70-W212NMA400NB02-M209P62 Maximum Ratings

70-W212NMA400NB02-M209P62
flowMNPC 4w
1200V/400A
Features
flowSCREW 4w housing
● Mixed voltage NPC
● Low inductive
● High power screw interface
Target Applications
● Solar inverter
● UPS
Schematic
● High speed motor drive
Types
● 70-W212NMA400NB02-M209P62
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
358
A
800
A
864
W
±20
V
10
800
µs
V
175
°C
650
V
232
A
600
A
306
W
175
°C
half bridge IGBT (T1, T4)
Collector-emitter break down voltage
DC collector current
Pulsed collector current
VCES
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tj≤150°C
VGE=15V
Tjmax
neutral point FWD (D2, D3)
Peak Repetitive Reverse Voltage
VRRM
Tj=25°C
DC forward current
IFAV
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per FWD
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright by Vincotech
Tjmax
1
Th=80°C
Th=80°C
Revision: 1.2
70-W212NMA400NB02-M209P62
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
650
V
260
A
900
A
500
W
±20
V
10
360
µs
V
175
°C
1200
V
252
A
Tj=25°C
1720
A
Tj=150°C
3700
A2s
528
W
175
°C
neutral point IGBT (T2, T3)
Collector-emitter break down voltage
DC collector current
VCES
IC
Tj=Tjmax
Th=80°C
Pulsed collector current
ICpuls
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Short circuit ratings
Maximum Junction Temperature
tSC
Tj≤150°C
VCC
VGE=15V
Th=80°C
Tjmax
half bridge FWD (D1, D4)
Peak Repetitive Reverse Voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
Tj=25°C
Th=80°C
Tj=Tjmax
tp=10ms, sin 180°
I2t-value
I2t
Power dissipation per FWD
Ptot
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tjmax
General Module Properties
Material of module baseplate
Cu
Material of internal isulation
Al2O3
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Comparative tracking index
copyright by Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 1.2
70-W212NMA400NB02-M209P62
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=125°C
5,5
6
6,5
1
1,90
2,21
3
half bridge IGBT (T1, T4)
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. FWD
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,04
400
tf
3000
Rgoff=1 Ω
Rgon=1 Ω
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
100um preapplied
PCM
RthJC
100um grease
1W/mK
±15
350
400
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
mA
nA
Ω
none
tr
td(off)
2
V
120
121
22
23
160
193
45
69
2,96
5,40
12,25
17,66
ns
mWs
40000
f=1MHz
0
Tj=25°C
25
8000
pF
680
±15
600
400
Tj=25°C
nC
932
0,11
K/W
Thermal resistance chip to case per chip
0,13
neutral point FWD (D2, D3)
FWD forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
300
IRRM
trr
Qrr
Rgon=1 Ω
±15
350
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
100um preapplied
PCM
RthJC
100um grease
1W/mK
400
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,2
1,59
1,48
245
320
132
267
16
31
8684
3334
4,06
7,81
2,26
V
A
ns
µC
A/µs
mWs
0,31
K/W
Thermal resistance chip to case per chip
copyright by Vincotech
0,36
3
Revision: 1.2
70-W212NMA400NB02-M209P62
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
5,1
5,80
6,4
1,08
1,61
1,85
2,3
neutral point IGBT (T2, T3)
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl FWD
ICES
0
650
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,0048
300
td(on)
tr
td(off)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Rgoff=2 Ω
Rgon=2 Ω
±15
700
300
2,2
3000
none
191
192
32
34
239
262
89
123
4,29
6,19
10,19
14,03
V
V
mA
nA
Ω
ns
mWs
18480
f=1MHz
0
25
Tj=25°C
pF
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
100um preapplied
PCM
0,19
Thermal resistance chip to case per chip
RthJC
100um grease
1W/mK
0,22
548
15
480
75
3000
nC
K/W
copyright by Vincotech
4
Revision: 1.2
70-W212NMA400NB02-M209P62
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Unit
Typ
Max
2,21
2,25
2,76
half bridge FWD (D1, D4)
FWD forward voltage
VF
Reverse leakage current
Ir
Peak reverse recovery current
650
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
300
Rgon=2 Ω
350
±15
di(rec)max
/dt
Reverse recovery energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
100um preapplied
PCM
RthJC
100um grease
1W/mK
300
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,48
56
309
441
66
136
19
38
14653
14438
4,36
9,72
V
mA
A
ns
µC
A/µs
mWs
0,18
K/W
Thermal resistance chip to case per chip
0,20
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Tj=100°C
Tj=25°C
Ω
22000
-12
+14
%
200
mW
Tj=25°C
2
mW/K
B-value
B(25/50) Tol. ±3%
Tj=25°C
3950
K
B-value
B(25/100) Tol. ±3%
Tj=25°C
3996
K
Power dissipation constant
Vincotech NTC Reference
copyright by Vincotech
B
5
Revision: 1.2
70-W212NMA400NB02-M209P62
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Unit
Max
Module Properties
Module inductance (from chips to PCB)
Module inductance (from PCB to PCB using Intercon board)
Resistance of Intercon boards (from PCB to PCB using Intercon
board)
LsCE
LsCE C-PCB
Rcc'1+EE'
Mounting torque
M
Mounting torque
M
Terminal connection torque
M
Weight
G
copyright by Vincotech
Tc=25°C, per switch
Screw M4 - mounting according to valid application note
FSWB1-4TY-M-*-HI
Screw M5 - mounting according to valid application note
FSWB1-4TY-M-*-HI
Screw M6 - mounting according to valid application note
FSWB1-4TY-M-*-HI
6
5
nH
3
nH
1,5
mΩ
2
2,2
Nm
4
6
Nm
2,5
5
Nm
710
g
Revision: 1.2
70-W212NMA400NB02-M209P62
Buck operation
Half Bridge IGBT (T1, T4) & Neutral Point FWD (D2, D3)
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
2000
IC (A)
IC (A)
2000
1600
1600
1200
1200
800
800
400
400
0
0
1
2
3
4
0
5
0
1
2
3
4
5
V CE (V)
At
tp =
Tj =
VGE from
V CE (V)
At
tp =
Tj =
VGE from
350
µs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
350
µs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
1400
IF (A)
IC (A)
400
350
1200
300
1000
250
800
200
600
150
Tj = 25°C
400
100
Tj = Tjmax-25°C
Tj = Tjmax-25°C
50
0
0
0
At
tp =
VCE =
Tj = 25°C
200
2
350
10
copyright by Vincotech
4
6
8
10
0
V GE (V) 12
At
tp =
µs
V
7
0,5
350
1
1,5
2
2,5
3
V F (V) 3,5
µs
Revision: 1.2
70-W212NMA400NB02-M209P62
Buck operation
Half Bridge IGBT (T1, T4) & Neutral Point FWD (D2, D3)
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
40
E (mWs)
40
E (mWs)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
Eon High T
30
30
Eon Low T
Eoff High T
Eoff Low T
20
20
Eoff High T
Eon High T
Eoff Low T
10
10
Eon Low T
0
0
200
400
600
I C (A)
0
800
0
2
4
6
8
10
R G ( Ω)
With an inductive load at
Tj =
°C
25 / 125
VCE =
350
V
VGE =
±15
V
Rgon =
1
Ω
Rgoff =
1
Ω
With an inductive load at
Tj =
°C
25 / 125
VCE =
350
V
VGE =
±15
V
IC =
A
400
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
10
10
E (mWs)
Erec High T
E (mWs)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
8
8
6
6
Erec Low T
Erec High T
4
4
Erec Low T
2
2
0
0
200
400
600
I C (A)
0
800
0
With an inductive load at
Tj =
°C
25 / 125
VCE =
350
V
VGE =
±15
V
Rgon =
1
Ω
copyright by Vincotech
2
4
6
8
R G ( Ω)
10
With an inductive load at
Tj =
°C
25 / 125
VCE =
350
V
VGE =
±15
V
IC =
400
A
8
Revision: 1.2
70-W212NMA400NB02-M209P62
Buck operation
Half Bridge IGBT (T1, T4) & Neutral Point FWD (D2, D3)
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
t (ms)
t (ms)
1,00
tdon
tdoff
tdoff
tdon
0,10
tr
0,10
tf
tf
tr
0,01
0,01
0,00
0,00
0
200
400
600
I C (A)
800
0
With an inductive load at
Tj =
°C
125
VCE =
350
V
VGE =
±15
V
Rgon =
1
Ω
Rgoff =
1
Ω
2
4
6
8
R G ( Ω)
10
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
A
400
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,5
t rr(ms)
t rr(ms)
0,5
trr High T
0,4
0,4
trr Low T
trr High T
0,3
0,3
0,2
0,2
trr Low T
0,1
0,1
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
200
25 / 125
350
±15
1
copyright by Vincotech
400
600
I C (A)
0
800
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
9
2
25 / 125
350
400
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
Revision: 1.2
70-W212NMA400NB02-M209P62
Buck operation
Half Bridge IGBT (T1, T4) & Neutral Point FWD (D2, D3)
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
40
Qrr (µC)
Qrr (µC)
40
32
32
24
24
16
16
Qrr High T
Qrr Low T
Qrr High T
8
8
Qrr Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
200
400
600
800
I C (A)
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
25 / 125
350
±15
1
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
400
25 / 125
350
400
±15
4
6
8
10
R gon ( Ω)
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
400
IrrM (A)
IRRM High T
IrrM (A)
2
320
320
IRRM Low T
240
240
160
160
IRRM High T
80
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
IRRM Low T
80
200
25 / 125
350
±15
1
copyright by Vincotech
400
600
I C (A)
800
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
10
2
25 / 125
350
400
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
Revision: 1.2
70-W212NMA400NB02-M209P62
Buck operation
Half Bridge IGBT (T1, T4) & Neutral Point FWD (D2, D3)
FWD
30000
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
14000
dIo/dt T
direc / dt (A/ms)
direc / dt (A/ms)
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
dIrec/dt T
25000
dIrec/dt T
dI0/dt T
12000
10000
20000
8000
15000
6000
10000
4000
5000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
200
25 / 125
350
±15
1
400
600
0
800
I C (A)
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
2
25 / 125
350
400
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
ZthJH (K/W)
ZthJH (K/W)
100
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-3
10
-5
At
D=
RthJH =
10
-4
10
-3
10
-2
10
-1
10
0
t p (s)
10-3
1012
10
10-5
At
D=
RthJH =
tp / T
0,11
K/W
IGBT thermal model values
R (C/W)
0,02
0,02
0,02
0,04
0,01
0,01
10-4
10-3
10-2
10-1
100
t p (s)
1012
10
tp / T
0,31
K/W
FWD thermal model values
Tau (s)
2,9E+00
6,6E-01
1,3E-01
3,1E-02
5,0E-03
5,6E-04
copyright by Vincotech
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
R (C/W)
0,04
0,04
0,06
0,11
0,04
0,02
11
Tau (s)
5,1E+00
1,1E+00
1,8E-01
3,7E-02
1,1E-02
1,8E-03
Revision: 1.2
70-W212NMA400NB02-M209P62
Buck operation
Half Bridge IGBT (T1, T4) & Neutral Point FWD (D2, D3)
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
550
Ptot (W)
IC (A)
800
500
450
600
400
350
300
400
250
200
150
200
100
50
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
400
Ptot (W)
IF (A)
600
200
300
400
200
200
100
0
0
0
At
Tj =
50
175
copyright by Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
12
50
175
100
150
T h ( o C)
200
°C
Revision: 1.2
70-W212NMA400NB02-M209P62
copyright by Vincotech
13
Revision: 1.2
70-W212NMA400NB02-M209P62
Buck operation
Half Bridge IGBT (T1, T4) & Neutral Point FWD (D2, D3)
IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
1000
IC MAX
Ic
MODULE
600
VCE MAX
Ic CHIP
800
400
200
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tj =
Rgon =
Rgoff =
125 °C
1
1
copyright by Vincotech
Ω
Ω
14
Revision: 1.2
70-W212NMA400NB02-M209P62
Boost operation
Neutral Point IGBT (T2, T3) & Half Bridge FWD ((D1, D4)
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
1200
IC (A)
IC (A)
1200
1000
1000
800
800
600
600
400
400
200
200
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
350
µs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
350
µs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
350
5
IF (A)
IC (A)
1200
300
1000
250
800
200
Tj = 25°C
Tj = Tjmax-25°C
600
150
400
100
Tj = 25°C
Tj = Tjmax-25°C
200
50
0
0
0
At
tp =
VCE =
2
350
10
copyright by Vincotech
4
6
8
10
V GE (V)
0
12
At
tp =
µs
V
15
1
350
2
3
4
5
V F (V)
6
µs
Revision: 1.2
70-W212NMA400NB02-M209P62
Boost operation
Neutral Point IGBT (T2, T3) & Half Bridge FWD ((D1, D4)
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
E (mWs)
30
30
Eon High T
25
25
Eoff High T
Eon Low T
20
20
Eoff High T
Eoff Low T
15
15
Eoff Low T
Eon High T
10
10
Eon Low T
5
5
0
0
0
100
200
300
400
500
I C (A)
0
600
With an inductive load at
Tj =
°C
25 / 125
VCE =
350
V
VGE =
±15
V
Rgon =
2
Ω
Rgoff =
2
Ω
2
4
6
R G( Ω )
8
10
With an inductive load at
Tj =
25 / 125
°C
VCE =
350
V
VGE =
±15
V
IC =
A
300
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
15
E (mWs)
E (mWs)
15
Erec High T
12
12
9
9
Erec High T
Erec Low T
6
6
3
3
Erec Low T
0
0
0
100
200
300
400
500
600
0
I C (A)
With an inductive load at
Tj =
°C
25 / 125
VCE =
350
V
VGE =
±15
V
Rgon =
2
Ω
copyright by Vincotech
2
4
6
8
RG (Ω )
10
With an inductive load at
Tj =
25 / 125
°C
VCE =
350
V
VGE =
±15
V
IC =
300
A
16
Revision: 1.2
70-W212NMA400NB02-M209P62
Boost operation
Neutral Point IGBT (T2, T3) & Half Bridge FWD ((D1, D4)
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( µs)
tdoff
tdon
tf
0,1
tdoff
t ( µs)
1
tdon
tr
0,1
tf
tr
0,01
0,01
0,001
0,001
0
100
200
300
400
500
I C (A)
0
600
With an inductive load at
Tj =
°C
125
VCE =
350
V
VGE =
±15
V
Rgon =
2
Ω
Rgoff =
2
Ω
2
4
6
8
10
R G( Ω )
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
300
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
1
t rr(ms)
t rr(ms)
0,2
trr High T
0,16
0,8
trr High T
0,12
0,6
trr Low T
0,08
0,4
trr Low T
0,04
0,2
0
0
0
100
200
300
400
500
600
0
2
4
I C (A)
At
Tj =
VCE =
VGE =
Rgon =
25 / 125
350
±15
2
copyright by Vincotech
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
17
25 / 125
350
300
±15
6
8
R gon ( Ω)
10
°C
V
A
V
Revision: 1.2
70-W212NMA400NB02-M209P62
Boost operation
Neutral Point IGBT (T2, T3) & Half Bridge FWD ((D1, D4)
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
60
Qrr (µC)
Qrr (µC)
60
Qrr High T
50
50
40
40
Qrr High T
30
30
Qrr Low T
20
20
Qrr Low T
10
10
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
100
25 / 125
350
±15
2
200
300
400
500
0
600
I C (A)
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
2
25 / 125
350
300
±15
4
6
8
10
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
500
IrrM (A)
500
R gon ( Ω)
IRRM High T
400
400
IRRM Low T
300
300
200
200
IRRM High T
100
IRRM Low T
100
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
100
25 / 125
350
±15
2
copyright by Vincotech
200
300
400
500
I C (A)
600
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
18
2
25 / 125
350
300
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
Revision: 1.2
70-W212NMA400NB02-M209P62
Boost operation
Neutral Point IGBT (T2, T3) & Half Bridge FWD ((D1, D4)
FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
16000
direc / dt (A/ms)
dIrec/dt T
direc / dt (A/ms)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIo/dt T
14000
25000
dIrec/dt T
dI0/dt T
20000
12000
10000
15000
8000
10000
6000
4000
5000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
100
25 / 125
350
±15
2
200
300
400
500
I C (A)600
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
-3
8
R gon ( Ω) 10
°C
V
A
V
FWD
ZthJH (K/W)
ZthJH (K/W)
10
6
100
10-1
-2
25 / 125
350
300
±15
4
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
10
2
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-5
At
D=
RthJH =
10-4
tp / T
0,19
10-3
10-2
10-1
100
t p (s)
101
10
-3
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
At
D=
RthJH =
K/W
10-4
tp / T
0,18
10-3
10-2
10-1
100
t p (s)
101
K/W
FWD thermal model values
Tau (s)
5,05
1,19
0,24
0,05
0,02
0,00
copyright by Vincotech
-2
10-5
IGBT thermal model values
R (C/W)
0,02
0,03
0,03
0,06
0,04
0,01
10
R (C/W)
0,02
0,03
0,05
0,06
0,01
0,01
19
Tau (s)
4,17
0,86
0,15
0,03
0,01
0,00
Revision: 1.2
70-W212NMA400NB02-M209P62
Boost operation
Neutral Point IGBT (T2, T3) & Half Bridge FWD ((D1, D4)
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
400
Ptot (W)
IC (A)
600
350
500
300
400
250
300
200
150
200
100
100
50
0
0
0
50
At
Tj =
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
175
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
ºC
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
400
Ptot (W)
IF (A)
1000
200
350
800
300
250
600
200
400
150
100
200
50
0
0
0
At
Tj =
50
175
copyright by Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
20
50
175
100
150
Th ( o C)
200
ºC
Revision: 1.2
70-W212NMA400NB02-M209P62
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
copyright by Vincotech
50
75
100
T (°C)
125
21
Revision: 1.2
70-W212NMA400NB02-M209P62
Switching Definitions Half Bridge
General conditions
= 125 °C
Tj
= 1Ω
Rgon
Rgoff
= 1Ω
Half Bridge IGBT
Figure 1
Half Bridge IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
200
125
IC
%
tdoff
%
100
150
VGE 90%
IC
75
VGE
100
VCE
50
VCE 90%
tEoff
tdon
VCE
50
25
IC 1%
VGE 10%
0
0
-50
0
0,2
0,4
0,6
0,8
1
2,9
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
Half Bridge IGBT
3,1
-15
15
700
400
0,12
0,24
3,2
time(us)
3,3
V
V
V
A
µs
µs
Half Bridge IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
120
%
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
-15
15
700
400
0,19
0,86
Figure 3
100
tEon
VGE
-25
-0,2
VCE 3%
IC 10%
Turn-on Switching Waveforms & definition of tr
200
fitted
IC
%
IC
150
IC 90%
80
100
60
IC 60%
IC 90%
VCE
IC 40%
40
VCE
tr
50
20
IC 10%
IC10%
0
-20
0,05
0
tf
-50
0,1
0,15
0,2
0,25
0,3
0,35
3,1
time (us)
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
700
400
0,07
VC (100%) =
IC (100%) =
tr =
V
A
µs
22
3,15
3,2
700
400
0,02
3,25
time(us)
3,3
V
A
µs
Revision: 1.2
70-W212NMA400NB02-M209P62
Switching Definitions Half Bridge
Half Bridge IGBT
Figure 5
Half Bridge IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
Eon
%
Eoff
100
100
75
75
Poff
50
50
IC 1%
25
25
VGE 90%
VCE 3%
VGE 10%
Pon
0
0
tEon
tEoff
-25
-25
-0,2
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
0,4
280
17,66
0,86
kW
mJ
µs
0,6
2,9
0,8 time (us) 1
Pon (100%) =
Eon (100%) =
tEon =
3
3,1
280
5,40
0,24
3,2
3,3
time(us)
3,4
kW
mJ
µs
Half Bridge IGBT
Figure 7
Turn-off Switching Waveforms & definition of trr
150
%
Id
100
trr
50
fitted
Vd
0
IRRM 10%
-50
IRRM 90%
IRRM 100%
-100
3
3,1
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright by Vincotech
3,2
700
400
-320
0,27
3,3
3,4
time(us)
3,5
V
A
A
µs
23
Revision: 1.2
70-W212NMA400NB02-M209P62
Switching Definitions Half Bridge
Neutral Point FWD
Figure 8
Neutral Point FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
125
%
%
Id
Erec
Qrr
100
100
tErec
75
tQrr
50
50
0
25
Prec
-50
0
-100
2,95
3,1
3,25
3,4
3,55
3,7
-25
2,95
3,85
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
400
30,81
0,54
3,1
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
3,25
280
7,81
0,54
3,4
3,55
3,7
time(us)
3,85
kW
mJ
µs
Measurement circuits
Figure 10
Half Bridge stage switching measurement circuit
copyright by Vincotech
24
Revision: 1.2
70-W212NMA400NB02-M209P62
Switching Definitions Neutral Point
General conditions
= 125 °C
Tj
= 2Ω
Rgon
Rgoff
= 2Ω
Neutral Point IGBT
Figure 1
Neutral Point IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
250
125
tdoff
%
IC
%
100
200
VGE 90%
IC
75
150
VCE
50
100
VCE 90%
VGE
tEoff
tdon
VCE
25
50
IC 1%
VGE
0
-25
-0,2
IC 10%
VGE 10%
0
VCE 3%
tEon
-50
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,2
0,4
-15
15
700
300
0,26
0,77
V
V
V
A
µs
µs
0,6
0,8
time (us)
1
3,9
Neutral Point IGBT
-15
15
700
300
0,19
0,28
4,2
4,3
4,4
time(us)
V
V
V
A
µs
µs
Neutral Point IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
125
250
%
fitted
IC
4,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
Figure 3
%
4
IC
200
100
IC 90%
150
75
IC 60%
VCE
100
50
IC 90%
IC 40%
tr
VCE
50
25
IC10%
IC 10%
0
0
tf
-50
4,15
-25
0,1
0,18
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
0,26
700
300
0,12
0,34
0,42
time (us)
0,5
VC (100%) =
IC (100%) =
tr =
V
A
µs
25
4,2
4,25
700
300
0,03
4,3
4,35
time(us)
4,4
V
A
µs
Revision: 1.2
70-W212NMA400NB02-M209P62
Switching Definitions Neutral Point
Neutral Point IGBT
Figure 5
Neutral Point IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
%
Eon
Eoff
100
100
75
75
50
50
Poff
Pon
25
25
IC 1%
VGE 90%
VGE 10%
VCE 3%
0
0
tEon
tEoff
-25
-0,2
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
0,4
210
14,03
0,77
kW
mJ
µs
0,6
-25
3,95
0,8 time (us) 1
Pon (100%) =
Eon (100%) =
tEon =
4,05
4,15
210
6,19
0,28
4,25
time(us)
4,35
kW
mJ
µs
Neutral Point IGBT
Figure 7
Turn-off Switching Waveforms & definition of trr
150
%
Id
100
trr
50
Vd
0
fitted
IRRM 10%
-50
-100
IRRM 90%
IRRM 100%
-150
4,1
4,2
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright by Vincotech
4,3
700
300
-385
0,15
4,4
time(us)
4,5
V
A
A
µs
26
Revision: 1.2
70-W212NMA400NB02-M209P62
Switching Definitions Neutral Point
Half Bridge FWD
Figure 8
Half Bridge FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
125
150
%
%
Id
Qrr
Erec
100
100
tQrr
50
75
0
50
-50
25
tErec
Prec
-100
0
-150
-25
4
4,2
4,4
4,6
4,8
5
5,2
5,4
4
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
300
38,18
1,00
4,2
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
4,4
210
9,72
1,00
4,6
4,8
5
5,2
5,4
time(us)
kW
mJ
µs
Measurement circuits
Figure 10
Neutral Point stage switching measurement circuit
copyright by Vincotech
27
Revision: 1.2
70-W212NMA400NB02-M209P62
Ordering Code and Marking - Outline - Pinout
Pinout
copyright by Vincotech
28
Revision: 1.2
70-W212NMA400NB02-M209P62
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Ordering Code
70-W212NMA400NB02-M209P62
70-W212NMA400NB02-M209P62-/3/
Version
without PCM
with PCM
in DataMatrix as
in packaging barcode as
M209P62
M209P62
M209P62
M209P62-/3/
Outline
Pin
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
X1
4,5
4,5
39,5
39,5
1,95
4,85
39,15
42,05
-2,2
-2,2
Driver pins
Y1
Function
78,65
G1-1
81,55
E1-1
78,65
G1-2
81,55
E1-2
68,4
E2-1
68,4
G2-1
68,4
G2-2
68,4
E2-2
46
G3-1
48,9
E3-1
1.11
1.12
1.13
1.14
1.15
1.16
1.17
46,2
46,2
-6,75
-6,75
50,75
50,75
19,45
46
48,9
29,2
32,1
29,2
32,1
30,15
G3-2
E3-2
E4-1
G4-1
E4-2
G4-2
Desat-DC+
1.18
1.19
1.20
1.21
1.22
24,55
19,45
24,55
67,65
67,65
30,15
44,65
44,65
86,7
89,8
Desat-DC+
Desat-GND
Desat-GND
NTC
NTC
copyright by Vincotech
Group
T1
T1
T1
T1
T2
T2
T2
T2
T3
T3
T3
T3
T4
T4
T4
T4
M4
screw
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
X3
-37,4
81,4
-37,4
81,4
-37,4
81,4
-37,4
81,4
M6
screw
2.1
2.2
2.3
2.4
2.5
2.6
X2
0
22
44
0
22
44
Low current connections
Y3
Function
89,8
DC+
89,8
DC+
65,2
CE
65,2
CE
45,2
Phase
45,2
Phase
20,6
DC20,6
DCPower connections
Y2
0
0
0
110,4
110,4
110,4
Function
Phase
Phase
Phase
DC+
Neutral
DC-
29
Revision: 1.2
70-W212NMA400NB02-M209P62
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright by Vincotech
30
Revision: 1.2