of ES products are the same as those of mass-production products.
µPD78011H, 78012H, 78013H, 78014H
64 PIN PLASTIC LQFP (
12)
A
B
33
32
detail of lead end
Q
R
D
C
S
48
49
F
64
17
16
1
H
I
M
J
K
M
P
G
N
L
NOTE
Each lead centerline is located within 0.13 mm (0.005 inch) of
its true position (T.P.) at maximum material condition.
ITEM
MILLIMETERS
INCHES
A
14.8±0.4
0.583±0.016
B
12.0±0.2
0.472 +0.009
–0.008
C
12.0±0.2
0.472 +0.009
–0.008
D
14.8±0.4
0.583±0.016
F
1.125
0.044
G
1.125
0.044
H
0.30±0.10
0.012 +0.004
–0.005
I
0.13
0.005
J
0.65 (T.P.)
0.026 (T.P.)
K
1.4±0.2
0.055±0.008
L
0.6±0.2
0.024 +0.008
–0.009
M
0.15 +0.10
–0.05
0.006 +0.004
–0.003
N
0.10
0.004
P
1.4
0.055
Q
R
0.125±0.075
5°±5°
0.005±0.003
5°±5°
S
1.7 MAX.
0.067 MAX.
P64GK-65-8A8-1
Remark
Dimensions and materials of ES products are the same as those of mass-production products.
59
µPD78011H, 78012H, 78013H, 78014H
13. RECOMMENDED SOLDERING CONDITIONS
The µPD78011F/78012F/78013F/78014F/78015F/78016F should be soldered and mounted under the conditions
recommended in the table below.
For detail of recommended soldering conditions, refer to the information document Semiconductor Device
Mounting Technology Manual (C10535E).
For soldering methods and conditions other than those recommended below, contact our salespersonnel.
Table 14-1. Surface Mounting Type Soldering Conditions (1/2)
(1) µPD78011HGC-×××-AB8 :
µPD78012HGC-×××-AB8 :
64-Pin Plastic QFP (14 × 14 mm)
64-Pin Plastic QFP (14 × 14 mm)
µPD78013HGC-×××-AB8 :
µPD78014HGC-×××-AB8 :
64-Pin Plastic QFP (14 × 14 mm)
64-Pin Plastic QFP (14 × 14 mm)
Soldering Method
Soldering Conditions
Recommended
Condition Symbol
Infrared reflow
Package peak temperature: 235 °C, Duration: 30 sec. max. (at 210 °C or above),
Number of times: Thrice max.
IR35-00-3
VPS
Package peak temperature: 215 °C, Duration: 40 sec. max. (at 200 °C or above),
Number of times: Thrice max.
VP15-00-3
Wave soldering
Solder bath temperature: 260 °C max. Duration: 10 sec. max.
WS60-00-1
Number of times: Once
Preliminary heat temperature: 120 °C max. (Package surface temperature)
Partial heating
Pin temperature: 300 °C max., Duration: 3 sec. max. (per device side)
—
Caution Use more than one soldering method should be avoided (except in the case of partial heating).
60
µPD78011H, 78012H, 78013H, 78014H
Table 14-1. Surface Mounting Type Soldering Conditions (2/2)
(2) µPD78011HGK-×××-8A8 : 64-Pin Plastic LQFP (12 × 12 mm)
µPD78012HGK-×××-8A8 : 64-Pin Plastic LQFP (12 × 12 mm)
µPD78013HGK-×××-8A8 : 64-Pin Plastic LQFP (12 × 12 mm)
µPD78014HGK-×××-8A8 : 64-Pin Plastic LQFP (12 × 12 mm)
Soldering Conditions
Soldering Method
Recommended
Condition Symbol
Infrared reflow
Package peak temperature: 235 °C, Duration: 30 sec. max. (at 210 °C or above),
Number of times: Twice max., Number of days: 7 days Note (after that, 125 °C prebaking
for 10 hours is necessary.)
< Points to note >
Products packed in packing materials other than heat-resistant trays (such as magazines, taping, and non-heat resistance tray) cannot be baked while packed.
IR35-107-2
VPS
Package peak temperature: 215 °C, Duration: 40 sec. max. (at 200 °C or above),
Number of times: Twice max., Number of days: 7 days Note (after that, 125 °C prebaking
for 10 hours is necessary.)
< Points to note >
Products packed in packing materials other than heat-resistant trays (such as magazines, taping, and non-heat resistance tray) cannot be baked while packed.
VP15-107-2
Wave soldering
Solder bath temperature: 260 °C max. Duration: 10 sec. max.
Number of times: Once, Preliminary heat temperature: 120 °C max. (Package surface
temperature), Number of days: 7 days Note (after that, 125 °C prebaking for 10 hours is
necessary.)
WS60-107-1
Partial heating
Pin temperature: 300 °C max., Duration: 3 sec. max. (per device side)
—
Note The number of days the device can be stored at 25 °C, 65% RH MAX. after the dry pack has been opend.
Caution Use more than one soldering method should be avoided (except in the case of partial heating).
Table 14-2. Insertion Type Soldering Conditions
µPD78011HCW-××× :
µPD78012HCW-××× :
µPD78013HCW-××× :
µPD78014HCW-××× :
Soldering Method
Caution
64-Pin Plastic Shrink DIP (750 mil)
64-Pin Plastic Shrink DIP (750 mil)
64-Pin Plastic Shrink DIP (750 mil)
64-Pin Plastic Shrink DIP (750 mil)
Soldering Conditions
Wave soldering
(pin only)
Solder bath temperature: 260°C max., Duration: 10 sec. max.
Partial heating
Pin temperature: 300°C max., Duration: 3 sec. max. (per pin)
Wave soldering is only for the lead part in order that jet solder can not contact with the chip directly.
61
µPD78011H, 78012H, 78013H, 78014H
APPENDIX A. DEVELOPMENT TOOLS
The following development tools are available for the development of systems using the µPD78014H subseries.
Language processor software
RA78K/0 Notes 1, 2, 3, 4
Assembler package common to 78K/0 series
CC78K0 Notes 1, 2, 3, 4
C compiler package common to 78K/0 series
DF78014 Notes 1, 2, 3, 4, 6
Device file common to µPD78014 subseries
CC78K0-L Notes 1, 2, 3, 4
C compiler library source file common to 78K/0 series
Debugging tools
IE-78000-R
In-circuit emulator common to 78K/0 series
IE-78000R-A Notes 8
In-circuit emulator common to 78K/0 series (for integrated debugger)
IE-78000-R-BK
Break board common to 78K/0 series
IE-78014-R-EM-A
Emulation board common to µPD78018F and 78018FY subseries (VDD = 3.0 to 6.0 V)
EP-78240CW-R
EP-78240GK-R
Emulation probe common to µPD78244 subseries
EP-78012GK-R
Emulation probe common to µPD78018F subseries
EV-9200GC-64
Socket mounted on printed wiring board of target system created for 64-pin plastic QFP
(GC-AB8 type)
TGK-064SBW
Adapter mounted on printed wiring board of target system created for 64-pin plastic QFP
(GK-8A8 type). This is a product of TOKYO ELETECH Corp. Consult NEC when purchasing this
product.
SM78K0 Notes 5, 6, 7
ID78K0 Notes 4, 5, 6, 7
System emulator common to 78K/0 series
Integrated debugger common to 78K/0 series
SD78K/0 Notes 1, 2
Screen debugger for IE-78000-R
DF78014 Notes 1, 2, 3, 4, 5, 6, 7
Device file common to µPD78014 subseries
Real-Time OS
RX78K/0 Notes 1, 2
Real-time OS for 78K/0 series
MX78K0 Notes 1, 2
OS for 78K/0 series
62
µPD78011H, 78012H, 78013H, 78014H
Fuzzy Inference Devleopment Support System
FE9000 Note 1/FE9200 Note 6
Fuzzy knowledge data creation tool
FT9080 Note 1/FT9085 Note 2
Translator
FI78K0 Notes 1, 2
Fuzzy inference module
FD78K0 Notes 1, 2
Fuzzy inference debugger
Notes 1. PC-9800 series (MS-DOSTM) based
2. IBM PC/ATTM and compatible machine (PC DOSTM/IBM DOSTM/MS-DOS) based
3. HP9000 series 300TM (HP-UXTM) based
4. HP9000 series 700TM (HP-UX) based, SPARCstationTM (SunOSTM) based, EWS-4800 series (EWS-UX/V) based
5. PC-9800 series (MS-DOS + WindowsTM) based
6. IBM PC/AT and compatible machine (PC DOS/IBM DOS/MS-DOS + Windows) based
7. NEWSTM (NEWS-OSTM) based
8. Under development.
Remarks 1. For development tools manufactured by a third party, refer to the 78K/0 Series Selection Guide (U11126E).
2. RA78K/0, CC78K/0, SM78K0, ID78K0, SD78K/0, and RX78K/0 are used in combination with DF78014.
63
µPD78011H, 78012H, 78013H, 78014H
APPENDIX B. RELATED DOCUMENTS
Device Related Documents
Document No.
Document Name
Japanese
µPD78014H Subseries User's Manual
English
Planned to publish
Planned to publish
µPD78014 Data Sheet
U11898J
This manual
78K/0 Series User's Manual - Instruction
IEU-849
IEU-1372
78K/0 Series Instruction List
U10903J
—
78K/0 Series Instruction Set
U10904J
—
Planned to publish
—
µPD78014H Subseries Special Function Register List
Development Tools Documents (User's Manual)
Document No.
Document Name
Japanese
English
Operation
EEU-809
EEU-1399
Language
EEU-815
EEU-1404
EEU-817
EEU-1402
Operation
EEU-656
EEU-1280
Language
EEU-655
EEU-1284
Programming Know-how
EEA-618
EEA-1208
CC78K Series Library Source File
EEU-777
—
IE-78000-R
EEU-810
U11376E
IE-78000-R-A
U10057J
U10057E
IE-78000-R-BK
EEU-867
EEU-1427
IE-78014-R-EM-A
EEU-962
U10418E
EP-78240
EEU-986
EEU-1513
EP-78012GK-R
EEU-5012
EEU-1538
RA78K Series Assembler Package
RA78K Series Structured Assembler Preprocessor
CC78K Series C Compiler
CC78K/0 C Compiler Application Note
SM78K0 System Simulator Windows Based
Reference
U10181J
U10181E
SM78K Series System Simulator
External Components User Open
U10092J
U10092E
Interface
ID78K0 Integrated Debugger EWS Based
Reference
U11151J
—
ID78K0 Integrated Debugger PC Based
Reference
U11539J
—
ID78K0 Integrated Debugger Windows Based
Guide
U11649J
—
SD78K/0 Screen Debugger
Introduction
EEU-852
—
PC-9800 Series (MS-DOS) Based
Reference
EEU-816
—
SD78K/0 Screen Deb
Introduction
EEU-5024
EEU-1414
IBM PC/AT (PC DOS) Based
Reference
EEU-993
EEU-1413
Caution The contents of the above related documents are subject to change without notice. The latest documents
should be used for design, etc.
64
µPD78011H, 78012H, 78013H, 78014H
Embedded Software Documents (User's Manual)
Document No.
Document Name
Japanese
English
Fundamental
U11537J
—
Installation
U11536J
—
Technical
U11538J
—
EEU-5010
—
Fuzzy Knowledge Data Creation Tool
EEU-829
EEU-1438
78K/0, 78K/II, 87AD Series
EEU-862
EEU-1444
EEU-858
EEU-1441
EEU-921
EEU-1458
78K/0 Series Real-Time OS
78K/0 Series OS MX78K0
Fundamental
Fuzzy Inference Development Support System - Translator
78K/0 Series Fuzzy Inference Development Suport System Fuzzy Inference Module
78K/0 Series Fuzzy Inference Development Support System Fuzzy Inference Debugger
Other Documents
Document Name
Document No.
Japanese
English
IC Package Manual
C10943X
Semiconductor Device Mounting Technology Manual
C10535J
C10535E
Quality Grades on NEC Semiconductor Device
C11531J
IEI-1209
NEC Semiconductor Device Reliability/Quality Control System
C10983J
C10983E
Electrostatic Discharge (ESD) Test
MEM-539
—
Guide to Quality Assurance for Semiconductor Device
MEI-603
MEI-1202
Guide for Products Related to Micro-Computer: Other Companies
U11416J
—
Caution
The contents of the above related documents are subject to change without notice. The latest documents
should be used for design, etc.
65
µPD78011H, 78012H, 78013H, 78014H
NOTES FOR CMOS DEVICES
1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS
Note: Strong electric field, when exposed to a MOS device, can cause destruction
of the gate oxide and ultimately degrade the device operation. Steps must
be taken to stop generation of static electricity as much as possible, and
quickly dissipate it once, when it has occurred. Environmental control must
be adequate. When it is dry, humidifier should be used. It is recommended
to avoid using insulators that easily build static electricity. Semiconductor
devices must be stored and transported in an anti-static container, static
shielding bag or conductive material.
All test and measurement tools
including work bench and floor should be grounded. The operator should
be grounded using wrist strap. Semiconductor devices must not be touched
with bare hands. Similar precautions need to be taken for PW boards with
semiconductor devices on it.
2 HANDLING OF UNUSED INPUT PINS FOR CMOS
Note: No connection for CMOS device inputs can be cause of malfunction. If no
connection is provided to the input pins, it is possible that an internal input
level may be generated due to noise, etc., hence causing malfunction. CMOS
device behave differently than Bipolar or NMOS devices. Input levels of
CMOS devices must be fixed high or low by using a pull-up or pull-down
circuitry.
Each unused pin should be connected to VDD or GND with a
resistor, if it is considered to have a possibility of being an output pin. All
handling related to the unused pins must be judged device by device and
related specifications governing the devices.
3 STATUS BEFORE INITIALIZATION OF MOS DEVICES
Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device.
Immediately after the power source is turned ON, the devices with reset
function have not yet been initialized. Hence, power-on does not guarantee
out-pin levels, I/O settings or contents of registers. Device is not initialized
until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.
66
µPD78011H, 78012H, 78013H, 78014H
Regional Information
Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:
• Device availability
• Ordering information
• Product release schedule
• Availability of related technical literature
• Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)
• Network requirements
In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.
NEC Electronics Inc. (U.S.)
NEC Electronics (Germany) GmbH
NEC Electronics Hong Kong Ltd.
Santa Clara, California
Tel: 800-366-9782
Fax: 800-729-9288
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490
NEC Electronics Hong Kong Ltd.
Velizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics (France) S.A.
NEC Electronics Singapore Pte. Ltd.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583
NEC Electronics (France) S.A.
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99
NEC Electronics Taiwan Ltd.
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951
NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689
J96. 8
67
µPD78011H, 78012H, 78013H, 78014H
FIP and IEBus are trademarks of NEC Corporation.
MS-DOS and Windows are trademarks of Microsoft Corporation.
IBM-DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.
HP9000 Series 300, HP9000 series 700, and HP-UX are trademarks of Hewlett-Packard Company.
SPARCstation is a tradmark of SPARC International, Inc.
SunOS is a tradmark of Sun Microsystems, Inc.
NEWS and NEWS-OS are trademarks of Sony Corporation.
Some related decuments are preliminary versions. This document, however, is not indicated as preliminary.
The export of this product from Japan is regulated by the Japanese government. To export this product may be
prohibited without governmental license, the need for which must be judged by the customer. The export or reexport of this product from a country other than Japan may also be prohibited without a license from that country.
Please call an NEC sales representative.
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated "quality assurance program" for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.
M4 96.5
68