Low Noise Pseudomorphic HEMT in a Surface Mount Plastic Package Technical Data ATF-34143 Features • Low Noise Figure Surface Mount Package SOT-343 Description Agilent’s ATF-34143 is a high dynamic range, low noise, PHEMT housed in a 4-lead SC-70 (SOT-343) surface mount plastic package. • Excellent Uniformity in Product Specifications • Low Cost Surface Mount Small Plastic Package SOT-343 (4 lead SC-70) • Tape-and-Reel Packaging Option Available Pin Connections and Package Marking 1.9 GHz; 4 V, 60 mA (Typ.) DRAIN • 0.5 dB Noise Figure • 17.5 dB Associated Gain • 20 dBm Output Power at 1␣ dB Gain Compression • 31.5 dBm Output 3rd Order Intercept SOURCE 4Px Specifications SOURCE Based on its featured performance, ATF-34143 is suitable for applications in cellular and PCS base stations, LEO systems, MMDS, and other systems requiring super low noise figure with good intercept in the 450␣ MHz to 10 GHz frequency range. GATE Note: Top View. Package marking provides orientation and identification. “4P” = Device code “x” = Date code character. A new character is assigned for each month, year. Applications • Low Noise Amplifier for Cellular/PCS Base Stations • LNA for WLAN, WLL/RLL, LEO, and MMDS Applications • General Purpose Discrete PHEMT for Other Ultra Low Noise Applications 1 88759/05-3.PM6.5J Page 1 2001.04.26, 9:14 AM Adobe PageMaker 6.5J/PPC ATF-34143 Absolute Maximum Ratings[1] Symbol VDS VGS VGD ID Pdiss Pin max TCH TSTG θjc Parameter Drain - Source Voltage[2] Gate - Source Voltage[2] Gate Drain Voltage[2] Drain Current[2] Total Power Dissipation [4] RF Input Power Channel Temperature Storage Temperature Thermal Resistance [5] Notes: 1. Operation of this device above any one of these parameters may cause permanent damage. 2. Assumes DC quiescent conditions. 3. VGS = 0 volts. 4. Source lead temperature is 25°C. Derate 6␣ mW/ °C for TL > 40°C. 5. Thermal resistance measured using 150°C Liquid Crystal Measurement method. 6. Under large signal conditions, VGS may swing positive and the drain current may exceed Idss. These conditions are acceptable as long as the maximum Pdiss and Pin max ratings are not exceeded. Absolute Maximum 5.5 -5 -5 Idss [3] 725 17 160 -65 to 160 165 Units V V V mA mW dBm °C °C °C/W Product Consistency Distribution Charts [7] 250 120 +0.6 V Cpk = 1.37245 Std = 0.66 9 Wafers Sample Size = 450 100 200 IDS (mA) 80 150 -3 Std 0V +3 Std 60 100 40 50 20 –0.6 V 0 0 2 4 VDS (V) 6 0 29 8 30 31 32 33 34 35 OIP3 (dBm) Figure 1. Typical/Pulsed I-V Curves [6]. (VGS = -0.2 V per step) 120 Figure 2. OIP3 @ 2 GHz, 4 V, 60 mA. LSL=29.0, Nominal=31.8, USL=35.0 Cpk = 2.69167 Std = 0.04 9 Wafers Sample Size = 450 100 120 Cpk = 2.99973 Std = 0.15 9 Wafers Sample Size = 450 100 80 80 -3 Std -3 Std +3 Std 60 60 40 40 20 20 0 0 0.2 0.4 0.6 0.8 0 16 Notes: 7. Distribution data sample size is 450 samples taken from 9 different wafers. Future wafers allocated to this product may have nominal values anywhere within the upper and lower spec limits. 17 17.5 18 18.5 19 GAIN (dB) NF (dB) Figure 3. NF @ 2 GHz, 4 V, 60 mA. LSL=0.1, Nominal=0.47, USL=0.8 16.5 +3 Std Figure 4. Gain @ 2 GHz, 4 V, 60 mA. LSL=16.0, Nominal=17.5, USL=19.0 8. Measurements made on production test board. This circuit represents a trade-off between an optimal noise match and a realizeable match based on production test requirements. Circuit losses have been de-embedded from actual measurements. 2 88759/05-3.PM6.5J Page 2 2001.04.26, 9:14 AM Adobe PageMaker 6.5J/PPC ATF-34143 Electrical Specifications TA = 25°C, RF parameters measured in a test circuit for a typical device Symbol Idss [1] VP [1] Id gm[1] IGDO Igss NF Ga OIP3 P1dB Parameters and Test Conditions Saturated Drain Current VDS = 1.5 V, VGS = 0 V Pinchoff Voltage VDS = 1.5 V, IDS = 10% of Idss Quiescent Bias Current VGS = 0.34 V, VDS = 4 V Transconductance VDS = 1.5 V, gm = Idss /VP Gate to Drain Leakage Current VGD = 5 V Gate Leakage Current VGD = VGS = -4 V Noise Figure f = 2 GHz VDS = 4 V, IDS = 60 mA VDS = 4 V, IDS = 30 mA f = 900 MHz VDS = 4 V, IDS = 60 mA Associated Gain f = 2 GHz VDS = 4 V, IDS = 60 mA VDS = 4 V, IDS = 30 mA f = 900 MHz VDS = 4 V, IDS = 60 mA Output 3rd Order f = 2 GHz VDS = 4 V, IDS = 60 mA Intercept Point [3] +5 dBm Pout /Tone VDS = 4 V, IDS = 30 mA f = 900 MHz VDS = 4 V, IDS = 60 mA +5 dBm Pout /Tone 1 dB Compressed f = 2 GHz VDS = 4 V, IDS = 60 mA Intercept Point [3] VDS = 4 V, IDS = 30 mA f = 900 MHz VDS = 4 V, IDS = 60 mA Units mA V mA mmho µA µA dB Min. Typ.[2] 90 118 -0.65 -0.5 — 60 180 230 — dB dB 16 dB dBm 29 dBm dBm dBm 30 0.5 0.5 0.4 17.5 17 21.5 31.5 30 31 Max. 145 -0.35 — — 500 300 0.8 19 20 19 18.5 Notes: 1. Guaranteed at wafer probe level 2. Typical value determined from a sample size of 450 parts from 9 wafers. 3. Using production test board. Input 50 Ohm Transmission Line Including Gate Bias T (0.5 dB loss) Input Matching Circuit Γ_mag = 0.30 Γ_ang = 56° (0.4 dB loss) 50 Ohm Transmission Line Including Drain Bias T (0.5 dB loss) DUT Output Figure 5. Block diagram of 2 GHz producution test board used for Noise Figure, Associated Gain, P1dB, and OIP3 measurements. This circuit represents a trade-off between an optimal noise match and associated impedance matching circuit losses. Circuit losses have been de-embedded from actual measurements. 3 88759/05-3.PM6.5J Page 3 2001.04.26, 9:14 AM Adobe PageMaker 6.5J/PPC ATF-34143 Typical Performance Curves 35 1 20 OIP3 25 20 15 P1dB 10 NOISE FIGURE (dB) ASSOCIATED GAIN (dB) OIP3, P 1dB (dBm) 30 15 10 5 20 40 60 80 0.4 3V 4V 3V 4V 0 0 0.6 0.2 3V 4V 5 0.8 0 0 100 120 140 0 20 IDSQ (mA) 40 60 80 100 0 120 20 Figure 6. OIP3 and P1dB vs. IDS and VDS Tuned for NF @ 4V, 60 mA at 2GHz. [1,2] 60 80 100 120 Figure 8. Noise Figure vs. Current (Id) and Voltage (V DS) at 2 GHz. [1,2] Figure 7. Associated Gain vs. Current (Id) and Voltage (V D) at 2 GHz. [1,2] 35 40 CURRENT (mA) CURRENT (mA) 25 0.7 OIP3 25 20 15 P1dB 10 3V 4V 5 0 0.6 20 NOISE FIGURE (dB) ASSOCIATED GAIN (dB) OIP3, P 1dB (dBm) 30 15 10 5 3V 4V 20 40 60 80 100 20 0.2 3V 4V 40 60 80 100 120 0 20 40 60 80 100 120 CURRENT (mA) CURRENT (mA) Figure 10. Associated Gain vs. Current (Id) and Voltage (V D) at 900 MHz. [1,2] Figure 11. Noise Figure vs. Current (Id) and Voltage (V DS) at 900 MHz. [1,2] IDSQ (mA) Figure 9. OIP3 and P1dB vs. IDS and VDS Tuned for NF @ 4 V, 60 mA at 900MHz. [1,2] 0.3 0 0 120 0.4 0.1 0 0 0.5 25 1.2 1.0 Ga (dB) Fmin (dB) 20 0.8 0.6 15 0.4 60 mA 40 mA 20 mA 0.2 0 0 2.0 4.0 6.0 FREQUENCY (GHz) Figure 12. Fmin vs. Frequency and Current at 4 V. 10 60 mA 40 mA 20 mA 5 0 1.0 2.0 3.0 4.0 5.0 6.0 FREQUENCY (GHz) Figure 13. Associated Gain vs. Frequency and Current at 4 V. Notes: 1. Measurements made on a fixed toned production test board that was tuned for optimal gain match with reasonable noise figure at 4 V, 60 mA bias. This circuit represents a trade-off between optimal noise match, maximum gain match, and a realizable match based on production test board requirements. Circuit losses have been de-embedded from actual measurements. 2. P1dB measurements are performed with passive biasing. Quicescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of IDSQ the device is running closer to class B as power output approaches P1dB. This results in higher PAE (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with active biasing. As an example, at a VDS = 4 V and IDSQ␣ =␣ 10␣ mA, Id increases to 62 mA as a P1dB of +19 dBm is approached. 4 88759/05-3.PM6.5J Page 4 2001.04.26, 9:14 AM Adobe PageMaker 6.5J/PPC ATF-34143 Typical Performance Curves, continued 33 35 1.0 Ga (dB) NF (dB) 20 15 0.5 P1dB, OIP3 (dBm) 31 29 OIP3 27 85 °C 25 °C -40 °C 25 23 P1dB 21 19 10 0 2000 4000 6000 0 8000 5.0 4.5 30 Gain OP1dB OIP3 NF 25 20 4.0 3.5 3.0 2.5 15 2.0 1.5 10 1.0 5 0.5 0 0 17 0 2000 4000 6000 8000 0 20 40 60 80 100 120 140 Figure 15. P1dB, IP3 vs. Frequency and Temperature at V DS = 4 V, IDS = 60 mA. [1] Figure 16. NF, Gain, OP1dB and OIP3 vs. IDS at 4 V and 3.9 GHz Tuned for Noise Figure. [1] 5.0 27 4.5 24 4.0 21 3.5 Gain OP1dB OIP3 NF 18 15 3.0 2.5 12 2.0 9 1.5 6 1.0 3 0.5 0 0 0 20 40 60 80 100 120 IDSQ (mA) Figure 17. NF, Gain, OP1dB and OIP3 vs. IDS at 4 V and 5.8 GHz Tuned for Noise Figure. [1] 25 25 20 20 15 15 P1dB (dBm) 30 P1dB (dBm) IDSQ (mA) NOISE FIGURE (dB) FREQUENCY (MHz) GAIN (dB), OP1dB, and OIP3 (dBm) FREQUENCY (GHz) Figure 14. Fmin and Ga vs. Frequency and Temperature at V DS = 4 V, IDS = 60 mA. 10 5 10 5 3V 4V 0 3V 4V 0 -5 -5 0 50 100 150 IDS (mA) 0 50 100 150 IDS (mA) Figure 18. P1dB vs. IDS Active Bias Tuned for NF @ 4 V, 60 mA at 2 GHz. Figure 19. P1dB vs. IDS Active Bias Tuned for min NF @ 4 V, 60 mA at 900MHz. Note: 1. P1dB measurements are performed with passive biasing. Quicescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of IDSQ the device is running closer to class B as power output approaches P1dB. This results in higher PAE (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with active biasing. As an example, at a VDS = 4 V and IDSQ␣ =␣ 10␣ mA, Id increases to 62 mA as a P1dB of +19 dBm is approached. 5 88759/05-3.PM6.5J Page 5 2001.04.26, 9:14 AM Adobe PageMaker 6.5J/PPC NOISE FIGURE (dB) 1.5 85 °C 25 °C -40 °C GAIN (dB), OP1dB, and OIP3 (dBm) 25 ATF-34143 Power Parameters tuned for Power, VDS = 4 V, IDSQ = 120 mA Freq (GHz) P1dB (dBm) Id (mA) G1dB (dB) PAE1dB (%) P3dBm (dBm) Id (mA) PAE3dB (%) Gamma Out_mag (Mag) Gamma Out_ang (Degrees) 0.9 1.5 1.8 2 4 6 20.9 21.7 21.3 22.0 22.7 23.3 114 115 111 106 110 115 25.7 21.9 20.5 19.5 12.7 9.2 27 32 30 37 40 41 22.8 23.1 23.0 23.7 23.6 24.2 108 95 105 115 111 121 44 53 47 50 47 44 0.34 0.31 0.30 0.28 0.26 0.24 136 152 164 171 -135 -66 ATF-34143 Power Parameters tuned for Power, VDS = 4 V, IDSQ = 60 mA Freq (GHz) P1dB (dBm) Id (mA) G1dB (dB) PAE1dB (%) P3dBm (dBm) Id (mA) PAE3dB (%) Gamma Out_mag (Mag) Gamma Out_ang (Degrees) 0.9 1.5 1.8 2 4 6 18.2 18.7 18.8 18.8 20.2 21.2 75 58 57 59 66 79 27.5 24.5 23.0 22.2 13.9 9.9 22 32 33 32 38 37 20.5 20.8 21.1 21.9 22.0 23.5 78 59 71 81 77 102 36 51 45 47 48 46 0.48 0.45 0.42 0.40 0.25 0.18 102 117 126 131 -162 -77 80 80 50 Pout (dBm), G (dB), PAE (%) Pout (dBm), G (dB), PAE (%) 60 40 30 20 10 Pout Gain PAE 0 -10 -30 -20 -10 0 10 40 20 Pout Gain PAE 0 20 -20 -30 -20 Figure 20. Swept Power Tuned for Power at 2 GHz, VDS = 4 V, I DSQ = 120 mA. -10 0 10 20 Pin (dBm) Pin (dBm) Figure 21. Swept Power Tuned for Power at 2 GHz, VDS = 4 V, I DSQ = 60 mA. Notes: 1. P1dB measurements are performed with passive biasing. Quicescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of IDSQ the device is running closer to class B as power output approaches P1dB. This results in higher PAE (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with active biasing. As an example, at a VDS = 4 V and IDSQ␣ =␣ 10␣ mA, Id increases to 62 mA as a P1dB of +19 dBm is approached. 2. PAE(%) = ((Pout – Pin) / Pdc) x 100 3. Gamma out is the reflection coefficient of the matching circuit presented to the output of the device. 6 88759/05-3.PM6.5J Page 6 2001.04.26, 9:14 AM Adobe PageMaker 6.5J/PPC ATF-34143 Typical Scattering Parameters, VDS = 3 V, IDS = 20 mA Freq. GHz Mag. 0.5 0.8 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 0.96 0.91 0.87 0.81 0.78 0.75 0.72 0.69 0.65 0.64 0.65 0.66 0.69 0.72 0.75 0.77 0.80 0.83 0.85 0.86 0.85 0.85 0.88 S11 Ang. -37 -60 -76 -104 -115 -126 -145 -162 166 139 114 89 67 48 30 10 -10 -29 -44 -55 -72 -88 -101 dB S21 Mag. Ang. dB S12 Mag. Ang. Mag. S22 Ang. MSG/MAG dB 20.07 19.68 18.96 17.43 16.70 16.00 14.71 13.56 11.61 10.01 8.65 7.33 6.09 4.90 3.91 2.88 1.74 0.38 -0.96 -2.06 -3.09 -4.22 -5.71 10.079 9.642 8.867 7.443 6.843 6.306 5.438 4.762 3.806 3.165 2.706 2.326 2.017 1.758 1.568 1.393 1.222 1.045 0.895 0.789 0.701 0.615 0.518 153 137 126 106 98 90 75 62 38 16 -5 -27 -47 -66 -86 -105 -126 -145 -161 -177 166 149 133 -29.12 -26.02 -24.29 -22.27 -21.62 -21.11 -20.45 -19.83 -19.09 -18.49 -18.06 -17.79 -17.52 -17.39 -17.08 -16.95 -16.95 -17.39 -17.86 -18.13 -18.13 -18.06 -18.94 0.035 0.050 0.061 0.077 0.083 0.088 0.095 0.102 0.111 0.119 0.125 0.129 0.133 0.135 0.140 0.142 0.142 0.135 0.128 0.124 0.124 0.125 0.113 68 56 48 34 28 23 15 7 -8 -21 -35 -49 -62 -75 -88 -103 -118 -133 -145 -156 -168 177 165 0.40 0.34 0.32 0.29 0.28 0.26 0.25 0.23 0.22 0.22 0.23 0.25 0.29 0.34 0.39 0.43 0.47 0.53 0.58 0.62 0.65 0.68 0.71 -35 -56 -71 -98 -110 -120 -140 -156 174 146 118 91 67 46 28 10 -10 -28 -42 -57 -70 -85 -103 24.59 22.85 21.62 19.85 19.16 18.55 17.58 16.69 15.35 14.25 13.35 10.91 9.71 8.79 8.31 7.56 6.83 6.18 5.62 5.04 3.86 3.00 2.52 ATF-34143 Typical Noise Parameters Ang. 13 27 31 48 57 66 83 102 138 174 -151 -118 -88 -63 -43 Rn/50 0.16 0.14 0.13 0.11 0.10 0.09 0.07 0.06 0.03 0.03 0.05 0.10 0.18 0.30 0.46 Ga dB 21.8 18.3 17.8 16.4 16.0 15.6 14.8 14.0 12.6 11.4 10.3 9.4 8.6 8.0 7.5 25 20 MSG MSG/MAG and S21 (dB) VDS = 3 V, IDS = 20 mA Freq. Fmin Γopt GHz dB Mag. 0.5 0.10 0.90 0.9 0.11 0.85 1.0 0.11 0.84 1.5 0.14 0.77 1.8 0.17 0.74 2.0 0.19 0.71 2.5 0.23 0.65 3.0 0.29 0.59 4.0 0.42 0.51 5.0 0.54 0.45 6.0 0.67 0.42 7.0 0.79 0.42 8.0 0.92 0.45 9.0 1.04 0.51 10.0 1.16 0.61 15 10 MAG S21 5 0 -5 -10 0 2 4 6 8 10 12 14 16 18 FREQUENCY (GHz) Figure 23. MSG/MAG and |S21|2 vs. Frequency at 3 V, 20 mA. Notes: 1. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point. 7 88759/05-3.PM6.5J Page 7 2001.04.26, 9:14 AM Adobe PageMaker 6.5J/PPC ATF-34143 Typical Scattering Parameters, VDS = 3 V, IDS = 40 mA Freq. GHz Mag. 0.5 0.8 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 0.96 0.89 0.85 0.79 0.76 0.74 0.70 0.67 0.64 0.64 0.65 0.66 0.69 0.73 0.76 0.78 0.80 0.83 0.86 0.87 0.86 0.86 0.88 S11 Ang. -40 -64 -81 -109 -121 -131 -150 -167 162 135 111 87 65 46 28 9 -11 -30 -44 -56 -72 -88 -102 dB S21 Mag. Ang. dB S12 Mag. Ang. Mag. S22 Ang. MSG/MAG dB 21.32 20.79 19.96 18.29 17.50 16.75 15.39 14.19 12.18 10.54 9.15 7.80 6.55 5.33 4.33 3.30 2.15 0.79 -0.53 -1.61 -2.60 -3.72 -5.15 11.645 10.950 9.956 8.209 7.495 6.876 5.880 5.120 4.063 3.365 2.867 2.454 2.125 1.848 1.647 1.462 1.281 1.095 0.941 0.831 0.741 0.652 0.553 151 135 124 104 96 88 74 61 38 16 -5 -26 -46 -65 -84 -104 -123 -142 -158 -174 169 153 137 -30.46 -27.33 -25.68 -23.61 -22.97 -22.38 -21.51 -20.92 -19.83 -19.02 -18.34 -17.86 -17.46 -17.20 -16.83 -16.65 -16.65 -17.08 -17.52 -17.72 -17.72 -17.79 -18.64 0.030 0.043 0.052 0.066 0.071 0.076 0.084 0.090 0.102 0.112 0.121 0.128 0.134 0.138 0.144 0.147 0.147 0.140 0.133 0.130 0.130 0.129 0.117 68 56 49 36 32 27 19 12 -1 -14 -28 -42 -55 -69 -84 -99 -114 -130 -142 -154 -166 179 166 0.29 0.24 0.24 0.23 0.23 0.22 0.22 0.22 0.21 0.22 0.24 0.28 0.32 0.37 0.41 0.45 0.50 0.55 0.60 0.64 0.66 0.69 0.72 -43 -70 -88 -118 -130 -141 -160 -176 157 131 105 81 60 40 23 5 -14 -31 -45 -59 -73 -88 -105 25.89 24.06 22.82 20.95 20.24 19.57 18.45 17.55 16.00 14.78 12.91 11.03 9.93 9.07 8.59 7.84 7.15 6.50 5.96 5.39 4.21 3.43 2.95 ATF-34143 Typical Noise Parameters Ang. 13 28 32 50 61 68 87 106 144 -178 -142 -109 -80 -56 -39 Rn/50 0.16 0.13 0.13 0.1 0.09 0.08 0.06 0.05 0.03 0.03 0.06 0.12 0.21 0.34 0.50 Ga dB 23.0 19.6 19.2 17.7 17.1 16.7 15.8 14.9 13.4 12.1 10.9 9.9 9.1 8.4 8.0 30 25 20 MSG/MAG and S21 (dB) VDS = 3 V, IDS = 40 mA Freq. Fmin Γopt GHz dB Mag. 0.5 0.10 0.87 0.9 0.13 0.82 1.0 0.14 0.80 1.5 0.17 0.73 1.8 0.21 0.70 2.0 0.23 0.66 2.5 0.29 0.60 3.0 0.35 0.54 4.0 0.47 0.46 5.0 0.6 0.41 6.0 0.72 0.39 7.0 0.85 0.41 8.0 0.97 0.45 9.0 1.09 0.52 10.0 1.22 0.61 MSG 15 10 MAG S21 5 0 -5 -10 0 2 4 6 8 10 12 14 16 18 FREQUENCY (GHz) Figure 24. MSG/MAG and |S21|2 vs. Frequency at 3 V, 40 mA. Notes: 1. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point. 8 88759/05-3.PM6.5J Page 8 2001.04.26, 9:14 AM Adobe PageMaker 6.5J/PPC ATF-34143 Typical Scattering Parameters, VDS = 4 V, IDS = 40 mA Freq. GHz Mag. 0.5 0.8 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 0.95 0.89 0.85 0.78 0.73 0.70 0.67 0.64 0.63 0.64 0.66 0.69 0.72 0.76 0.78 0.80 0.84 0.86 0.87 0.86 0.86 0.89 0.89 S11 Ang. -40 -65 -82 -109 -131 -150 -167 162 135 111 87 65 47 28 9 -11 -29 -44 -56 -72 -88 -102 -101.85 dB S21 Mag. Ang. dB S12 Mag. Ang. Mag. S22 Ang. MSG/MAG dB 21.56 21.02 20.19 18.49 16.93 15.57 14.36 12.34 10.70 9.32 7.98 6.74 5.55 4.55 3.53 2.39 1.02 -0.30 -1.38 -2.40 -3.53 -4.99 -4.99 11.973 11.252 10.217 8.405 7.024 6.002 5.223 4.141 3.428 2.923 2.506 2.173 1.894 1.689 1.501 1.317 1.125 0.966 0.853 0.759 0.666 0.563 0.563 151 135 123 104 87 73 61 37 16 -6 -26 -46 -65 -85 -104 -124 -143 -160 -176 167 151 134 134 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.12 0.13 0.13 0.14 0.15 0.15 0.14 0.13 0.13 0.13 0.13 0.12 0.12 0.030 0.042 0.051 0.064 0.074 0.081 0.087 0.098 0.108 0.117 0.124 0.130 0.134 0.141 0.145 0.145 0.140 0.133 0.130 0.131 0.130 0.119 0.119 68 56 48 36 27 19 12 -1 -13 -27 -41 -54 -68 -82 -97 -113 -128 -141 -152 -165 -180 168 168 0.33 0.27 0.26 0.24 0.22 0.21 0.20 0.19 0.20 0.21 0.24 0.29 0.34 0.38 0.42 0.47 0.53 0.58 0.62 0.65 0.68 0.71 0.71 -39 -63 -80 -109 -131 -150 -167 165 138 111 86 63 42 26 8 -11 -29 -43 -58 -71 -86 -103 -103 26.01 24.28 23.02 21.18 20.46 19.77 18.70 17.75 16.26 15.02 12.93 11.14 10.09 9.24 8.79 8.09 7.35 6.76 6.19 5.62 4.43 3.60 3.15 ATF-34143 Typical Noise Parameters Ang. 13 27 31 49 60 67 85 104 142 180 -144 -111 -82 -57 -40 Rn/50 0.16 0.14 0.13 0.11 0.10 0.09 0.07 0.05 0.03 0.03 0.05 0.11 0.20 0.32 0.47 Ga dB 22.8 19.4 18.9 17.4 16.9 16.4 15.6 14.8 13.3 12.0 10.9 9.9 9.1 8.5 8.1 30 25 MSG/MAG and S21 (dB) VDS = 4 V, IDS = 40 mA Freq. Fmin Γopt GHz dB Mag. 0.5 0.10 0.87 0.9 0.13 0.82 1.0 0.14 0.80 1.5 0.17 0.73 1.8 0.20 0.70 2.0 0.22 0.66 2.5 0.28 0.60 3.0 0.34 0.54 4.0 0.45 0.45 5.0 0.57 0.40 6.0 0.69 0.38 7.0 0.81 0.39 8.0 0.94 0.43 9.0 1.06 0.51 10.0 1.19 0.62 MSG 20 15 10 MAG S21 5 0 -5 0 2 4 6 8 10 12 14 16 18 FREQUENCY (GHz) Figure 25. MSG/MAG and |S21|2 vs. Frequency at 4 V, 40 mA. Notes: 1. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point. 9 88759/05-3.PM6.5J Page 9 2001.04.26, 9:14 AM Adobe PageMaker 6.5J/PPC ATF-34143 Typical Scattering Parameters, VDS = 4 V, IDS = 60 mA Freq. GHz Mag. 0.5 0.8 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 0.95 0.89 0.85 0.78 0.75 0.73 0.69 0.67 0.64 0.63 0.64 0.66 0.69 0.73 0.76 0.78 0.81 0.84 0.86 0.87 0.86 0.86 0.89 S11 Ang. -41 -65 -83 -111 -122 -133 -151 -168 161 134 111 86 65 46 28 9 -11 -30 -44 -56 -72 -88 -101.99 dB S21 Mag. Ang. dB S12 Mag. Ang. Mag. S22 Ang. MSG/MAG dB 21.91 21.33 20.46 18.74 17.92 17.16 15.78 14.56 12.53 10.88 9.49 8.15 6.92 5.72 4.73 3.70 2.57 1.20 -0.12 -1.21 -2.21 -3.35 -4.81 12.454 11.654 10.549 8.646 7.873 7.207 6.149 5.345 4.232 3.501 2.983 2.557 2.217 1.932 1.723 1.531 1.344 1.148 0.986 0.870 0.775 0.680 0.575 150 134 123 103 95 87 73 60 37 16 -5 -26 -46 -65 -84 -104 -124 -143 -159 -175 168 151 135 -31.06 -28.18 -26.56 -24.44 -23.74 -23.22 -22.38 -21.62 -20.54 -19.58 -18.79 -18.27 -17.79 -17.46 -16.95 -16.71 -16.71 -17.02 -17.46 -17.59 -17.59 -17.65 -18.42 0.028 0.039 0.047 0.060 0.065 0.069 0.076 0.083 0.094 0.105 0.115 0.122 0.129 0.134 0.142 0.146 0.146 0.141 0.134 0.132 0.132 0.131 0.120 68 57 49 38 33 29 22 15 3 -10 -24 -38 -51 -65 -79 -94 -111 -126 -139 -150 -163 -178 169 0.29 0.24 0.23 0.21 0.21 0.20 0.19 0.19 0.18 0.19 0.21 0.24 0.28 0.33 0.38 0.42 0.47 0.52 0.58 0.62 0.65 0.68 0.71 -41 -67 -84 -114 -125 -136 -155 -171 162 135 109 84 62 42 25 7 -12 -29 -43 -58 -71 -86 -104 26.48 24.75 23.51 21.59 20.83 20.19 19.08 18.09 16.53 15.23 12.89 11.22 10.21 9.36 8.94 8.23 7.56 6.94 6.37 5.78 4.60 3.79 3.33 ATF-34143 Typical Noise Parameters Ang. 15 30 34 53 62 72 91 111 149 -173 -137 -104 -76 -53 -37 Rn/50 0.14 0.12 0.12 0.10 0.10 0.09 0.07 0.05 0.03 0.04 0.07 0.14 0.26 0.41 0.60 Ga dB 24.5 20.7 20.2 18.5 17.7 17.2 16.3 15.4 13.7 12.3 11.1 10.0 9.2 8.6 8.2 30 25 20 MSG/MAG and S21 (dB) VDS = 4 V, IDS = 60 mA Freq. Fmin Γopt GHz dB Mag. 0.5 0.11 0.84 0.9 0.14 0.78 1.0 0.15 0.77 1.5 0.20 0.69 1.8 0.23 0.66 2.0 0.26 0.62 2.5 0.33 0.55 3.0 0.39 0.50 4.0 0.53 0.43 5.0 0.67 0.39 6.0 0.81 0.39 7.0 0.96 0.42 8.0 1.10 0.47 9.0 1.25 0.54 10.0 1.39 0.62 MSG 15 10 MAG S21 5 0 -5 -10 0 2 4 6 8 10 12 14 16 18 FREQUENCY (GHz) Figure 26. MSG/MAG and |S21|2 vs. Frequency at 4 V, 60 mA. Notes: 1. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point. 10 88759/05-3.PM6.5J Page 10 2001.04.26, 9:15 AM Adobe PageMaker 6.5J/PPC Noise Parameter Applications Information Fmin values at 2␣ GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements, a true Fmin is calculated. Fmin represents the true minimum noise figure of the device when the device is presented with an impedance matching network that transforms the source impedance, typically 50Ω, to an impedance represented by the reflection coefficient Γo. The designer must design a matching network that will present Γo to the device with minimal associated circuit losses. The noise figure of the completed amplifier is equal to the noise figure of the device plus the losses of the matching network preceding the device. The noise figure of the device is equal to Fmin only when the device is presented with Γo. If the reflection coefficient of the matching network is other than Γo, then the noise figure of the device will be greater than Fmin based on the following equation. NF = Fmin + 4 Rn |Γs – Γo | 2 Zo (|1 + Γo| 2) (1 – Γs| 2) Where Rn /Zo is the normalized noise resistance, Γo is the optimum reflection coefficient required to produce Fmin and Γs is the reflection coefficient of the source impedance actually presented to the device. The losses of the matching networks are non-zero and they will also add to the noise figure of the device creating a higher amplifier noise figure. The losses of the matching networks are related to the Q of the components and associated printed circuit board loss. Γo is typically fairly low at higher frequencies and increases as frequency is lowered. Larger gate width devices will typically have a lower Γo as compared to narrower gate width devices. Typically for FETs, the higher Γo usually infers that an impedance much higher than 50Ω is required for the device to produce Fmin. At VHF frequencies and even lower L Band frequencies, the required impedance can be in the vicinity of several thousand ohms. Matching to such a high impedance requires very hi-Q components in order to minimize circuit losses. As an example at 900 MHz, when airwwound coils (Q > 100) are used for matching networks, the loss can still be up to 0.25 dB which will add directly to the noise figure of the device. Using muiltilayer molded inductors with Qs in the 30 to 50 range results in additional loss over the airwound coil. Losses as high as 0.5 dB or greater add to the typical 0.15 dB Fmin of the device creating an amplifier noise figure of nearly 0.65 dB. A discussion concerning calculated and measured circuit losses and their effect on amplifier noise figure is covered in Agilent Application 1085. 11 88759/05-3.PM6.5J Page 11 2001.04.26, 9:15 AM Adobe PageMaker 6.5J/PPC ATF-34143 SC-70 4 Lead, High Frequency Nonlinear Model Optimized for 0.1 – 6.0 GHz R EQUATION La=0.1 nH EQUATION Lb=0.1 nH EQUATION Lc=0.8 nH EQUATION Ld=0.6 nH EQUATION Rb=0.1 OH EQUATION Ca=0.15 pF EQUATION Cb=0.15 pF L R=0.1 OH LOSSYL L=Lb R=Rb SOURCE L=Lb R=Rb L=Lc C L LOSSYL LOSSYL GATE_IN L=Lb R=Rb D L=La *.5 C=Cb C C=Ca G S L SOURCE DRAIN_OUT L=Lb R=Rb L=La L LOSSYL LOSSYL L=Lb R=Rb This model can be used as a design tool. It has been tested on MDS for various specifications. However, for more precise and accurate design, please refer to L=Ld the measured data in this data sheet. For future improvements Agilent reserves the right to change these models without prior notice. ATF-34143 Die Model MESFET MODEL * * STATZMODEL = FET IDS model Gate model NFET=yes PFET= IDSMOD=3 VTO=–0.95 BETA= Beta LAMBDA=0.09 ALPHA=4.0 B=0.8 TNOM=27 IDSTC= VBI=.7 Parasitics DELTA=.2 GSCAP=3 CGS=cgs pF GDCAP=3 GCD=Cgd pF Breakdown RG=1 RD=Rd RS=Rs LG=Lg nH LD=Ld nH LS=Ls nH CDS=Cds pF CRF=.1 RC=Rc GSFWD=1 GSREV=0 GDFWD=1 GDREV=0 VJR=1 IS=1 nA IR=1 nA IMAX=.1 XTI= N= EG= Noise FNC=01e+6 R=.17 P=.65 C=.2 M o d e l s c a l fa c t o r s ( W = F E T w i d t h i n m i c r o n s ) XX D E QUAT I O N C d s = 0 . 0 1 * W / 2 0 0 E QUAT I O N B e t a = 0 . 0 6 * W / 2 0 0 E QUAT I O N R d = 2 0 0 / W NFETMESFET G XX E QUAT I O N R s = . 5 * 2 0 0 / W E QUAT I O N C g s = 0 . 2 * W / 2 0 0 E QUAT I O N C g d = 0 . 0 4 * W / 2 0 0 E QUAT I O N L g = 0 . 0 3 * 2 0 0 / W S XX E QUAT I O N L d = 0 . 0 3 * 2 0 0 / W E QUAT I O N L s = 0 . 0 1 * 2 0 0 / W E QUAT I O N R c = 5 0 0 * 2 0 0 / W MODEL=FET S W=800 µm 12 88759/05-3.PM6.5J Page 12 2001.04.26, 9:15 AM Adobe PageMaker 6.5J/PPC Part Number Ordering Information No. of Devices 3000 10000 100 Part Number ATF-34143-TR1 ATF-34143-TR2 ATF-34143-BLK Container 7" Reel 13" Reel antistatic bag Package Dimensions Outline 43 (SOT-343/SC-70 4 lead) 1.30 (0.051) BSC 1.30 (.051) REF 2.60 (.102) E 1.30 (.051) E1 0.85 (.033) 0.55 (.021) TYP 1.15 (.045) BSC e 1.15 (.045) REF D h A A1 b TYP L C TYP θ DIMENSIONS SYMBOL A A1 b C D E e h E1 L θ MIN. MAX. 0.80 (0.031) 1.00 (0.039) 0 (0) 0.10 (0.004) 0.25 (0.010) 0.35 (0.014) 0.10 (0.004) 0.20 (0.008) 1.90 (0.075) 2.10 (0.083) 2.00 (0.079) 2.20 (0.087) 0.55 (0.022) 0.65 (0.025) 0.450 TYP (0.018) 1.15 (0.045) 1.35 (0.053) 0.10 (0.004) 0.35 (0.014) 0 10 DIMENSIONS ARE IN MILLIMETERS (INCHES) 13 88759/05-3.PM6.5J Page 13 2001.04.26, 9:15 AM Adobe PageMaker 6.5J/PPC Device Orientation REEL END VIEW TOP VIEW 4 mm CARRIER TAPE 8 mm 4PX USER FEED DIRECTION 4PX 4PX 4PX COVER TAPE Tape Dimensions For Outline 4T P P2 D P0 E F W C D1 t1 (CARRIER TAPE THICKNESS) Tt (COVER TAPE THICKNESS) K0 8° MAX. A0 DESCRIPTION 5° MAX. B0 SYMBOL SIZE (mm) SIZE (INCHES) CAVITY LENGTH WIDTH DEPTH PITCH BOTTOM HOLE DIAMETER A0 B0 K0 P D1 2.24 ± 0.10 2.34 ± 0.10 1.22 ± 0.10 4.00 ± 0.10 1.00 + 0.25 0.088 ± 0.004 0.092 ± 0.004 0.048 ± 0.004 0.157 ± 0.004 0.039 + 0.010 PERFORATION DIAMETER PITCH POSITION D P0 E 1.55 ± 0.05 4.00 ± 0.10 1.75 ± 0.10 0.061 ± 0.002 0.157 ± 0.004 0.069 ± 0.004 CARRIER TAPE WIDTH THICKNESS W t1 8.00 ± 0.30 0.255 ± 0.013 0.315 ± 0.012 0.010 ± 0.0005 COVER TAPE WIDTH TAPE THICKNESS C Tt 5.4 ± 0.10 0.062 ± 0.001 0.205 ± 0.004 0.0025 ± 0.00004 DISTANCE CAVITY TO PERFORATION (WIDTH DIRECTION) F 3.50 ± 0.05 0.138 ± 0.002 CAVITY TO PERFORATION (LENGTH DIRECTION) P2 2.00 ± 0.05 0.079 ± 0.002 14 88759/05-3.PM6.5J Page 14 2001.04.26, 9:15 AM Adobe PageMaker 6.5J/PPC 当社半導体部品のご使用にあたって 仕様及び仕様書に関して ・本仕様は製品改善および技術改良等により予告なく変更する場合があります。ご使用の際には最 新の仕様を問い合わせの上、用途のご確認をお願いいたします。 ・本仕様記載内容を無断で転載または複写することは禁じられております。 ・本仕様内でご紹介している応用例(アプリケーション)は当社製品がご使用できる代表的なもの です。ご使用において第三者の知的財産権などの保証または実施権の許諾に対して問題が発生し た場合、当社はその責任を負いかねます。 ・仕様書はメーカとユーザ間で交わされる製品に関する使用条件や誤使用防止事項を言及するもの です。仕様書の条件外で保存、使用された場合に動作不良、機械不良が発生しても当社は責任を 負いかねます。ただし、当社は納品後 1 年以内に当社の責任に帰すべき理由で、不良或いは故障 が発生した場合、無償で製品を交換いたします。 ・仕様書の製品が製造上および政策上の理由で満足できない場合には変更の権利を当社が有し、そ の交渉は当社の要求によりすみやかに行われることとさせて頂きます。なお、基本的に変更は3ヶ 月前、廃止は 1 年前にご連絡致しますが、例外もございますので予めご了承ください。 ご使用用途に関して ・当社の製品は、一般的な電子機器(コンピュータ、OA 機器、通信機器、AV 機器、家電製品、ア ミューズメント機器、計測機器、一般産業機器など)の一部に組み込まれて使用されるものです。 極めて高い信頼性と安全性が要求される用途(輸送機器、航空・宇宙機器、海底中継器、原子力 制御システム、生命維持のための医療機器などの財産・環境もしくは生命に悪影響を及ぼす可能 性を持つ用途)を意図し、設計も製造もされているものではありません。それゆえ、本製品の安 全性、品質および性能に関しては、仕様書(又は、カタログ)に記載してあること以外は明示的 にも黙示的にも一切の保証をするものではありません。 回路設計上のお願い ・当社は品質、信頼性の向上に努力しておりますが、一般的に半導体製品の誤動作や、故障の発生 は避けられません。本製品の使用に附随し、或いはこれに関連する誤動作、故障、寿命により、 他人の生命又は財産に被害や悪影響を及ぼし、或いは本製品を取り付けまたは使用した設備、施 設または機械器具に故障が生じ一般公衆に被害を起こしても、当社はその内容、程度を問わず、 一切の責任を負いかねます。 お客様の責任において、装置の安全設計をお願いいたします。 15 88759/05-3.PM6.5J Page 15 2001.04.26, 9:15 AM Adobe PageMaker 6.5J/PPC