FDS3572 N-Channel PowerTrench® MOSFET 80V, 8.9A, 16mΩ Features Applications • rDS(ON) = 14mΩ (Typ.), VGS = 10V, ID = 8.9A • Primary switch for Isolated DC/DC converters • Qg(tot) = 31nC (Typ.), VGS = 10V • Distributed Power and Intermediate Bus Architectures • Low Miller Charge • High Voltage Synchronous Rectifier for DC Bus Converters • Low QRR Body Diode • Optimized efficiency at high frequencies • UIS Capability (Single Pulse and Repetitive Pulse) Formerly developmental type 82663 Branding Dash 5 1 2 3 4 5 4 6 3 7 2 8 1 SO-8 MOSFET Maximum Ratings TA = 25°C unless otherwise noted Symbol VDSS Drain to Source Voltage Parameter Ratings 80 Units V VGS Gate to Source Voltage ±20 V Drain Current ID Continuous (TA = 25oC, VGS = 10V, RθJA = 50oC/W) 8.9 A Continuous (TA = 100oC, VGS = 10V, RθJA = 50oC/W) 5.6 A Pulsed EAS PD TJ, TSTG Figure 4 A Single Pulse Avalanche Energy (Note 1) 515 mJ Power dissipation 2.5 W Derate above 25oC 20 mW/oC Operating and Storage Temperature o -55 to 150 C Thermal Characteristics RθJC Thermal Resistance, Junction to Case (Note 2) 25 o C/W RθJA Thermal Resistance, Junction to Ambient at 10 seconds (Note 3) 50 oC/W RθJA Thermal Resistance, Junction to Ambient at 1000 seconds (Note 3) 85 o C/W Package Marking and Ordering Information Device Marking FDS3572 ©2003 Fairchild Semiconductor Corporation Device FDS3572 Package SO-8 Reel Size 330mm Tape Width 12mm Quantity 2500 units FDS3572 Rev. A FDS3572 November 2003 Symbol Parameter Test Conditions Min Typ Max Units 80 - - - V - 1 - - 250 VGS = ±20V - - ±100 nA V Off Characteristics BVDSS Drain to Source Breakdown Voltage IDSS Zero Gate Voltage Drain Current IGSS Gate to Source Leakage Current ID = 250µA, VGS = 0V VDS = 60V VGS = 0V TA = 150oC µA On Characteristics VGS(TH) rDS(ON) Gate to Source Threshold Voltage Drain to Source On Resistance VGS = VDS, ID = 250µA 2 - 4 ID = 8.9A, VGS = 10V - 0.014 0.016 ID = 5.6A, VGS = 6V - 0.019 0.029 ID = 8.9A, VGS = 10V, TA= 150oC - 0.027 0.032 - 1990 - pF - 320 - pF - 85 - pF - 31 41 nC - 4 5.2 nC - 9 - nC - 5 - nC - 7.5 - nC Ω Dynamic Characteristics CISS Input Capacitance COSS Output Capacitance CRSS Reverse Transfer Capacitance Qg(tot) Total Gate Charge at 10V VGS = 0V to 10V VGS = 0V to 2V Qg(TH) Threshold Gate Charge Qgs Gate to Source Gate Charge Qgs2 Gate Charge Threshold to Plateau Qgd Gate to Drain “Miller” Charge Switching Characteristics VDS = 25V, VGS = 0V, f = 1MHz VDD = 40V ID = 8.9A Ig = 1.0mA (VGS = 10V) tON Turn-On Time - - 40 ns td(ON) Turn-On Delay Time - 13 - ns tr Rise Time - 14 - ns td(OFF) Turn-Off Delay Time - 31 - ns tf Fall Time - 13 - ns tOFF Turn-Off Time - - 67 ns V VDD = 40V, ID = 8.9A VGS = 10V, RGS = 10Ω Drain-Source Diode Characteristics ISD = 8.9A - - 1.25 ISD = 4.3A - - 1.0 V Reverse Recovery Time ISD= 8.9A, dISD/dt= 100A/µs - - 50 ns Reverse Recovered Charge ISD= 8.9A, dISD/dt= 100A/µs - - 70 nC VSD Source to Drain Diode Voltage trr QRR Notes: 1: Starting TJ = 25°C, L = 21mH, IAS = 7A. 2: RθJA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. RθJC is guaranteed by design while RθJA is determined by the user’s board design. 3: RθJA is measured with 1.0 in2 copper on FR-4 board ©2003 Fairchild Semiconductor Corporation FDS3572 Rev. A FDS3572 Electrical Characteristics TA = 25°C unless otherwise noted 10 VGS = 10V 1.0 8 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 6 4 2 0.2 RθJA=50oC/W 0 0 0 25 50 75 100 125 150 25 50 TA , AMBIENT TEMPERATURE (oC) Figure 1. Normalized Power Dissipation vs Ambient Temperature 2 100 125 0.1 150 Figure 2. Maximum Continuous Drain Current vs Ambient Temperature DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 1 ZθJA, NORMALIZED THERMAL IMPEDANCE 75 TA , AMBIENT TEMPERATURE (oC) RθJA=50oC/W PDM t1 0.01 t2 SINGLE PULSE NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJA x RθJA + TA 0.001 10-5 10-4 10-3 10-2 10-1 100 t, RECTANGULAR PULSE DURATION (s) 101 102 103 Figure 3. Normalized Maximum Transient Thermal Impedance 1000 TA = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: IDM, PEAK CURRENT (A) TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION I = I25 VGS = 10V 150 - TA 125 100 10 5 10-5 10-4 10-3 10-2 10-1 t, PULSE WIDTH (s) 100 101 102 103 Figure 4. Peak Current Capability ©2003 Fairchild Semiconductor Corporation FDS3572 Rev. A FDS3572 Typical Characteristics TA = 25°C unless otherwise noted FDS3572 Typical Characteristics TA = 25°C unless otherwise noted 20 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] ID , DRAIN CURRENT (A) IAS, AVALANCHE CURRENT (A) 50 10 STARTING TJ = 25oC PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V 15 TJ = 150oC 10 TJ = -55oC TJ = 25oC 5 STARTING TJ = 150oC 0 1 1 0.1 10 3.0 100 3.5 tAV, TIME IN AVALANCHE (ms) Figure 5. Unclamped Inductive Switching Capability 5.0 5.5 20 VGS = 10V DRAIN TO SOURCE ON RESISTANCE (m Ω) 20 VGS = 6V VGS = 5V ID, DRAIN CURRENT (A) 4.5 Figure 6. Transfer Characteristics NOTE: Refer to Fairchild Application Notes AN7514 and AN7515 15 VGS = 4.5V 10 5 TA = 25oC PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 0 VGS = 6V 18 16 VGS = 10V 14 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 12 0 0.25 0.5 0.75 1.0 0 2 VDS , DRAIN TO SOURCE VOLTAGE (V) 4 6 8 10 ID, DRAIN CURRENT (A) Figure 7. Saturation Characteristics Figure 8. Drain to Source On Resistance vs Drain Current 2.0 1.2 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = VDS, ID = 250µA 1.1 NORMALIZED GATE THRESHOLD VOLTAGE NORMALIZED DRAIN TO SOURCE ON RESISTANCE 4.0 VGS , GATE TO SOURCE VOLTAGE (V) 1.5 1.0 1.0 0.9 0.8 0.7 VGS = 10V, ID = 8.9A 0.5 -80 -40 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) Figure 9. Normalized Drain to Source On Resistance vs Junction Temperature ©2003 Fairchild Semiconductor Corporation 160 0.6 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) Figure 10. Normalized Gate Threshold Voltage vs Junction Temperature FDS3572 Rev. A FDS3572 Typical Characteristics TA = 25°C unless otherwise noted 1.2 5000 C, CAPACITANCE (pF) NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE ID = 250µA 1.1 1.0 1000 CISS = CGS + CGD COSS ≅ CDS + CGD CRSS = CGD 100 VGS = 0V, f = 1MHz 0.9 -80 -40 0 40 80 120 10 0.1 160 1 TJ , JUNCTION TEMPERATURE (oC) 10 80 VDS , DRAIN TO SOURCE VOLTAGE (V) Figure 11. Normalized Drain to Source Breakdown Voltage vs Junction Temperature Figure 12. Capacitance vs Drain to Source Voltage VGS , GATE TO SOURCE VOLTAGE (V) 10 VDD = 40V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 8.9A ID = 1A 2 0 0 10 20 30 40 Qg, GATE CHARGE (nC) Figure 13. Gate Charge Waveforms for Constant Gate Currents ©2003 Fairchild Semiconductor Corporation FDS3572 Rev. A FDS3572 Test Circuits and Waveforms BVDSS VDS tP VDS L IAS VDD VARY tP TO OBTAIN + RG REQUIRED PEAK IAS VDD - VGS DUT tP IAS 0V 0 0.01Ω tAV Figure 14. Unclamped Energy Test Circuit Figure 15. Unclamped Energy Waveforms VDS VDD Qg(TOT) VDS L VGS VGS VGS = 10V + Qgs2 VDD DUT VGS = 2V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 Figure 16. Gate Charge Test Circuit Figure 17. Gate Charge Waveforms VDS tON tOFF td(ON) td(OFF) RL tr VDS tf 90% 90% + VGS VDD - 10% 0 10% DUT 90% RGS VGS 50% 50% PULSE WIDTH VGS 0 Figure 18. Switching Time Test Circuit ©2003 Fairchild Semiconductor Corporation 10% Figure 19. Switching Time Waveforms FDS3572 Rev. A The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. (T –T ) JM A P DM = -----------------------------R θJA maximum transient thermal impedance curve. Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2. The area, in square inches is the top copper area including the gate and source pads. R 26 (EQ. 2) θ JA = 64 + ------------------------------0.23 + Area (EQ. 1) In using surface mount devices such as the SO8 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. The transient thermal impedance (ZθJA) is also effected by varied top copper board area. Figure 22 shows the effect of copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square inches corresponding to the descending list in the graph. Spice and SABER thermal models are provided for each of the listed pad areas. Copper pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100ms. For pulse widths less than 100ms the transient thermal impedance is determined by the die and package. Therefore, CTHERM1 through CTHERM5 and RTHERM1 through RTHERM5 remain constant for each of the thermal models. A listing of the model component values is available in Table 1. 4. The use of thermal vias. 200 5. Air flow and board orientation. Fairchild provides thermal information to assist the designer’s preliminary application evaluation. Figure 21 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized RθJA = 64 + 26/(0.23+Area) RθJA (oC/W) 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. 150 100 50 0.001 0.01 0.1 1 AREA, TOP COPPER AREA (in2) 10 Figure 21. Thermal Resistance vs Mounting Pad Area ZθJA, THERMAL IMPEDANCE (oC/W) 150 120 90 COPPER BOARD AREA - DESCENDING ORDER 0.04 in2 0.28 in2 0.52 in2 0.76 in2 1.00 in2 60 30 0 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) 102 103 Figure 22. Thermal Impedance vs Mounting Pad Area ©2003 Fairchild Semiconductor Corporation FDS3572 Rev. A FDS3572 Thermal Resistance vs. Mounting Pad Area FDS3572 PSPICE Electrical Model .SUBCKT FDS3572 2 1 3 ; Ca 12 8 7e-10 Cb 15 14 7e-10 Cin 6 8 1.9e-9 rev November 2003 Dbody 7 5 DbodyMOD Dbreak 5 11 DbreakMOD Dplcap 10 5 DplcapMOD LDRAIN DPLCAP DRAIN 2 5 10 Ebreak 11 7 17 18 86.6 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1 5 51 EVTHRES + 19 8 + LGATE GATE 1 ESLC 11 + 17 EBREAK 18 - 50 RDRAIN 6 8 ESG DBREAK + RSLC2 It 8 17 1 Lgate 1 9 1e-9 Ldrain 2 5 1e-9 Lsource 3 7 0.1e-9 RLDRAIN RSLC1 51 EVTEMP RGATE + 18 22 9 20 21 16 DBODY MWEAK 6 MMED MSTRO RLGATE RLgate 1 9 10 RLdrain 2 5 10 RLsource 3 7 1 LSOURCE CIN 8 7 SOURCE 3 RSOURCE RLSOURCE Mmed 16 6 8 8 MmedMOD Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD S1A 12 S2A 14 13 13 8 S1B Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 RdrainMOD 5.5e-3 Rgate 9 20 1.3 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 Rsource 8 7 RsourceMOD 5.5e-3 Rvthres 22 8 Rvthresmod 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD CA RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 VBAT 5 8 EDS - IT 14 + + - + 8 22 RVTHRES Vbat 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*250),2.5))} .MODEL DbodyMOD D (IS=4.5E-12 RS=4.7e-3 TRS1=1.5e-3 TRS2=2e-5 XTI=3 CJO=1.4e-9 TT=3e-08 M=0.55) .MODEL DbreakMOD D (RS=2.5 TRS1=1e-4 TRS2=1e-6) .MODEL DplcapMOD D (CJO=4.6e-10 IS=1e-30 N=10 M=0.5) .MODEL MmedMOD NMOS (VTO=3.35 KP=3 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=1.3 T_ABS=25) .MODEL MstroMOD NMOS (VTO=3.9 KP=60 IS=1e-30 N=10 TOX=1 L=1u W=1u T_ABS=25) .MODEL MweakMOD NMOS (VTO=2.88 kp=0.04 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=13 RS=0.1 T_ABS=25) .MODEL RbreakMOD RES (TC1=1e-3 TC2=-7.5e-7) .MODEL RdrainMOD RES (TC1=4.8e-3 TC2=3e-5) .MODEL RSLCMOD RES (TC1=2.4e-2 TC2=1e-7) .MODEL RsourceMOD RES (TC1=1e-2 TC2=1e-6) .MODEL RvthresMOD RES (TC1=-4.4e-3 TC2=-1.4e-5) .MODEL RvtempMOD RES (TC1=-4e-3 TC2=2e-7) .MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4.0 VOFF=-2.0) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2.0 VOFF=-4.0) .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=0) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0 VOFF=-0.5) .ENDS Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2003 Fairchild Semiconductor Corporation FDS3572 Rev. A FDS3572 SABER Electrical Model REV November 2003 template FDS3572 n2,n1,n3 =m_temp electrical n2,n1,n3 number m_temp=25 { var i iscl dp..model dbodymod = (isl=4.5e-12,rs=4.7e-3,trs1=1.5e-3,trs2=2e-5,xti=3,cjo=1.4e-9,tt=3e-08,m=0.55) dp..model dbreakmod = (rs=2.5,trs1=1e-4,trs2=1e-6) dp..model dplcapmod = (cjo=4.6e-10,isl=10e-30,nl=10,m=0.5) m..model mmedmod = (type=_n,vto=3.35,kp=3,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=3.9,kp=60,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=2.88,kp=0.04,is=1e-30, tox=1,rs=0.1) sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4.0,voff=-2.0) DPLCAP 5 sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-2.0,voff=-4.0) 10 sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-0.5,voff=0) sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0,voff=-0.5) RSLC1 51 c.ca n12 n8 = 7e-10 RSLC2 c.cb n15 n14 = 7e-10 ISCL c.cin n6 n8 = 1.9e-9 spe.ebreak n11 n7 n17 n18 = 86.6 GATE spe.eds n14 n8 n5 n8 = 1 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE EVTEMP RGATE + 18 22 9 20 21 RLDRAIN 11 DBODY 16 MWEAK 6 EBREAK + 17 18 - MMED MSTRO RLGATE DRAIN 2 DBREAK 50 - dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod LDRAIN CIN 8 LSOURCE SOURCE 3 7 RSOURCE RLSOURCE i.it n8 n17 = 1 S1A 12 l.lgate n1 n9 = 1e-9 l.ldrain n2 n5 = 1e-9 l.lsource n3 n7 = 0.1e-9 13 8 RBREAK 15 14 13 S1B CA res.rlgate n1 n9 = 10 res.rldrain n2 n5 = 10 res.rlsource n3 n7 = 1 S2A 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 VBAT 5 8 EDS - IT 14 + + - m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u, temp=m_temp m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u, temp=m_temp m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u, temp=m_temp + 8 22 RVTHRES res.rbreak n17 n18 = 1, tc1=1e-3,tc2=-7.5e-7 res.rdrain n50 n16 = 5.5e-3, tc1=4.8e-3,tc2=3e-5 res.rgate n9 n20 = 1.3 res.rslc1 n5 n51 = 1e-6, tc1=2.4e-2,tc2=1e-7 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 5.5e-3, tc1=1e-2,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-4.4e-3,tc2=-1.4e-5 res.rvtemp n18 n19 = 1, tc1=-4e-3,tc2=2e-7 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/250))** 2.5)) } } ©2003 Fairchild Semiconductor Corporation FDS3572 Rev. A JUNCTION th REV Nov 2003 FDS3572 Copper Area =1.0 in2 CTHERM1 TH 8 2.0e-3 CTHERM2 8 7 5.0e-3 CTHERM3 7 6 1.0e-2 CTHERM4 6 5 4.0e-2 CTHERM5 5 4 9.0e-2 CTHERM6 4 3 2e-1 CTHERM7 3 2 1 CTHERM8 2 TL 3 FDS3572 SPICE Thermal Model RTHERM1 CTHERM1 8 RTHERM2 RTHERM1 TH 8 1e-1 RTHERM2 8 7 5e-1 RTHERM3 7 6 1 RTHERM4 6 5 5 RTHERM5 5 4 8 RTHERM6 4 3 12 RTHERM7 3 2 18 RTHERM8 2 TL 25 RTHERM3 SABER Thermal Model RTHERM4 CTHERM2 7 CTHERM3 6 CTHERM4 2 Copper Area = 1.0 in template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 8 =2.0e-3 ctherm.ctherm2 8 7 =5.0e-3 ctherm.ctherm3 7 6 =1.0e-2 ctherm.ctherm4 6 5 =4.0e-2 ctherm.ctherm5 5 4 =9.0e-2 ctherm.ctherm6 4 3 =2e-1 ctherm.ctherm7 3 2 1 ctherm.ctherm8 2 tl 3 5 RTHERM5 CTHERM5 4 RTHERM6 CTHERM6 3 rtherm.rtherm1 th 8 =1e-1 rtherm.rtherm2 8 7 =5e-1 rtherm.rtherm3 7 6 =1 rtherm.rtherm4 6 5 =5 rtherm.rtherm5 5 4 =8 rtherm.rtherm6 4 3 =12 rtherm.rtherm7 3 2 =18 rtherm.rtherm8 2 tl =25 } RTHERM7 CTHERM7 2 CTHERM8 RTHERM8 tl CASE TABLE 1. THERMAL MODELS 0.04 in2 0.28 in2 0.52 in2 0.76 in2 1.0 in2 CTHERM6 1.2e-1 1.5e-1 2.0e-1 2.0e-1 2.0e-1 CTHERM7 0.5 1.0 1.0 1.0 1.0 CTHERM8 1.3 2.8 3.0 3.0 3.0 RTHERM6 26 20 15 13 12 RTHERM7 39 24 21 19 18 RTHERM8 55 38.7 31.3 29.7 25 COMPONANT ©2003 Fairchild Semiconductor Corporation FDS3572 Rev. A TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ FACT Quiet Series™ ActiveArray™ FAST Bottomless™ FASTr™ CoolFET™ FPS™ CROSSVOLT™ FRFET™ DOME™ GlobalOptoisolator™ EcoSPARK™ GTO™ E2CMOSTM HiSeC™ EnSignaTM I2C™ FACT™ ImpliedDisconnect™ Across the board. Around the world.™ The Power Franchise™ Programmable Active Droop™ ISOPLANAR™ LittleFET™ MICROCOUPLER™ MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™ OPTOLOGIC OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerTrench QFET QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ SILENT SWITCHER SMART START™ SPM™ Stealth™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic TINYOPTO™ TruTranslation™ UHC™ UltraFET VCX™ DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 2. A critical component is any component of a life 1. Life support devices or systems are devices or support device or system whose failure to perform can systems which, (a) are intended for surgical implant into be reasonably expected to cause the failure of the life the body, or (b) support or sustain life, or (c) whose support device or system, or to affect its safety or failure to perform when properly used in accordance with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. I7