10-FZ06NBA075SA-P916L33 preliminary datasheet flowBOOST0 600V/75A Features flow0 housing ● Symmetric boost ● Clip-In PCB mounting ● Low Inductance Layout Target Applications Schematic ● UPS Types ● 10-FZ06NBA075SA-P916L33 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 56 74 A 225 A 93 141 W ±20 V 6 360 μs V 175 °C 600 V 33 44 A 90 A 53 80 W 175 °C Input Boost IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax Input Boost Inverse Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Copyright by Vincotech Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 6 10-FZ06NBA075SA-P916L33 preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Input Boost FWD Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Th=80°C 63 Tc=80°C 83 A 120 A 86 130 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 6 10-FZ06NBA075SA-P916L33 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1 1,63 1,86 2,1 Input Boost IGBT VCE=VGE Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 0,0012 75 tf 0,2 650 Rgoff=8 Ω Rgon=8 Ω Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate f=1MHz Thermal resistance chip to heatsink per chip RthJH Thermal grease thickness≤50um λ = 1 W/mK ±15 300 75 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω none tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 151 154 20 24 209 233 93 111 1,09 1,50 1,78 2,41 ns mWs 4620 f=1MHz 0 Tj=25°C 25 pF 288 137 0 25 Tj=25°C 470 nC 1,02 K/W Input Boost Inverse Diode Diode forward voltage Thermal resistance chip to heatsink per chip VF RthJH 10 Tj=25°C Tj=125°C 1 Thermal grease thickness≤50um λ = 1 W/mK 1,63 1,56 2,05 1,8 V K/W Input Boost FWD Forward voltage Reverse leakage current VF Irm Peak recovery current IRRM Reverse recovery time trr Reverse recovery charge Qrr Reverse recovered energy Peak rate of fall of recovery current Thermal resistance chip to heatsink per chip 75 600 Rgoff=8 Ω ±15 300 Erec di(rec)max /dt RthJH 75 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1 1,49 1,46 2 30 70 86 117 152 3,07 6,19 0,61 1,33 5142 2414 Thermal grease thickness≤50um λ = 1 W/mK V μA A ns μC mWs A/μs 1,11 K/W Thermistor Rated resistance R Deviation of R100 ΔR/R Power dissipation P Tj=100°C Tj=25°C Power dissipation constant Ω 22000 Tj=25°C R100=1486 Ω -5 +5 % 200 mW Tj=25°C 2 mW/K B-value B(25/50) Tol. ±3% Tj=25°C 3950 K B-value B(25/100) Tol. ±3% Tj=25°C 3996 K Vincotech NTC Reference B * see details on Thermistor charts on Figure 2. Copyright by Vincotech 3 Revision: 6 10-FZ06NBA075SA-P916L33 preliminary datasheet INPUT BOOST BOOST IGBT Figure 1 Typical output characteristics ID = f(VDS) BOOST IGBT Figure 2 Typical output characteristics ID = f(VDS) 250 IC (A) IC(A) 250 200 200 150 150 100 100 50 50 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 μs 25 °C 7 V to 17 V in steps of 1 V BOOST IGBT Figure 3 Typical transfer characteristics ID = f(VDS) 1 2 3 4 250 μs 150 °C 7 V to 17 V in steps of 1 V BOOST FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 75 5 V CE (V) IF (A) ID (A) 250 60 200 45 150 30 100 15 50 Tj = 25°C Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C 0 0 0 At tp = VCE = 2 4 250 μs 10 V Copyright by Vincotech 6 8 10 V GS (V) 12 0 At tp = 4 0,5 250 1 1,5 2 2,5 V F (V) 3 μs Revision: 6 10-FZ06NBA075SA-P916L33 preliminary datasheet INPUT BOOST BOOST IGBT Figure 5 Typical switching energy losses BOOST IGBT Figure 6 Typical switching energy losses as a function of collector current E = f(ID) as a function of gate resistor E = f(RG) 5 E (mWs) E (mWs) 5 4 4 Eoff High T 3 Eon High T Eon Low T 3 Eoff Low T Eoff High T Eon High T Eoff Low T 2 2 Eon Low T 1 1 0 0 0 25 50 75 100 125 I C (A) 150 0 With an inductive load at Tj = 25/150 °C VCE = 300 V VGS = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 RG (Ω ) 32 40 With an inductive load at Tj = 25/150 °C VCE = 300 V VGS = ±15 V IC = 75 A BOOST IGBT Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current Erec = f(Ic) BOOST IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 2,0 E (mWs) E (mWs) 2,0 Erec High T 1,6 1,6 1,2 1,2 Erec High T Erec Low T 0,8 0,8 0,4 0,4 Erec Low T 0,0 0,0 0 25 50 75 100 125 I C (A) 150 0 8 16 With an inductive load at Tj = 25/150 °C VDS = 300 V With an inductive load at Tj = 25/150 °C VDS = 300 V VGS = Rgon = Rgoff = VGS = ID = ±15 75 V A ±15 8 V Ω 8 Ω Copyright by Vincotech 5 24 32 R G( Ω ) 40 Revision: 6 10-FZ06NBA075SA-P916L33 preliminary datasheet INPUT BOOST BOOST IGBT Figure 9 Typical switching times as a BOOST IGBT Figure 10 Typical switching times as a function of collector current t = f(ID) function of gate resistor t = f(RG) 1 tdoff t ( μs) t ( μs) 1 tdon tdoff tdon 0,1 0,1 tf tf tr 0,01 tr 0,01 0,001 0,001 0 25 50 75 100 125 I D (A) 150 0 With an inductive load at Tj = 150 °C VDS = 300 V VGS = ±15 V Rgon = 8 Ω Rgoff = 8,015 Ω 8 16 24 32 R G( Ω ) 40 With an inductive load at Tj = 150 °C VDS = 300 V VGS = ±15 V IC = 75 A BOOST FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) BOOST FWD Figure 12 Typical reverse recovery time as a function of MOSFET turn on gate resistor trr = f(Rgon) 0,6 t rr( μs) t rr( μs) 0,20 trr High T trr High T 0,5 0,16 trr Low T 0,4 0,12 0,3 0,08 0,2 trr Low T 0,04 0,1 0 0,00 0 At Tj = VDS = VGS = Rgon = 25 50 25/150 °C 300 ±15 V V 8 Ω Copyright by Vincotech 75 100 125 I C (A) 0 150 At Tj = VR = IF = VGS = 6 8 16 25/150 °C 300 75 V A ±15 V 24 32 R Gon ( Ω ) 40 Revision: 6 10-FZ06NBA075SA-P916L33 preliminary datasheet INPUT BOOST BOOST FWD Figure 13 Typical reverse recovery charge as a BOOST FWD Figure 14 Typical reverse recovery charge as a function of collector current Qrr = f(IC) function of MOSFET turn on gate resistor Qrr = f(Rgon) 10 Qrr ( μC) 9,0 Qrr ( μC) Qrr High T 7,5 8 Qrr High T 6,0 6 Qrr Low T 4,5 4 3,0 Qrr Low T 2 1,5 0,0 0 0 25 50 75 100 125 At At Tj = VDS = VGS = Rgon = 25/150 300 ±15 8 150 I C (A) °C V V Ω BOOST FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 0 8 At Tj = VR = IF = VGS = 25/150 300 75 ±15 16 24 32 R Gon ( Ω) 40 °C V A V BOOST FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 150 IrrM (A) IrrM (A) 120 IRRM High T 100 120 IRRM Low T 80 90 60 60 IRRM High T 40 IRRM Low T 30 20 0 0 0 At Tj = 25 50 VDS = 25/150 300 °C V VGS = Rgon = ±15 8 V Ω Copyright by Vincotech 75 100 125 I C (A) 0 150 At Tj = 7 8 16 VR = 25/150 300 °C V IF = VGS = 75 ±15 A V 24 32 R Gon ( Ω ) 40 Revision: 6 10-FZ06NBA075SA-P916L33 preliminary datasheet INPUT BOOST BOOST FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 7500 direc / dt (A/ μs) direc / dt (A/ μs) 15000 dI0/dt dIrec/dt 6000 dI0/dt dIrec/dt 12000 4500 9000 3000 6000 1500 3000 0 0 0 At Tj = VCE = VGE = Rgon = 25 25/150 300 ±15 8 50 75 100 125 I C (A) 150 0 At Tj = °C V V Ω VR = IF = VGS = BOOST IGBT Figure 19 MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 10 -1 10 -2 25/150 300 75 ±15 16 24 32 R Gon ( Ω) 40 °C V A V BOOST FWD ZthJH (K/W) 101 ZthJH (K/W) 0 8 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 10 BOOST FWD Figure 18 Typical rate of fall of forward 0 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 -2 10 10-5 10-4 At D= RthJH = 10-3 10-2 10-1 100 t p (s) 1011 10-5 At D= RthJH = tp / T 1,02 K/W Copyright by Vincotech IGBT thermal model values 10-4 10-3 10-2 10-1 100 t p (s) tp / T 1,11 K/W FWD thermal model values R (C/W) 0,037 0,176 Tau (s) 6,37E+00 8,57E-01 R (C/W) 0,03 0,13 Tau (s) 9,19E+00 9,97E-01 0,550 0,179 1,57E-01 2,60E-02 0,43 0,33 1,49E-01 3,47E-02 0,042 0,037 3,81E-03 3,09E-04 0,12 0,07 5,94E-03 3,69E-04 8 1011 Revision: 6 10-FZ06NBA075SA-P916L33 preliminary datasheet INPUT BOOST BOOST IGBT Figure 21 Power dissipation as a BOOST IGBT Figure 22 Collector/Drain current as a function of heatsink temperature Ptot = f(Th) function of heatsink temperature IC = f(Th) 200 Ptot (W) IC (A) 90 75 160 60 120 45 80 30 40 15 0 0 0 At Tj = 50 175 100 150 o Th ( C) 200 0 At Tj = VGS = ºC BOOST FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 o Th ( C) 200 ºC V BOOST FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 100 IF (A) Ptot (W) 180 150 80 120 60 90 40 60 20 30 0 0 At Tj = 50 175 100 150 o T h ( C) 0 200 0 At Tj = ºC Copyright by Vincotech 9 50 175 100 150 T h ( o C) 200 ºC Revision: 6 10-FZ06NBA075SA-P916L33 preliminary datasheet INPUT BOOST BOOST IGBT Figure 25 BOOST IGBT Figure 26 Safe operating area as a function Gate voltage vs Gate charge of drain-source voltage ID = f(VDS) VGS = f(Qg) 103 ID (A) UGS (V) 16 14 10uS 2 10 120V 12 400V 10 1mS 100uS 10mS 8 101 6 DC 4 100mS 0 10 2 0 101 0 10 At D= Th = VGS = single pulse 80 ºC V ±15 Tj = Tjmax 10 2 V DS (V) 0 103 100 200 300 400 500 600 Qg (nC) At ID = 75 A ºC Copyright by Vincotech 10 Revision: 6 10-FZ06NBA075SA-P916L33 preliminary datasheet BOOST INV. DIODE BOOST INV. DIODE Figure 1 Typical diode forward current as BOOST INV. DIODE Figure 2 Diode transient thermal impedance a function of forward voltage IF= f(VF) as a function of pulse width ZthJH = f(tp) 100 ZthJC (K/W) IF (A) 101 80 100 60 40 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 20 Tj = Tjmax-25°C Tj = 25°C 0 0 0,5 At tp = 1 1,5 2 2,5 V F (V) 10-2 3 10-5 μs 250 10-4 At D= RthJH = BOOST INV. DIODE Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 10-2 10-1 100 t p (s) 1011 tp / T 1,800 K/W BOOST INV. DIODE Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 60 IF (A) Ptot (W) 100 50 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 175 100 150 o T h ( C) 0 200 At Tj = ºC Copyright by Vincotech 11 50 175 100 150 T h ( o C) 200 ºC Revision: 6 10-FZ06NBA075SA-P916L33 preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic Thermistor Figure 2 Typical NTC resistance values as a function of temperature RT = f(T) B25/100⋅ 1 − 1 T T 25 NTC-typical temperature characteristic 24000 R/Ω R(T ) = R25 ⋅ e [Ω] 20000 16000 12000 8000 4000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 12 Revision: 6 10-FZ06NBA075SA-P916L33 preliminary datasheet Switching Definitions Boost IGBT General conditions Tj Rgon Rgoff = = = BOOST IGBT Figure 1 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) 150 °C 8Ω 8Ω BOOST IGBT Figure 2 Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 250 150 % % IC 120 200 tdoff VCE VGE 90% 90 150 VCE 90% IC VCE 100 60 VGE tdon tEoff 50 30 VGE 10% VGE 0 Ic 10% 0 IC 1% -30 -0,3 V CE3% tEon -50 -0,15 0 VGE (0%) = 0,15 -15 15 300 74 0,23 0,61 VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,3 0,45 0,6 0,75 time (us) 2,8 2,9 3 3,2 3,3 3,4 time(us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs BOOST IGBT Figure 3 Turn-off Switching Waveforms & definition of tf 3,1 -15 15 300 74 0,15 0,30 V V V A μs μs Figure 4 Turn-on Switching Waveforms & definition of tr 125 BOOST IGBT 250 fitted % VCE % IC 100 Ic 200 IC 90% 75 150 IC 60% VCE 50 100 IC 90% IC 40% tr 25 50 IC 10% 0 -25 0,05 VC (100%) = IC (100%) = tf = 0,1 0,15 300 74 0,11 Copyright by Vincotech 0,2 IC 10% 0 tf 0,25 0,3 -50 3,05 0,35 0,4 time (us) VC (100%) = V A μs IC (100%) = tr = 13 3,1 3,15 300 74 0,02 3,2 3,25 time(us) 3,3 V A μs Revision: 6 10-FZ06NBA075SA-P916L33 preliminary datasheet Switching Definitions Boost IGBT BOOST IGBT Figure 5 Turn-off Switching Waveforms & definition of tEoff BOOST IGBT Figure 6 Turn-on Switching Waveforms & definition of tEon 120 150 Poff % IC 1% % Eoff 100 125 80 100 60 75 40 50 Pon Eon 20 25 VGE90% VCE3% V GE10% 0 0 tEon tEoff -20 -0,15 -25 0 0,15 0,3 0,45 0,6 0,75 2,9 time (us) Poff (100%) = Eoff (100%) = tEoff = 22,30 2,41 0,61 Pon (100%) = Eon (100%) = tEon = kW mJ μs BOOST IGBT Figure 7 Gate voltage vs Gate charge (measured) VGE (V) 3 3,1 22,30 1,50 0,30 3,2 3,3 3,4 kW mJ μs BOOST FWD Figure 8 Turn-off Switching Waveforms & definition of trr 20 time(us) 150 % 15 Id 100 10 trr 50 5 Vd 0 0 IRRM 10% fitted -5 -50 -10 -100 IRRM 90% IRRM 100% -15 -20 -200 -150 0 200 400 600 800 3 3,1 3,2 3,3 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = -15 15 V V 300 74 794,04 V A nC Copyright by Vincotech 3,4 3,5 3,6 time(us) Qg (nC) Vd (100%) = Id (100%) = IRRM (100%) = trr = 14 300 74 V A -86 0,15 A μs Revision: 6 10-FZ06NBA075SA-P916L33 preliminary datasheet Switching Definitions Boost IGBT Figure 9 Turn-on Switching Waveforms & definition of tQrr BOOST FWD BOOST FWD Figure 10 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) (tQrr = integrating time for Qrr) 150 125 % % Id 100 Erec 100 tQrr 50 75 tErec Qrr 0 50 -50 25 Prec -100 0 -150 -25 3 3,15 3,3 3,45 3,6 3,75 3,9 3 3,15 3,3 3,45 3,6 Id (100%) = Qrr (100%) = tQrr = 74 6,19 0,55 3,75 3,9 time(us) time(us) Prec (100%) = Erec (100%) = tErec = A μC μs 22,30 1,33 0,55 kW mJ μs Measurement circuits Figure 11 BUCK stage switching measurement circuit Copyright by Vincotech Figure 12 BOOST stage switching measurement circuit 15 Revision: 6 10-FZ06NBA075SA-P916L33 preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Standard in flow0 12mm housing Ordering Code 10-FZ06NBA075SA-P916L33 in DataMatrix as in packaging barcode as P916L33 P916L33 Outline Pinout Copyright by Vincotech 16 Revision: 6 10-FZ06NBA075SA-P916L33 preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 17 Revision: 6