70-W212NMA400NB02-M209P62 flowMNPC 4w 1200V/400A Features flowSCREW 4w housing ● Mixed voltage NPC ● Low inductive ● High power screw interface Target Applications ● Solar inverter ● UPS Schematic ● High speed motor drive Types ● 70-W212NMA400NB02-M209P62 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 358 A 800 A 864 W ±20 V 10 800 µs V 175 °C 650 V 232 A 600 A 306 W 175 °C half bridge IGBT (T1, T4) Collector-emitter break down voltage DC collector current Pulsed collector current VCES IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Th=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tj≤150°C VGE=15V Tjmax neutral point FWD (D2, D3) Peak Repetitive Reverse Voltage VRRM Tj=25°C DC forward current IFAV Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per FWD Ptot Tj=Tjmax Maximum Junction Temperature copyright by Vincotech Tjmax 1 Th=80°C Th=80°C Revision: 1.2 70-W212NMA400NB02-M209P62 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 650 V 260 A 900 A 500 W ±20 V 10 360 µs V 175 °C 1200 V 252 A Tj=25°C 1720 A Tj=150°C 3700 A2s 528 W 175 °C neutral point IGBT (T2, T3) Collector-emitter break down voltage DC collector current VCES IC Tj=Tjmax Th=80°C Pulsed collector current ICpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE Short circuit ratings Maximum Junction Temperature tSC Tj≤150°C VCC VGE=15V Th=80°C Tjmax half bridge FWD (D1, D4) Peak Repetitive Reverse Voltage VRRM DC forward current IFAV Surge forward current IFSM Tj=25°C Th=80°C Tj=Tjmax tp=10ms, sin 180° I2t-value I2t Power dissipation per FWD Ptot Maximum Junction Temperature Tj=Tjmax Th=80°C Tjmax General Module Properties Material of module baseplate Cu Material of internal isulation Al2O3 Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Comparative tracking index copyright by Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 1.2 70-W212NMA400NB02-M209P62 Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=150°C Tj=25°C Tj=125°C 5,5 6 6,5 1 1,90 2,21 3 half bridge IGBT (T1, T4) Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. FWD ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,04 400 tf 3000 Rgoff=1 Ω Rgon=1 Ω Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 100um preapplied PCM RthJC 100um grease 1W/mK ±15 350 400 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V mA nA Ω none tr td(off) 2 V 120 121 22 23 160 193 45 69 2,96 5,40 12,25 17,66 ns mWs 40000 f=1MHz 0 Tj=25°C 25 8000 pF 680 ±15 600 400 Tj=25°C nC 932 0,11 K/W Thermal resistance chip to case per chip 0,13 neutral point FWD (D2, D3) FWD forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 300 IRRM trr Qrr Rgon=1 Ω ±15 350 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH 100um preapplied PCM RthJC 100um grease 1W/mK 400 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,2 1,59 1,48 245 320 132 267 16 31 8684 3334 4,06 7,81 2,26 V A ns µC A/µs mWs 0,31 K/W Thermal resistance chip to case per chip copyright by Vincotech 0,36 3 Revision: 1.2 70-W212NMA400NB02-M209P62 Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 5,1 5,80 6,4 1,08 1,61 1,85 2,3 neutral point IGBT (T2, T3) Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl FWD ICES 0 650 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time VCE=VGE 0,0048 300 td(on) tr td(off) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Rgoff=2 Ω Rgon=2 Ω ±15 700 300 2,2 3000 none 191 192 32 34 239 262 89 123 4,29 6,19 10,19 14,03 V V mA nA Ω ns mWs 18480 f=1MHz 0 25 Tj=25°C pF Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 100um preapplied PCM 0,19 Thermal resistance chip to case per chip RthJC 100um grease 1W/mK 0,22 548 15 480 75 3000 nC K/W copyright by Vincotech 4 Revision: 1.2 70-W212NMA400NB02-M209P62 Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Unit Typ Max 2,21 2,25 2,76 half bridge FWD (D1, D4) FWD forward voltage VF Reverse leakage current Ir Peak reverse recovery current 650 IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current 300 Rgon=2 Ω 350 ±15 di(rec)max /dt Reverse recovery energy Erec Thermal resistance chip to heatsink per chip RthJH 100um preapplied PCM RthJC 100um grease 1W/mK 300 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,48 56 309 441 66 136 19 38 14653 14438 4,36 9,72 V mA A ns µC A/µs mWs 0,18 K/W Thermal resistance chip to case per chip 0,20 Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P Tj=25°C R100=1486 Ω Tj=100°C Tj=25°C Ω 22000 -12 +14 % 200 mW Tj=25°C 2 mW/K B-value B(25/50) Tol. ±3% Tj=25°C 3950 K B-value B(25/100) Tol. ±3% Tj=25°C 3996 K Power dissipation constant Vincotech NTC Reference copyright by Vincotech B 5 Revision: 1.2 70-W212NMA400NB02-M209P62 Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max Module Properties Module inductance (from chips to PCB) Module inductance (from PCB to PCB using Intercon board) Resistance of Intercon boards (from PCB to PCB using Intercon board) LsCE LsCE C-PCB Rcc'1+EE' Mounting torque M Mounting torque M Terminal connection torque M Weight G copyright by Vincotech Tc=25°C, per switch Screw M4 - mounting according to valid application note FSWB1-4TY-M-*-HI Screw M5 - mounting according to valid application note FSWB1-4TY-M-*-HI Screw M6 - mounting according to valid application note FSWB1-4TY-M-*-HI 6 5 nH 3 nH 1,5 mΩ 2 2,2 Nm 4 6 Nm 2,5 5 Nm 710 g Revision: 1.2 70-W212NMA400NB02-M209P62 Buck operation Half Bridge IGBT (T1, T4) & Neutral Point FWD (D2, D3) IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 2000 IC (A) IC (A) 2000 1600 1600 1200 1200 800 800 400 400 0 0 1 2 3 4 0 5 0 1 2 3 4 5 V CE (V) At tp = Tj = VGE from V CE (V) At tp = Tj = VGE from 350 µs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 350 µs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 1400 IF (A) IC (A) 400 350 1200 300 1000 250 800 200 600 150 Tj = 25°C 400 100 Tj = Tjmax-25°C Tj = Tjmax-25°C 50 0 0 0 At tp = VCE = Tj = 25°C 200 2 350 10 copyright by Vincotech 4 6 8 10 0 V GE (V) 12 At tp = µs V 7 0,5 350 1 1,5 2 2,5 3 V F (V) 3,5 µs Revision: 1.2 70-W212NMA400NB02-M209P62 Buck operation Half Bridge IGBT (T1, T4) & Neutral Point FWD (D2, D3) IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) 40 E (mWs) 40 E (mWs) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) Eon High T 30 30 Eon Low T Eoff High T Eoff Low T 20 20 Eoff High T Eon High T Eoff Low T 10 10 Eon Low T 0 0 200 400 600 I C (A) 0 800 0 2 4 6 8 10 R G ( Ω) With an inductive load at Tj = °C 25 / 125 VCE = 350 V VGE = ±15 V Rgon = 1 Ω Rgoff = 1 Ω With an inductive load at Tj = °C 25 / 125 VCE = 350 V VGE = ±15 V IC = A 400 FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) 10 10 E (mWs) Erec High T E (mWs) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 8 8 6 6 Erec Low T Erec High T 4 4 Erec Low T 2 2 0 0 200 400 600 I C (A) 0 800 0 With an inductive load at Tj = °C 25 / 125 VCE = 350 V VGE = ±15 V Rgon = 1 Ω copyright by Vincotech 2 4 6 8 R G ( Ω) 10 With an inductive load at Tj = °C 25 / 125 VCE = 350 V VGE = ±15 V IC = 400 A 8 Revision: 1.2 70-W212NMA400NB02-M209P62 Buck operation Half Bridge IGBT (T1, T4) & Neutral Point FWD (D2, D3) IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 t (ms) t (ms) 1,00 tdon tdoff tdoff tdon 0,10 tr 0,10 tf tf tr 0,01 0,01 0,00 0,00 0 200 400 600 I C (A) 800 0 With an inductive load at Tj = °C 125 VCE = 350 V VGE = ±15 V Rgon = 1 Ω Rgoff = 1 Ω 2 4 6 8 R G ( Ω) 10 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = A 400 FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,5 t rr(ms) t rr(ms) 0,5 trr High T 0,4 0,4 trr Low T trr High T 0,3 0,3 0,2 0,2 trr Low T 0,1 0,1 0 0 0 At Tj = VCE = VGE = Rgon = 200 25 / 125 350 ±15 1 copyright by Vincotech 400 600 I C (A) 0 800 At Tj = VR = IF = VGE = °C V V Ω 9 2 25 / 125 350 400 ±15 4 6 8 R gon ( Ω) 10 °C V A V Revision: 1.2 70-W212NMA400NB02-M209P62 Buck operation Half Bridge IGBT (T1, T4) & Neutral Point FWD (D2, D3) FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 40 Qrr (µC) Qrr (µC) 40 32 32 24 24 16 16 Qrr High T Qrr Low T Qrr High T 8 8 Qrr Low T 0 0 0 At Tj = VCE = VGE = Rgon = 200 400 600 800 I C (A) 0 At Tj = VR = IF = VGE = °C V V Ω 25 / 125 350 ±15 1 FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 400 25 / 125 350 400 ±15 4 6 8 10 R gon ( Ω) °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 400 IrrM (A) IRRM High T IrrM (A) 2 320 320 IRRM Low T 240 240 160 160 IRRM High T 80 0 0 0 At Tj = VCE = VGE = Rgon = IRRM Low T 80 200 25 / 125 350 ±15 1 copyright by Vincotech 400 600 I C (A) 800 0 At Tj = VR = IF = VGE = °C V V Ω 10 2 25 / 125 350 400 ±15 4 6 8 R gon ( Ω) 10 °C V A V Revision: 1.2 70-W212NMA400NB02-M209P62 Buck operation Half Bridge IGBT (T1, T4) & Neutral Point FWD (D2, D3) FWD 30000 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 14000 dIo/dt T direc / dt (A/ms) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) dIrec/dt T 25000 dIrec/dt T dI0/dt T 12000 10000 20000 8000 15000 6000 10000 4000 5000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 200 25 / 125 350 ±15 1 400 600 0 800 I C (A) At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 2 25 / 125 350 400 ±15 4 6 8 R gon ( Ω) 10 °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 ZthJH (K/W) ZthJH (K/W) 100 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-3 10 -5 At D= RthJH = 10 -4 10 -3 10 -2 10 -1 10 0 t p (s) 10-3 1012 10 10-5 At D= RthJH = tp / T 0,11 K/W IGBT thermal model values R (C/W) 0,02 0,02 0,02 0,04 0,01 0,01 10-4 10-3 10-2 10-1 100 t p (s) 1012 10 tp / T 0,31 K/W FWD thermal model values Tau (s) 2,9E+00 6,6E-01 1,3E-01 3,1E-02 5,0E-03 5,6E-04 copyright by Vincotech D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 R (C/W) 0,04 0,04 0,06 0,11 0,04 0,02 11 Tau (s) 5,1E+00 1,1E+00 1,8E-01 3,7E-02 1,1E-02 1,8E-03 Revision: 1.2 70-W212NMA400NB02-M209P62 Buck operation Half Bridge IGBT (T1, T4) & Neutral Point FWD (D2, D3) IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 550 Ptot (W) IC (A) 800 500 450 600 400 350 300 400 250 200 150 200 100 50 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 400 Ptot (W) IF (A) 600 200 300 400 200 200 100 0 0 0 At Tj = 50 175 copyright by Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 12 50 175 100 150 T h ( o C) 200 °C Revision: 1.2 70-W212NMA400NB02-M209P62 copyright by Vincotech 13 Revision: 1.2 70-W212NMA400NB02-M209P62 Buck operation Half Bridge IGBT (T1, T4) & Neutral Point FWD (D2, D3) IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 1000 IC MAX Ic MODULE 600 VCE MAX Ic CHIP 800 400 200 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = Rgon = Rgoff = 125 °C 1 1 copyright by Vincotech Ω Ω 14 Revision: 1.2 70-W212NMA400NB02-M209P62 Boost operation Neutral Point IGBT (T2, T3) & Half Bridge FWD ((D1, D4) IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 1200 IC (A) IC (A) 1200 1000 1000 800 800 600 600 400 400 200 200 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 350 µs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 350 µs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 350 5 IF (A) IC (A) 1200 300 1000 250 800 200 Tj = 25°C Tj = Tjmax-25°C 600 150 400 100 Tj = 25°C Tj = Tjmax-25°C 200 50 0 0 0 At tp = VCE = 2 350 10 copyright by Vincotech 4 6 8 10 V GE (V) 0 12 At tp = µs V 15 1 350 2 3 4 5 V F (V) 6 µs Revision: 1.2 70-W212NMA400NB02-M209P62 Boost operation Neutral Point IGBT (T2, T3) & Half Bridge FWD ((D1, D4) IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) E (mWs) 30 30 Eon High T 25 25 Eoff High T Eon Low T 20 20 Eoff High T Eoff Low T 15 15 Eoff Low T Eon High T 10 10 Eon Low T 5 5 0 0 0 100 200 300 400 500 I C (A) 0 600 With an inductive load at Tj = °C 25 / 125 VCE = 350 V VGE = ±15 V Rgon = 2 Ω Rgoff = 2 Ω 2 4 6 R G( Ω ) 8 10 With an inductive load at Tj = 25 / 125 °C VCE = 350 V VGE = ±15 V IC = A 300 FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 15 E (mWs) E (mWs) 15 Erec High T 12 12 9 9 Erec High T Erec Low T 6 6 3 3 Erec Low T 0 0 0 100 200 300 400 500 600 0 I C (A) With an inductive load at Tj = °C 25 / 125 VCE = 350 V VGE = ±15 V Rgon = 2 Ω copyright by Vincotech 2 4 6 8 RG (Ω ) 10 With an inductive load at Tj = 25 / 125 °C VCE = 350 V VGE = ±15 V IC = 300 A 16 Revision: 1.2 70-W212NMA400NB02-M209P62 Boost operation Neutral Point IGBT (T2, T3) & Half Bridge FWD ((D1, D4) IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( µs) tdoff tdon tf 0,1 tdoff t ( µs) 1 tdon tr 0,1 tf tr 0,01 0,01 0,001 0,001 0 100 200 300 400 500 I C (A) 0 600 With an inductive load at Tj = °C 125 VCE = 350 V VGE = ±15 V Rgon = 2 Ω Rgoff = 2 Ω 2 4 6 8 10 R G( Ω ) With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 300 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 1 t rr(ms) t rr(ms) 0,2 trr High T 0,16 0,8 trr High T 0,12 0,6 trr Low T 0,08 0,4 trr Low T 0,04 0,2 0 0 0 100 200 300 400 500 600 0 2 4 I C (A) At Tj = VCE = VGE = Rgon = 25 / 125 350 ±15 2 copyright by Vincotech At Tj = VR = IF = VGE = °C V V Ω 17 25 / 125 350 300 ±15 6 8 R gon ( Ω) 10 °C V A V Revision: 1.2 70-W212NMA400NB02-M209P62 Boost operation Neutral Point IGBT (T2, T3) & Half Bridge FWD ((D1, D4) FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 60 Qrr (µC) Qrr (µC) 60 Qrr High T 50 50 40 40 Qrr High T 30 30 Qrr Low T 20 20 Qrr Low T 10 10 0 0 0 At At Tj = VCE = VGE = Rgon = 100 25 / 125 350 ±15 2 200 300 400 500 0 600 I C (A) At Tj = VR = IF = VGE = °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 2 25 / 125 350 300 ±15 4 6 8 10 °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 500 IrrM (A) 500 R gon ( Ω) IRRM High T 400 400 IRRM Low T 300 300 200 200 IRRM High T 100 IRRM Low T 100 0 0 0 At Tj = VCE = VGE = Rgon = 100 25 / 125 350 ±15 2 copyright by Vincotech 200 300 400 500 I C (A) 600 0 At Tj = VR = IF = VGE = °C V V Ω 18 2 25 / 125 350 300 ±15 4 6 8 R gon ( Ω) 10 °C V A V Revision: 1.2 70-W212NMA400NB02-M209P62 Boost operation Neutral Point IGBT (T2, T3) & Half Bridge FWD ((D1, D4) FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 16000 direc / dt (A/ms) dIrec/dt T direc / dt (A/ms) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIo/dt T 14000 25000 dIrec/dt T dI0/dt T 20000 12000 10000 15000 8000 10000 6000 4000 5000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 100 25 / 125 350 ±15 2 200 300 400 500 I C (A)600 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) -3 8 R gon ( Ω) 10 °C V A V FWD ZthJH (K/W) ZthJH (K/W) 10 6 100 10-1 -2 25 / 125 350 300 ±15 4 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 10 2 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-5 At D= RthJH = 10-4 tp / T 0,19 10-3 10-2 10-1 100 t p (s) 101 10 -3 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 At D= RthJH = K/W 10-4 tp / T 0,18 10-3 10-2 10-1 100 t p (s) 101 K/W FWD thermal model values Tau (s) 5,05 1,19 0,24 0,05 0,02 0,00 copyright by Vincotech -2 10-5 IGBT thermal model values R (C/W) 0,02 0,03 0,03 0,06 0,04 0,01 10 R (C/W) 0,02 0,03 0,05 0,06 0,01 0,01 19 Tau (s) 4,17 0,86 0,15 0,03 0,01 0,00 Revision: 1.2 70-W212NMA400NB02-M209P62 Boost operation Neutral Point IGBT (T2, T3) & Half Bridge FWD ((D1, D4) IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 400 Ptot (W) IC (A) 600 350 500 300 400 250 300 200 150 200 100 100 50 0 0 0 50 At Tj = 100 150 T h ( o C) 200 0 At Tj = VGE = ºC 175 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) ºC V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 400 Ptot (W) IF (A) 1000 200 350 800 300 250 600 200 400 150 100 200 50 0 0 0 At Tj = 50 175 copyright by Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 20 50 175 100 150 Th ( o C) 200 ºC Revision: 1.2 70-W212NMA400NB02-M209P62 Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 copyright by Vincotech 50 75 100 T (°C) 125 21 Revision: 1.2 70-W212NMA400NB02-M209P62 Switching Definitions Half Bridge General conditions = 125 °C Tj = 1Ω Rgon Rgoff = 1Ω Half Bridge IGBT Figure 1 Half Bridge IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 200 125 IC % tdoff % 100 150 VGE 90% IC 75 VGE 100 VCE 50 VCE 90% tEoff tdon VCE 50 25 IC 1% VGE 10% 0 0 -50 0 0,2 0,4 0,6 0,8 1 2,9 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = Half Bridge IGBT 3,1 -15 15 700 400 0,12 0,24 3,2 time(us) 3,3 V V V A µs µs Half Bridge IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 120 % 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs -15 15 700 400 0,19 0,86 Figure 3 100 tEon VGE -25 -0,2 VCE 3% IC 10% Turn-on Switching Waveforms & definition of tr 200 fitted IC % IC 150 IC 90% 80 100 60 IC 60% IC 90% VCE IC 40% 40 VCE tr 50 20 IC 10% IC10% 0 -20 0,05 0 tf -50 0,1 0,15 0,2 0,25 0,3 0,35 3,1 time (us) VC (100%) = IC (100%) = tf = copyright by Vincotech 700 400 0,07 VC (100%) = IC (100%) = tr = V A µs 22 3,15 3,2 700 400 0,02 3,25 time(us) 3,3 V A µs Revision: 1.2 70-W212NMA400NB02-M209P62 Switching Definitions Half Bridge Half Bridge IGBT Figure 5 Half Bridge IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % Eon % Eoff 100 100 75 75 Poff 50 50 IC 1% 25 25 VGE 90% VCE 3% VGE 10% Pon 0 0 tEon tEoff -25 -25 -0,2 0 Poff (100%) = Eoff (100%) = tEoff = 0,2 0,4 280 17,66 0,86 kW mJ µs 0,6 2,9 0,8 time (us) 1 Pon (100%) = Eon (100%) = tEon = 3 3,1 280 5,40 0,24 3,2 3,3 time(us) 3,4 kW mJ µs Half Bridge IGBT Figure 7 Turn-off Switching Waveforms & definition of trr 150 % Id 100 trr 50 fitted Vd 0 IRRM 10% -50 IRRM 90% IRRM 100% -100 3 3,1 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright by Vincotech 3,2 700 400 -320 0,27 3,3 3,4 time(us) 3,5 V A A µs 23 Revision: 1.2 70-W212NMA400NB02-M209P62 Switching Definitions Half Bridge Neutral Point FWD Figure 8 Neutral Point FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 125 % % Id Erec Qrr 100 100 tErec 75 tQrr 50 50 0 25 Prec -50 0 -100 2,95 3,1 3,25 3,4 3,55 3,7 -25 2,95 3,85 time(us) Id (100%) = Qrr (100%) = tQrr = 400 30,81 0,54 3,1 Prec (100%) = Erec (100%) = tErec = A µC µs 3,25 280 7,81 0,54 3,4 3,55 3,7 time(us) 3,85 kW mJ µs Measurement circuits Figure 10 Half Bridge stage switching measurement circuit copyright by Vincotech 24 Revision: 1.2 70-W212NMA400NB02-M209P62 Switching Definitions Neutral Point General conditions = 125 °C Tj = 2Ω Rgon Rgoff = 2Ω Neutral Point IGBT Figure 1 Neutral Point IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 250 125 tdoff % IC % 100 200 VGE 90% IC 75 150 VCE 50 100 VCE 90% VGE tEoff tdon VCE 25 50 IC 1% VGE 0 -25 -0,2 IC 10% VGE 10% 0 VCE 3% tEon -50 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,2 0,4 -15 15 700 300 0,26 0,77 V V V A µs µs 0,6 0,8 time (us) 1 3,9 Neutral Point IGBT -15 15 700 300 0,19 0,28 4,2 4,3 4,4 time(us) V V V A µs µs Neutral Point IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 125 250 % fitted IC 4,1 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = Figure 3 % 4 IC 200 100 IC 90% 150 75 IC 60% VCE 100 50 IC 90% IC 40% tr VCE 50 25 IC10% IC 10% 0 0 tf -50 4,15 -25 0,1 0,18 VC (100%) = IC (100%) = tf = copyright by Vincotech 0,26 700 300 0,12 0,34 0,42 time (us) 0,5 VC (100%) = IC (100%) = tr = V A µs 25 4,2 4,25 700 300 0,03 4,3 4,35 time(us) 4,4 V A µs Revision: 1.2 70-W212NMA400NB02-M209P62 Switching Definitions Neutral Point Neutral Point IGBT Figure 5 Neutral Point IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % % Eon Eoff 100 100 75 75 50 50 Poff Pon 25 25 IC 1% VGE 90% VGE 10% VCE 3% 0 0 tEon tEoff -25 -0,2 0 Poff (100%) = Eoff (100%) = tEoff = 0,2 0,4 210 14,03 0,77 kW mJ µs 0,6 -25 3,95 0,8 time (us) 1 Pon (100%) = Eon (100%) = tEon = 4,05 4,15 210 6,19 0,28 4,25 time(us) 4,35 kW mJ µs Neutral Point IGBT Figure 7 Turn-off Switching Waveforms & definition of trr 150 % Id 100 trr 50 Vd 0 fitted IRRM 10% -50 -100 IRRM 90% IRRM 100% -150 4,1 4,2 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright by Vincotech 4,3 700 300 -385 0,15 4,4 time(us) 4,5 V A A µs 26 Revision: 1.2 70-W212NMA400NB02-M209P62 Switching Definitions Neutral Point Half Bridge FWD Figure 8 Half Bridge FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 125 150 % % Id Qrr Erec 100 100 tQrr 50 75 0 50 -50 25 tErec Prec -100 0 -150 -25 4 4,2 4,4 4,6 4,8 5 5,2 5,4 4 time(us) Id (100%) = Qrr (100%) = tQrr = 300 38,18 1,00 4,2 Prec (100%) = Erec (100%) = tErec = A µC µs 4,4 210 9,72 1,00 4,6 4,8 5 5,2 5,4 time(us) kW mJ µs Measurement circuits Figure 10 Neutral Point stage switching measurement circuit copyright by Vincotech 27 Revision: 1.2 70-W212NMA400NB02-M209P62 Ordering Code and Marking - Outline - Pinout Pinout copyright by Vincotech 28 Revision: 1.2 70-W212NMA400NB02-M209P62 Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Ordering Code 70-W212NMA400NB02-M209P62 70-W212NMA400NB02-M209P62-/3/ Version without PCM with PCM in DataMatrix as in packaging barcode as M209P62 M209P62 M209P62 M209P62-/3/ Outline Pin 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 X1 4,5 4,5 39,5 39,5 1,95 4,85 39,15 42,05 -2,2 -2,2 Driver pins Y1 Function 78,65 G1-1 81,55 E1-1 78,65 G1-2 81,55 E1-2 68,4 E2-1 68,4 G2-1 68,4 G2-2 68,4 E2-2 46 G3-1 48,9 E3-1 1.11 1.12 1.13 1.14 1.15 1.16 1.17 46,2 46,2 -6,75 -6,75 50,75 50,75 19,45 46 48,9 29,2 32,1 29,2 32,1 30,15 G3-2 E3-2 E4-1 G4-1 E4-2 G4-2 Desat-DC+ 1.18 1.19 1.20 1.21 1.22 24,55 19,45 24,55 67,65 67,65 30,15 44,65 44,65 86,7 89,8 Desat-DC+ Desat-GND Desat-GND NTC NTC copyright by Vincotech Group T1 T1 T1 T1 T2 T2 T2 T2 T3 T3 T3 T3 T4 T4 T4 T4 M4 screw 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 X3 -37,4 81,4 -37,4 81,4 -37,4 81,4 -37,4 81,4 M6 screw 2.1 2.2 2.3 2.4 2.5 2.6 X2 0 22 44 0 22 44 Low current connections Y3 Function 89,8 DC+ 89,8 DC+ 65,2 CE 65,2 CE 45,2 Phase 45,2 Phase 20,6 DC20,6 DCPower connections Y2 0 0 0 110,4 110,4 110,4 Function Phase Phase Phase DC+ Neutral DC- 29 Revision: 1.2 70-W212NMA400NB02-M209P62 DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright by Vincotech 30 Revision: 1.2