ISL9N302AS3ST N-Channel Logic Level PWM Optimized UltraFET® Trench Power MOSFETs General Description Features This device employs a new advanced trench MOSFET technology and features low gate charge while maintaining low on-resistance. • Fast switching Optimized for switching applications, this device improves the overall efficiency of DC/DC converters and allows operation to higher switching frequencies. • rDS(ON) = 0.0027Ω (Typ), VGS = 4.5V Applications • Qgd (Typ) = 31nC • DC/DC converters • CISS (Typ) = 11000pF • rDS(ON) = 0.0019Ω (Typ), VGS = 10V • Qg (Typ) = 110nC, VGS = 5V DRAIN (FLANGE) D GATE G SOURCE S TO-263AB MOSFET Maximum Ratings TA = 25°C unless otherwise noted Symbol VDSS Drain to Source Voltage Parameter Ratings 30 Units V VGS Gate to Source Voltage ±20 V A Drain Current ID Continuous (TC = 25oC, VGS = 10V) 75 Continuous (TC = 100oC, VGS = 4.5V) 75 A Continuous (TC = 25oC, VGS = 10V, R θJA = 43oC/W) 28 A Pulsed PD Power dissipation Derate above 25oC TJ, TSTG Operating and Storage Temperature Figure 4 A 345 2.3 W W/oC o -55 to 175 C Thermal Characteristics 0.43 o C/W Thermal Resistance Junction to Ambient TO-263 62 o C/W Thermal Resistance Junction to Ambient TO-263, 1in2 copper pad area 43 o C/W RθJC Thermal Resistance Junction to Case TO-263 RθJA RθJA Package Marking and Ordering Information Device Marking N302AS ©2002 Fairchild Semiconductor Corporation Device ISL9N302AS3ST Package TO-263AB Reel Size 330mm Tape Width 24mm Quantity 800 units Rev. B1,April 2002 ISL9N302AS3ST April 2002 Symbol Parameter Test Conditions Min Typ Max Units 30 - - - V - 1 - - 250 µA - - ±100 nA 3 V Off Characteristics BVDSS Drain to Source Breakdown Voltage IDSS Zero Gate Voltage Drain Current IGSS Gate to Source Leakage Current ID = 250µA, VGS = 0V VDS = 25V VGS = 0V TC = 150o VGS = ±20V On Characteristics VGS(TH) rDS(ON) Gate to Source Threshold Voltage Drain to Source On Resistance VGS = VDS, ID = 250µA 1 ID = 75A, VGS = 10V - 0.0019 0.0023 - ID = 75A, VGS = 4.5V - 0.0027 0.0033 - 11000 - - 2000 - pF - 900 - pF nC Ω Dynamic Characteristics CISS Input Capacitance COSS Output Capacitance CRSS Reverse Transfer Capacitance VDS = 15V, VGS = 0V, f = 1MHz Qg(TOT) Total Gate Charge at 10V VGS = 0V to 10V Qg(5) Total Gate Charge at 5V Qg(TH) Threshold Gate Charge Qgs Gate to Source Gate Charge VGS = 0V to 5V V = 15V DD VGS = 0V to 1V ID = 75A Ig = 1.0mA Qgd Gate to Drain “Miller” Charge pF 200 300 - 110 165 nC - 12 18 nC - 25 - nC - 31 - nC ns Switching Characteristics (VGS = 4.5V) tON Turn-On Time - - 224 td(ON) Turn-On Delay Time - 29 - ns tr Rise Time - 120 - ns td(OFF) Turn-Off Delay Time - 45 - ns tf Fall Time - 34 - ns tOFF Turn-Off Time - - 119 ns ns VDD = 15V, ID = 28A VGS = 4.5V, RGS = 1.5Ω Switching Characteristics (VGS = 10V) tON Turn-On Time - - 204 td(ON) Turn-On Delay Time - 16 - ns tr Rise Time - 120 - ns td(OFF) Turn-Off Delay Time - 70 - ns tf Fall Time - 30 - ns tOFF Turn-Off Time - - 150 ns 480 - - µs V VDD = 15V, ID = 28A VGS = 10V, R GS = 1.5Ω Unclamped Inductive Switching tAV Avalanche Time ID = 7.2A, L = 3.0mH Drain-Source Diode Characteristics ISD = 75A - - 1.25 ISD = 40A - - 1.0 V Reverse Recovery Time ISD = 75A, dISD /dt = 100A/µs - - 42 ns Reverse Recovered Charge ISD = 75A, dISD /dt = 100A/µs - - 34 nC VSD Source to Drain Diode Voltage trr QRR ©2002 Fairchild Semiconductor Corporation Rev. B1 April 2002 ISL9N302AS3ST Electrical Characteristics TA = 25°C unless otherwise noted ISL9N302AS3ST Typical Characteristic POWER DISSIPATION MULTIPLIER 1.2 80 ID, DRAIN CURRENT (A) 1.0 0.8 0.6 0.4 VGS = 10V 60 VGS = 4.5V 40 20 0.2 0 0 0 25 50 75 100 150 125 175 25 50 75 TC , CASE TEMPERATURE (oC) 100 125 150 175 TC, CASE TEMPERATURE (o C) Figure 1. Normalized Power Dissipation vs Ambient Temperature Figure 2. Maximum Continuous Drain Current vs Case Temperature 2 ZθJC, NORMALIZED THERMAL IMPEDANCE 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 100 101 t , RECTANGULAR PULSE DURATION (s) Figure 3. Normalized Maximum Transient Thermal Impedance IDM , PEAK CURRENT (A) 5000 1000 TC = 25 oC TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: VGS = 10V 175 - TC I = I25 150 VGS = 5V 100 50 10-5 10-4 10-3 10-2 10-1 100 101 t, PULSE WIDTH (s) Figure 4. Peak Current Capability ©2002 Fairchild Semiconductor Corporation Rev. B1 April 2002 ISL9N302AS3ST Typical Characteristic (Continued) 150 150 PULSE DURATION = 80µs 125 ID, DRAIN CURRENT (A) ID , DRAIN CURRENT (A) VGS = 3.5V DUTY CYCLE = 0.5% MAX VDD = 15V 125 100 75 TJ = 25oC 50 TJ = 175 oC VGS = 3V 100 75 VGS = 4.5V 50 25 TC = 25oC VGS = 10V 25 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TJ = -55oC 0 0 1.5 2.0 2.5 3.0 0 3.5 0.5 VGS , GATE TO SOURCE VOLTAGE (V) Figure 5. Transfer Characteristics 2.0 1.8 NORMALIZED DRAIN TO SOURCE ON RESISTANCE PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 8 rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) 1.5 Figure 6. Saturation Characteristics 10 ID = 75A 6 ID = 10A 4 2 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 1.6 1.4 1.2 1.0 0.8 VGS = 10V, ID = 75A 0.6 0 2 4 6 8 -80 10 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC) VGS, GATE TO SOURCE VOLTAGE (V) Figure 7. Drain to Source On Resistance vs Gate Voltage and Drain Current Figure 8. Normalized Drain to Source On Resistance vs Junction Temperature 1.2 1.4 VGS = VDS, ID = 250µA ID = 250µA NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.2 NORMALIZED GATE THRESHOLD VOLTAGE 1.0 VDS , DRAIN TO SOURCE VOLTAGE (V) 1.0 0.8 0.6 0.4 1.1 1.0 0.9 0.2 -80 -40 0 40 80 120 TJ, JUNCTION TEMPERATURE 160 200 (o C) Figure 9. Normalized Gate Threshold Voltage vs Junction Temperature ©2002 Fairchild Semiconductor Corporation -80 -40 0 40 80 120 TJ , JUNCTION TEMPERATURE 160 200 (oC) Figure 10. Normalized Drain to Source Breakdown Voltage vs Junction Temperature Rev. B1 April 2002 ISL9N302AS3ST Typical Characteristic (Continued) 20000 VGS , GATE TO SOURCE VOLTAGE (V) 10 10000 C, CAPACITANCE (pF) CISS = CGS + CGD COSS ≅ CDS + C GD CRSS = C GD 1000 VGS = 0V, f = 1MHz 500 0.1 1 10 VDD = 15V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 75A ID = 28A 2 0 0 30 50 100 VDS , DRAIN TO SOURCE VOLTAGE (V) 150 200 250 Qg, GATE CHARGE (nC) Figure 11. Capacitance vs Drain to Source Voltage Figure 12. Gate Charge Waveforms for Constant Gate Currents 1000 1400 VGS = 10V, VDD = 15V, ID = 28A VGS = 4.5V, VDD = 15V, ID = 28A 1200 600 tr SWITCHING TIME (ns) SWITCHING TIME (ns) 800 tf 400 td(OFF) 1000 800 td(OFF) 600 tf 400 tr 200 200 td(ON) td(ON) 0 0 0 10 20 30 40 0 50 RGS, GATE TO SOURCE RESISTANCE (Ω) 10 20 30 40 50 RGS, GATE TO SOURCE RESISTANCE (Ω) Figure 13. Switching Time vs Gate Resistance Figure 14. Switching Time vs Gate Resistance Test Circuits and Waveforms BVDSS VDS tP VDS L IAS VDD VARY tP TO OBTAIN REQUIRED PEAK I AS + RG VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV Figure 15. Unclamped Energy Test Circuit ©2002 Fairchild Semiconductor Corporation Figure 16. Unclamped Energy Waveforms Rev. B1 April 2002 VDS VDD RL Qg(TOT) VDS VGS = 10V VGS Qg(5) + VDD VGS = 5V VGS - VGS = 1V DUT 0 Ig(REF) Qg(TH) Qgs Qgd Ig(REF) 0 Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms VDS tON tOFF td(ON) td(OFF) tr RL VDS tf 90% 90% + VGS VDD - 10% 0 10% DUT 90% RGS VGS VGS 0 Figure 19. Switching Time Test Circuit ©2002 Fairchild Semiconductor Corporation 50% 10% 50% PULSE WIDTH Figure 20. Switching Time Waveforms Rev. B1 April 2002 ISL9N302AS3ST Test Circuits and Waveforms (Continued) ISL9N302AS3ST Thermal Resistance vs. Mounting Pad Area (T –T ) JM A P D M = ----------------------------Z θJA (EQ. 1) In using surface mount devices such as the TO-263 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 80 RθJA = 26.51+ 19.84/(0.262+Area) 60 RθJA (oC/W) The maximum rated junction temperature, TJM , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM , in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance R θJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. 40 20 0.1 1 10 AREA, TOP COPPER AREA (in2) Figure 21. Thermal Resistance vs Mounting Pad Area 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Fairchild provides thermal information to assist the designer’s preliminary application evaluation. Figure 21 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. Displayed on the curve are R θJA values listed in the Electrical Specifications table. The points were chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, PDM . Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2. R θJA is defined as the natural log of the area times a coefficient added to a constant. The area, in square inches is the top copper area including the gate and source pads. 19.84 ( 0.262 + Area ) RθJA = 26.51 + ------------------------------------- ©2002 Fairchild Semiconductor Corporation (EQ. 2) Rev. B1 April 2002 SUBCKT ISL9N302AS3ST 2 1 3 ; rev May 2001 CA 12 8 5e-9 Cb 15 14 5.5e-9 Cin 6 8 1e-8 LDRAIN Dbody 7 5 DbodyMOD Dbreak 5 11 DbreakMOD Dplcap 10 5 DplcapMOD DPLCAP 10 5 51 - EVTEMP RGATE + 18 22 9 20 GATE 1 11 + 17 EBREAK 18 - 50 EVTHRES 16 21 + 19 8 + LGATE ESLC RDRAIN 6 8 ESG DBREAK + RSLC2 It 8 17 1 6 DBODY MWEAK MMED MSTRO RLGATE LSOURCE CIN RLgate 1 9 56.1 RLdrain 2 5 15 RLsource 3 7 19.8 8 SOURCE 3 7 RSOURCE RLSOURCE S1A 12 13 8 Mmed 16 6 8 8 MmedMOD Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 RdrainMOD 4e-4 Rgate 9 20 5.93e-1 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 Rsource 8 7 RsourceMOD 1.3e-3 Rvthres 22 8 RvthresMOD 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD RLDRAIN RSLC1 51 Ebreak 11 7 17 18 30.4 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1 Lgate 1 9 5.618e-9 Ldrain 2 5 1e-9 Lsource 3 7 1.98e-9 DRAIN 2 5 S2A 15 14 13 S1B CA RBREAK 17 18 RVTEMP S2B 13 CB 6 8 EGS 5 8 EDS - 19 VBAT + IT 14 + + - 8 22 RVTHRES Vbat 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*500),3))} .MODEL DbodyMOD D (IS=2e-10 N=1.05 RS=1.8e-3 TRS1=9e-4 TRS2=1e-6 + CJO=4.9e-9 M=4.9e-1 TT=1e-13 XTI=0) .MODEL DbreakMOD D (RS=2.5e-1 TRS1=1e-3 TRS2=-8.9e-6) .MODEL DplcapMOD D (CJO=3.5e-9 IS=1e-30 N=10 M=4.7e-1) .MODEL MstroMOD NMOS (VTO=2.1 KP=550 IS=1e-25 N=10 TOX=1 L=1u W=1u) .MODEL MmedMOD NMOS (VTO=1.6 KP=30 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=5.93e-1) .MODEL MweakMOD NMOS (VTO=1.22 KP=1e-1 IS=1e-40 N=10 TOX=1 L=1u W=1u RG=5.93 RS=1e-1) .MODEL RbreakMOD RES (TC1=1e-3 TC2=-7e-7) .MODEL RdrainMOD RES (TC1=1.2e-2 TC2=2.5e-5) .MODEL RSLCMOD RES (TC1=3.5e-9 TC2=5e-6) .MODEL RsourceMOD RES (TC1=1e-3 TC2=1e-6) .MODEL RvthresMOD RES (TC1=-2.9e-3 TC2=-9e-6) .MODEL RvtempMOD RES (TC1=-1.8e-3 TC2=1e-6) .MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3.5 VOFF=-1.5) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1.5 VOFF=-3.5) .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.4 VOFF=0.1) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0.1 VOFF=-0.4) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2002 Fairchild Semiconductor Corporation Rev. B1 April 2002 ISL9N302AS3ST PSPICE Electrical Model REV May 2001 template ISL9N302AS3ST n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl=2e-10,nl=1.05,rs=1.8e-3,trs1=9e-4,trs2=1e-6,cjo=4.9e-9,m=4.9e-1,tt=1e-13,xti=0) dp..model dbreakmod = (rs=2.5e-1,trs1=1e-3,trs2=-8.9e-6) dp..model dplcapmod = (cjo=3.5e-9,isl=10e-30,nl=10,m=4.7e-1) m..model mstrongmod = (type=_n,vto=2.1,kp=550,is=1e-25, tox=1) m..model mmedmod = (type=_n,vto=1.6,kp=30,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=1.22,kp=1e-1,is=1e-40, tox=1,rs=1e-1) sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-3.5,voff=-1.5) sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-1.5,voff=-3.5) LDRAIN sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-0.4,voff=0.1) DPLCAP 5 DRAIN sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.1,voff=-0.4) 2 c.ca n12 n8 = 5e-9 10 c.cb n15 n14 = 5.5e-9 RLDRAIN RSLC1 c.cin n6 n8 = 1e-8 51 RSLC2 dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod spe.ebreak n11 n7 n17 n18 = 30.4 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 ISCL RDRAIN 6 8 ESG LGATE EVTEMP RGATE + 18 22 9 20 6 MWEAK EBREAK + MMED RLGATE res.rlgate n1 n9 = 56.1 res.rldrain n2 n5 = 15 res.rlsource n3 n7 = 19.8 DBODY MSTRO i.it n8 n17 = 1 CIN l.lgate n1 n9 = 5.618e-9 l.ldrain n2 n5 = 1e-9 l.lsource n3 n7 = 1.98e-9 11 EVTHRES 16 21 + 19 8 + GATE 1 DBREAK 50 - 17 18 - 8 LSOURCE SOURCE 3 7 RSOURCE RLSOURCE S1A 12 13 8 S2A m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u 15 14 13 S1B CA RBREAK 17 18 RVTEMP S2B 13 CB 6 8 EGS - 19 IT 14 + + VBAT 5 8 EDS - + 8 22 res.rbreak n17 n18 = 1, tc1=1e-3,tc2=-7e-7 res.rdrain n50 n16 = 4e-4, tc1=1.2e-2,tc2=2.5e-5 res.rgate n9 n20 = 5.93e-1 res.rslc1 n5 n51 = 1e-6, tc1=3.5e-9,tc2=5e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 1.3e-3, tc1=1e-3,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-2.9e-3,tc2=-9e-6 res.rvtemp n18 n19 = 1, tc1=-1.8e-3,tc2=1e-6 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod RVTHRES v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/500))** 3)) } ©2002 Fairchild Semiconductor Corporation Rev. B1 April 2002 ISL9N302AS3ST SABER Electrical Model th ISL9N302AS3ST SPICE Thermal Model JUNCTION REV May 2001 ISL9N302AS3ST CTHERM1 th 6 4.5e-3 CTHERM2 6 5 2e-2 CTHERM3 5 4 1.5e-2 CTHERM4 4 3 2.5e-2 CTHERM5 3 2 7e-2 CTHERM6 2 tl 2.5e-1 RTHERM1 th 6 2e-3 RTHERM2 6 5 8.5e-3 RTHERM3 5 4 6e-2 RTHERM4 4 3 8e-2 RTHERM5 3 2 9e-2 RTHERM6 2 tl 1e-1 SABER Thermal Model RTHERM1 CTHERM1 6 RTHERM2 CTHERM2 5 CTHERM3 RTHERM3 SABER thermal model ISL9N302AS3ST template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 4.5e-3 ctherm.ctherm2 6 5 = 2e-2 ctherm.ctherm3 5 4 = 1.5e-2 ctherm.ctherm4 4 3 = 2.5e-2 ctherm.ctherm5 3 2 = 7e-2 ctherm.ctherm6 2 tl = 2.5e-1 4 RTHERM4 CTHERM4 3 rtherm.rtherm1 th 6 =2e-3 rtherm.rtherm2 6 5 = 8.5e-3 rtherm.rtherm3 5 4 = 6e-2 rtherm.rtherm4 4 3 = 8e-2 rtherm.rtherm5 3 2 = 9e-2 rtherm.rtherm6 2 tl = 1e-1 } RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 tl ©2002 Fairchild Semiconductor Corporation CASE Rev. B1 April 2002 TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx Bottomless CoolFET CROSSVOLT DenseTrench DOME EcoSPARK E2CMOSTM EnSignaTM FACT FACT Quiet Series FAST â FASTr FRFET GlobalOptoisolator GTO HiSeC I2C ISOPLANAR LittleFET MicroFET MicroPak MICROWIRE OPTOLOGIC â OPTOPLANAR PACMAN POP Power247 PowerTrench â QFET QS QT Optoelectronics Quiet Series SILENT SWITCHER â UHC SMART START UltraFET â SPM VCX STAR*POWER Stealth SuperSOT-3 SuperSOT-6 SuperSOT-8 SyncFET TinyLogic TruTranslation STAR*POWER is used under license DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILDS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 2. A critical component is any component of a life 1. Life support devices or systems are devices or support device or system whose failure to perform can systems which, (a) are intended for surgical implant into be reasonably expected to cause the failure of the life the body, or (b) support or sustain life, or (c) whose support device or system, or to affect its safety or failure to perform when properly used in accordance with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. H5