10-FZ06NBA075SA-P916L33 Maximum Ratings

10-FZ06NBA075SA-P916L33
preliminary datasheet
flowBOOST0
600V/75A
Features
flow0 housing
● Symmetric boost
● Clip-In PCB mounting
● Low Inductance Layout
Target Applications
Schematic
● UPS
Types
● 10-FZ06NBA075SA-P916L33
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
56
74
A
225
A
93
141
W
±20
V
6
360
μs
V
175
°C
600
V
33
44
A
90
A
53
80
W
175
°C
Input Boost IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
Input Boost Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Copyright by Vincotech
Tjmax
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 6
10-FZ06NBA075SA-P916L33
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Input Boost FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Th=80°C
63
Tc=80°C
83
A
120
A
86
130
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 6
10-FZ06NBA075SA-P916L33
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1
1,63
1,86
2,1
Input Boost IGBT
VCE=VGE
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
0,0012
75
tf
0,2
650
Rgoff=8 Ω
Rgon=8 Ω
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
f=1MHz
Thermal resistance chip to heatsink per chip
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
±15
300
75
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
none
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
151
154
20
24
209
233
93
111
1,09
1,50
1,78
2,41
ns
mWs
4620
f=1MHz
0
Tj=25°C
25
pF
288
137
0
25
Tj=25°C
470
nC
1,02
K/W
Input Boost Inverse Diode
Diode forward voltage
Thermal resistance chip to heatsink per chip
VF
RthJH
10
Tj=25°C
Tj=125°C
1
Thermal grease
thickness≤50um
λ = 1 W/mK
1,63
1,56
2,05
1,8
V
K/W
Input Boost FWD
Forward voltage
Reverse leakage current
VF
Irm
Peak recovery current
IRRM
Reverse recovery time
trr
Reverse recovery charge
Qrr
Reverse recovered energy
Peak rate of fall of recovery current
Thermal resistance chip to heatsink per chip
75
600
Rgoff=8 Ω
±15
300
Erec
di(rec)max
/dt
RthJH
75
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1
1,49
1,46
2
30
70
86
117
152
3,07
6,19
0,61
1,33
5142
2414
Thermal grease
thickness≤50um
λ = 1 W/mK
V
μA
A
ns
μC
mWs
A/μs
1,11
K/W
Thermistor
Rated resistance
R
Deviation of R100
ΔR/R
Power dissipation
P
Tj=100°C
Tj=25°C
Power dissipation constant
Ω
22000
Tj=25°C
R100=1486 Ω
-5
+5
%
200
mW
Tj=25°C
2
mW/K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3950
K
B-value
B(25/100)
Tol. ±3%
Tj=25°C
3996
K
Vincotech NTC Reference
B
* see details on Thermistor charts on Figure 2.
Copyright by Vincotech
3
Revision: 6
10-FZ06NBA075SA-P916L33
preliminary datasheet
INPUT BOOST
BOOST IGBT
Figure 1
Typical output characteristics
ID = f(VDS)
BOOST IGBT
Figure 2
Typical output characteristics
ID = f(VDS)
250
IC (A)
IC(A)
250
200
200
150
150
100
100
50
50
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
μs
25
°C
7 V to 17 V in steps of 1 V
BOOST IGBT
Figure 3
Typical transfer characteristics
ID = f(VDS)
1
2
3
4
250
μs
150
°C
7 V to 17 V in steps of 1 V
BOOST FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
75
5
V CE (V)
IF (A)
ID (A)
250
60
200
45
150
30
100
15
50
Tj = 25°C
Tj = Tjmax-25°C
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
2
4
250
μs
10
V
Copyright by Vincotech
6
8
10
V GS (V)
12
0
At
tp =
4
0,5
250
1
1,5
2
2,5
V F (V)
3
μs
Revision: 6
10-FZ06NBA075SA-P916L33
preliminary datasheet
INPUT BOOST
BOOST IGBT
Figure 5
Typical switching energy losses
BOOST IGBT
Figure 6
Typical switching energy losses
as a function of collector current
E = f(ID)
as a function of gate resistor
E = f(RG)
5
E (mWs)
E (mWs)
5
4
4
Eoff High T
3
Eon High T
Eon Low T
3
Eoff Low T
Eoff High T
Eon High T
Eoff Low T
2
2
Eon Low T
1
1
0
0
0
25
50
75
100
125
I C (A)
150
0
With an inductive load at
Tj =
25/150
°C
VCE =
300
V
VGS =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
RG (Ω )
32
40
With an inductive load at
Tj =
25/150
°C
VCE =
300
V
VGS =
±15
V
IC =
75
A
BOOST IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
Erec = f(Ic)
BOOST IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
2,0
E (mWs)
E (mWs)
2,0
Erec High T
1,6
1,6
1,2
1,2
Erec High T
Erec Low T
0,8
0,8
0,4
0,4
Erec Low T
0,0
0,0
0
25
50
75
100
125
I C (A)
150
0
8
16
With an inductive load at
Tj =
25/150
°C
VDS =
300
V
With an inductive load at
Tj =
25/150
°C
VDS =
300
V
VGS =
Rgon =
Rgoff =
VGS =
ID =
±15
75
V
A
±15
8
V
Ω
8
Ω
Copyright by Vincotech
5
24
32
R G( Ω )
40
Revision: 6
10-FZ06NBA075SA-P916L33
preliminary datasheet
INPUT BOOST
BOOST IGBT
Figure 9
Typical switching times as a
BOOST IGBT
Figure 10
Typical switching times as a
function of collector current
t = f(ID)
function of gate resistor
t = f(RG)
1
tdoff
t ( μs)
t ( μs)
1
tdon
tdoff
tdon
0,1
0,1
tf
tf
tr
0,01
tr
0,01
0,001
0,001
0
25
50
75
100
125
I D (A)
150
0
With an inductive load at
Tj =
150
°C
VDS =
300
V
VGS =
±15
V
Rgon =
8
Ω
Rgoff =
8,015
Ω
8
16
24
32
R G( Ω )
40
With an inductive load at
Tj =
150
°C
VDS =
300
V
VGS =
±15
V
IC =
75
A
BOOST FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
BOOST FWD
Figure 12
Typical reverse recovery time as a
function of MOSFET turn on gate resistor
trr = f(Rgon)
0,6
t rr( μs)
t rr( μs)
0,20
trr High T
trr High T
0,5
0,16
trr Low T
0,4
0,12
0,3
0,08
0,2
trr Low T
0,04
0,1
0
0,00
0
At
Tj =
VDS =
VGS =
Rgon =
25
50
25/150
°C
300
±15
V
V
8
Ω
Copyright by Vincotech
75
100
125
I C (A)
0
150
At
Tj =
VR =
IF =
VGS =
6
8
16
25/150
°C
300
75
V
A
±15
V
24
32
R Gon ( Ω )
40
Revision: 6
10-FZ06NBA075SA-P916L33
preliminary datasheet
INPUT BOOST
BOOST FWD
Figure 13
Typical reverse recovery charge as a
BOOST FWD
Figure 14
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
function of MOSFET turn on gate resistor
Qrr = f(Rgon)
10
Qrr ( μC)
9,0
Qrr ( μC)
Qrr High T
7,5
8
Qrr High T
6,0
6
Qrr Low T
4,5
4
3,0
Qrr Low T
2
1,5
0,0
0
0
25
50
75
100
125
At
At
Tj =
VDS =
VGS =
Rgon =
25/150
300
±15
8
150
I C (A)
°C
V
V
Ω
BOOST FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
0
8
At
Tj =
VR =
IF =
VGS =
25/150
300
75
±15
16
24
32
R Gon ( Ω)
40
°C
V
A
V
BOOST FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
150
IrrM (A)
IrrM (A)
120
IRRM High T
100
120
IRRM Low T
80
90
60
60
IRRM High T
40
IRRM Low T
30
20
0
0
0
At
Tj =
25
50
VDS =
25/150
300
°C
V
VGS =
Rgon =
±15
8
V
Ω
Copyright by Vincotech
75
100
125
I C (A)
0
150
At
Tj =
7
8
16
VR =
25/150
300
°C
V
IF =
VGS =
75
±15
A
V
24
32
R Gon ( Ω )
40
Revision: 6
10-FZ06NBA075SA-P916L33
preliminary datasheet
INPUT BOOST
BOOST FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
7500
direc / dt (A/ μs)
direc / dt (A/ μs)
15000
dI0/dt
dIrec/dt
6000
dI0/dt
dIrec/dt
12000
4500
9000
3000
6000
1500
3000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
25
25/150
300
±15
8
50
75
100
125
I C (A)
150
0
At
Tj =
°C
V
V
Ω
VR =
IF =
VGS =
BOOST IGBT
Figure 19
MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
10
-1
10
-2
25/150
300
75
±15
16
24
32
R Gon ( Ω)
40
°C
V
A
V
BOOST FWD
ZthJH (K/W)
101
ZthJH (K/W)
0
8
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
10
BOOST FWD
Figure 18
Typical rate of fall of forward
0
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
-2
10
10-5
10-4
At
D=
RthJH =
10-3
10-2
10-1
100
t p (s)
1011
10-5
At
D=
RthJH =
tp / T
1,02
K/W
Copyright by Vincotech
IGBT thermal model values
10-4
10-3
10-2
10-1
100
t p (s)
tp / T
1,11
K/W
FWD thermal model values
R (C/W)
0,037
0,176
Tau (s)
6,37E+00
8,57E-01
R (C/W)
0,03
0,13
Tau (s)
9,19E+00
9,97E-01
0,550
0,179
1,57E-01
2,60E-02
0,43
0,33
1,49E-01
3,47E-02
0,042
0,037
3,81E-03
3,09E-04
0,12
0,07
5,94E-03
3,69E-04
8
1011
Revision: 6
10-FZ06NBA075SA-P916L33
preliminary datasheet
INPUT BOOST
BOOST IGBT
Figure 21
Power dissipation as a
BOOST IGBT
Figure 22
Collector/Drain current as a
function of heatsink temperature
Ptot = f(Th)
function of heatsink temperature
IC = f(Th)
200
Ptot (W)
IC (A)
90
75
160
60
120
45
80
30
40
15
0
0
0
At
Tj =
50
175
100
150
o
Th ( C)
200
0
At
Tj =
VGS =
ºC
BOOST FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
o
Th ( C)
200
ºC
V
BOOST FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
100
IF (A)
Ptot (W)
180
150
80
120
60
90
40
60
20
30
0
0
At
Tj =
50
175
100
150
o
T h ( C)
0
200
0
At
Tj =
ºC
Copyright by Vincotech
9
50
175
100
150
T h ( o C)
200
ºC
Revision: 6
10-FZ06NBA075SA-P916L33
preliminary datasheet
INPUT BOOST
BOOST IGBT
Figure 25
BOOST IGBT
Figure 26
Safe operating area as a function
Gate voltage vs Gate charge
of drain-source voltage
ID = f(VDS)
VGS = f(Qg)
103
ID (A)
UGS (V)
16
14
10uS
2
10
120V
12
400V
10
1mS
100uS
10mS
8
101
6
DC
4
100mS
0
10
2
0
101
0
10
At
D=
Th =
VGS =
single pulse
80
ºC
V
±15
Tj =
Tjmax
10
2
V DS (V)
0
103
100
200
300
400
500
600
Qg (nC)
At
ID =
75
A
ºC
Copyright by Vincotech
10
Revision: 6
10-FZ06NBA075SA-P916L33
preliminary datasheet
BOOST INV. DIODE
BOOST INV. DIODE
Figure 1
Typical diode forward current as
BOOST INV. DIODE
Figure 2
Diode transient thermal impedance
a function of forward voltage
IF= f(VF)
as a function of pulse width
ZthJH = f(tp)
100
ZthJC (K/W)
IF (A)
101
80
100
60
40
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
20
Tj = Tjmax-25°C
Tj = 25°C
0
0
0,5
At
tp =
1
1,5
2
2,5
V F (V)
10-2
3
10-5
μs
250
10-4
At
D=
RthJH =
BOOST INV. DIODE
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-3
10-2
10-1
100
t p (s)
1011
tp / T
1,800
K/W
BOOST INV. DIODE
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
60
IF (A)
Ptot (W)
100
50
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
175
100
150
o
T h ( C)
0
200
At
Tj =
ºC
Copyright by Vincotech
11
50
175
100
150
T h ( o C)
200
ºC
Revision: 6
10-FZ06NBA075SA-P916L33
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
Thermistor
Figure 2
Typical NTC resistance values
as a function of temperature
RT = f(T)



 B25/100⋅ 1 − 1  
 T T 

25  


NTC-typical temperature characteristic
24000
R/Ω
R(T ) = R25 ⋅ e
[Ω]
20000
16000
12000
8000
4000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
12
Revision: 6
10-FZ06NBA075SA-P916L33
preliminary datasheet
Switching Definitions Boost IGBT
General conditions
Tj
Rgon
Rgoff
=
=
=
BOOST IGBT
Figure 1
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
150 °C
8Ω
8Ω
BOOST IGBT
Figure 2
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
250
150
%
%
IC
120
200
tdoff
VCE
VGE 90%
90
150
VCE 90%
IC
VCE
100
60
VGE
tdon
tEoff
50
30
VGE 10%
VGE
0
Ic 10%
0
IC 1%
-30
-0,3
V CE3%
tEon
-50
-0,15
0
VGE (0%) =
0,15
-15
15
300
74
0,23
0,61
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,3
0,45
0,6
0,75
time (us)
2,8
2,9
3
3,2
3,3
3,4
time(us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
BOOST IGBT
Figure 3
Turn-off Switching Waveforms & definition of tf
3,1
-15
15
300
74
0,15
0,30
V
V
V
A
μs
μs
Figure 4
Turn-on Switching Waveforms & definition of tr
125
BOOST IGBT
250
fitted
%
VCE
%
IC
100
Ic
200
IC 90%
75
150
IC 60%
VCE
50
100
IC 90%
IC 40%
tr
25
50
IC 10%
0
-25
0,05
VC (100%) =
IC (100%) =
tf =
0,1
0,15
300
74
0,11
Copyright by Vincotech
0,2
IC 10%
0
tf
0,25
0,3
-50
3,05
0,35
0,4
time (us)
VC (100%) =
V
A
μs
IC (100%) =
tr =
13
3,1
3,15
300
74
0,02
3,2
3,25
time(us)
3,3
V
A
μs
Revision: 6
10-FZ06NBA075SA-P916L33
preliminary datasheet
Switching Definitions Boost IGBT
BOOST IGBT
Figure 5
Turn-off Switching Waveforms & definition of tEoff
BOOST IGBT
Figure 6
Turn-on Switching Waveforms & definition of tEon
120
150
Poff
%
IC 1%
%
Eoff
100
125
80
100
60
75
40
50
Pon
Eon
20
25
VGE90%
VCE3%
V GE10%
0
0
tEon
tEoff
-20
-0,15
-25
0
0,15
0,3
0,45
0,6
0,75
2,9
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
22,30
2,41
0,61
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
BOOST IGBT
Figure 7
Gate voltage vs Gate charge (measured)
VGE (V)
3
3,1
22,30
1,50
0,30
3,2
3,3
3,4
kW
mJ
μs
BOOST FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
20
time(us)
150
%
15
Id
100
10
trr
50
5
Vd
0
0
IRRM 10%
fitted
-5
-50
-10
-100
IRRM 90%
IRRM 100%
-15
-20
-200
-150
0
200
400
600
800
3
3,1
3,2
3,3
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
-15
15
V
V
300
74
794,04
V
A
nC
Copyright by Vincotech
3,4
3,5
3,6
time(us)
Qg (nC)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
14
300
74
V
A
-86
0,15
A
μs
Revision: 6
10-FZ06NBA075SA-P916L33
preliminary datasheet
Switching Definitions Boost IGBT
Figure 9
Turn-on Switching Waveforms & definition of tQrr
BOOST FWD
BOOST FWD
Figure 10
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
(tQrr = integrating time for Qrr)
150
125
%
%
Id
100
Erec
100
tQrr
50
75
tErec
Qrr
0
50
-50
25
Prec
-100
0
-150
-25
3
3,15
3,3
3,45
3,6
3,75
3,9
3
3,15
3,3
3,45
3,6
Id (100%) =
Qrr (100%) =
tQrr =
74
6,19
0,55
3,75
3,9
time(us)
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
22,30
1,33
0,55
kW
mJ
μs
Measurement circuits
Figure 11
BUCK stage switching measurement circuit
Copyright by Vincotech
Figure 12
BOOST stage switching measurement circuit
15
Revision: 6
10-FZ06NBA075SA-P916L33
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Standard in flow0 12mm housing
Ordering Code
10-FZ06NBA075SA-P916L33
in DataMatrix as
in packaging barcode as
P916L33
P916L33
Outline
Pinout
Copyright by Vincotech
16
Revision: 6
10-FZ06NBA075SA-P916L33
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
17
Revision: 6