70-W212NMA400SC-M209P datasheet flow MNPC 4w 1200V/400A Features flow SCREW 4w housing ● Mixed voltage NPC ● Low inductive ● High power screw interface ● Integrated DC-snubber capacitors Target Applications ● Solar inverter ● UPS Schematic ● High speed motor drive Types ● 70-W212NMA400SC-M209P Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 338 439 A 1200 A 729 1104 W ±20 V 10 800 µs V 800 A 175 °C 600 V 309 415 A 890 A 3960 A 2s half bridge IGBT ( T1 , T4 ) Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Turn off safe operating area (RBSOA) Icmax Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V VCE max = 1200V Tvj max= 150°C Tjmax neutral point FWD ( D2 , D3 ) Peak Repetitive Reverse Voltage DC forward current Surge forward current I2t-value Repetitive peak forward current Power dissipation per FWD Maximum Junction Temperature copyright by Vincotech VRRM IF Tj=25°C Tj=Tjmax Th=80°C Tc=80°C tp = 10 ms, sine halfwave Tvj < 150°C IFSM I2t IFRM Ptot tP = 1 ms Tvj < 150°C 800 A Tj=Tjmax Th=80°C Tc=80°C 421 637 W 175 °C Tjmax 1 Revision: 7 70-W212NMA400SC-M209P datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 329 430 A 1200 A 574 870 W ±20 V 6 360 µs V 800 A 175 °C 1200 V 270 356 A 2200 A 6052 A 2s 1200 A 540 818 W 175 °C 630 V neutral point IGBT ( T2 , T3 ) Collector-emitter break down voltage DC collector current VCE IC Th=80°C Tj=Tjmax Tc=80°C Repetitive peak collector current ICpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Turn off safe operating area (RBSOA) Icmax Maximum Junction Temperature Th=80°C Tc=80°C Tj≤150°C VGE=15V VCE max = 1200V Tvj max= 150°C Tjmax half bridge FWD ( D1 , D4 ) Peak Repetitive Reverse Voltage DC forward current Surge forward current I2t-value VRRM IF Tj=25°C Tj=Tjmax Th=80°C Tc=80°C tp=10ms , sin 180° Tj=150°C IFSM I2t Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per FWD Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Tjmax DC link Capacitor Max.DC voltage VMAX Tc=100°C General Module Properties Material of module baseplate Cu Al2O3 Material of internal isulation Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Comparative tracking index copyright by Vincotech Vis t=2s DC voltage CTI >200 2 Revision: 7 70-W212NMA400SC-M209P datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Unit Typ Max 5 5,8 6,5 1,5 1,97 2,23 2,4 half bridge IGBT ( T1 , T4 ) VCE=VGE Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Collector-emitter cut-off current incl. FWD Rise time Turn-off delay time Fall time 0,0152 400 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 0,6 3000 Rgoff=1 Ω Rgon=1 Ω ±15 350 400 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 1,88 tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 235 247 46 55 292 354 55 92 7,95 12,30 13,25 22,08 ns mWs 24600 f=1MHz 0 25 1620 Tj=25°C pF 1380 ±15 960 400 Tj=25°C 2030 Thermal grease thickness≤50um λ = 1 W/mK nC 0,13 K/W 0,09 neutral point FWD ( D2 , D3 ) FWD forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 400 IRRM trr Qrr Rgon=1 Ω ±15 350 400 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Thermal grease thickness≤50um λ = 1 W/mK Gate emitter threshold voltage VGE(th) VCE=VGE Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl FWD ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,2 1,67 1,56 204 262 183 295 17 33 3129 1705 3,78 7,44 2,2 V A ns µC A/µs mWs 0,23 K/W 0,15 neutral point IGBT ( T2 , T3 ) Rise time Turn-off delay time Fall time 400 tf Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 5 5,8 6,5 1 1,56 1,80 2,2 0,1 3000 0,5 tr td(off) Turn-on energy loss per pulse copyright by Vincotech 0,0064 Rgoff=1 Ω Rgon=1 Ω ±15 350 400 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 201 204 29 32 248 272 71 88 3,93 5,61 10,49 14,07 V V mA nA Ω ns mWs 24640 f=1MHz 0 25 Tj=25°C 1536 pF 732 ±15 Thermal grease thickness≤50um λ = 1 W/mK 3 480 400 Tj=25°C 2480 nC 0,17 K/W 0,11 Revision: 7 70-W212NMA400SC-M209P datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ 1 2,29 2,37 Unit Max half bridge FWD ( D1 , D4 ) FWD forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 400 Ir 1200 IRRM trr Qrr Rgon=1 Ω ±15 350 400 di(rec)max /dt Reverse recovery energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 3 480 410 521 63 149 24 49 18915 15110 5,79 12,71 Thermal grease thickness≤50um λ = 1 W/mK V µA A ns µC A/µs mWs 0,18 K/W 0,12 DC link Capacitor C value C 2 * 0,68 µF Stray inductance of on board capacitors ESL 26/2 nH Series resistance of on board capacitors ESR 14/2 mΩ Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P Tj=25°C R100=1486 Ω Power dissipation constant Tj=100°C 5 % Tj=25°C 200 mW Tj=25°C 2 mW/K K B-value B(25/50) Tol. ±3% Tj=25°C 3950 B-value B(25/100) Tol. ±3% Tj=25°C 3996 Vincotech NTC Reference Ω 22000 -5 Tj=25°C K B Module Properties Module inductance (from chips to PCB) LsCE 5 Module inductance (from PCB to PCB using Intercon board) LsCE 3 nH 1,5 mΩ Resistance of Intercon boards (from PCB to PCB using Intercon board) Rcc'1+EE' Tc=25°C, per switch Mounting torque M Mounting torque M Terminal connection torque M Weight G copyright by Vincotech Screw M4 - mounting according to valid application note FSWB1-4TY-M-*-HI Screw M5 - mounting according to valid application note FSWB1-4TY-M-*-HI Screw M6 - mounting according to valid application note FSWB1-4TY-M-*-HI 4 nH 2 2,2 Nm 4 6 Nm 2,5 5 Nm 710 g Revision: 7 70-W212NMA400SC-M209P datasheet Buck half bridge IGBT and neutral point FWD IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 1600 IC (A) IC (A) 1600 1400 1400 1200 1200 1000 1000 800 800 600 600 400 400 200 200 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 0 5 At tp = Tj = VGE from 350 µs 25 °C 8 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 350 µs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) 1800 IC (A) IF (A) 500 5 V CE (V) 1500 400 1200 300 900 Tj = Tjmax-25°C 200 600 Tj = Tjmax-25°C Tj = 25°C 100 300 Tj = 25°C 0 0 0 At tp = VCE = 2 350 10 copyright by Vincotech 4 6 8 10 V GE (V) 0 12 At tp = µs V 5 0,5 350 1 1,5 2 2,5 V F (V) 3 µs Revision: 7 70-W212NMA400SC-M209P datasheet Buck half bridge IGBT and neutral point FWD IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 40 Eon High T E (mWs) E (mWs) 40 Eoff High T Eon Low T 30 30 Eon High T Eoff High T Eoff Low T 20 20 Eoff Low T Eon Low T 10 10 0 0 0 200 400 600 I C (A) 800 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 1 Ω Rgoff = 1 Ω 2 4 6 8 R G ( Ω) 10 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V IC = A 400 FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 10 10 E (mWs) E (mWs) Erec High T 8 8 6 6 Erec High T Erec Low T 4 4 2 2 Erec Low T 0 0 0 200 400 600 I C (A) 800 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 1 Ω copyright by Vincotech 2 4 6 8 R G ( Ω) 10 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 400 A 6 Revision: 7 70-W212NMA400SC-M209P datasheet Buck half bridge IGBT and neutral point FWD IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 1,00 tdoff t (ms) t (ms) tdoff tdon tdon tf tf 0,10 0,10 tr tr 0,01 0,01 0,00 0,00 0 200 400 600 0 800 2 4 6 8 I C (A) 10 R G ( Ω) With an inductive load at Tj = °C 125 VCE = 350 V VGE = ±15 V Rgon = 1,0 Ω Rgoff = 1,0 Ω With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 400 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,5 trr High T t rr(ms) t rr(ms) 0,4 trr High T 0,4 trr Low T 0,3 0,3 trr Low T 0,2 0,2 0,1 0,1 0,0 0,0 0 At Tj = VCE = VGE = Rgon = 200 25/125 350 ±15 1 copyright by Vincotech 400 600 I C (A) 0 800 At Tj = VR = IF = VGE = °C V V Ω 7 2 25/125 350 400 ±15 4 6 8 R gon ( Ω) 10 °C V A V Revision: 7 70-W212NMA400SC-M209P datasheet Buck half bridge IGBT and neutral point FWD FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr (mC) 40 Qrr (mC) 50 Qrr High T Qrr High T 40 30 30 20 Qrr Low T 20 Qrr Low T 10 10 0 0 0 At At Tj = VCE = VGE = Rgon = 200 400 600 I C (A) 0 800 At Tj = VR = IF = VGE = FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 4 6 8 10 R gon ( Ω) °C V V Ω 25/125 350 ±15 1 2 25/125 350 400 ±15 °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 350 IrrM (A) IrrM (A) 400 IRRM High T 300 300 250 IRRM Low T 200 200 150 IRRM High T 100 IRRM Low T 100 50 0 0 0 At Tj = VCE = VGE = Rgon = 200 25/125 350 ±15 1 copyright by Vincotech 400 600 I C (A) 0 800 At Tj = VR = IF = VGE = °C V V Ω 8 2 25/125 350 400 ±15 4 6 8 R gon ( Ω) 10 °C V A V Revision: 7 70-W212NMA400SC-M209P datasheet Buck half bridge IGBT and neutral point FWD FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 12000 direc / dt (A/ms) 10000 direc / dt (A/ms) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dt T dI0/dt T 8000 dIrec/dt T dI0/dt T 10000 8000 6000 6000 4000 4000 2000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 200 400 600 I C (A) 800 0 At Tj = VR = IF = VGE = °C V V Ω 25/125 350 ±15 1 IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 2 4 25/125 350 400 ±15 6 8 R gon ( Ω) 10 °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 ZthJH (K/W) ZthJH (K/W) 100 10 -1 10 -2 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -2 10-3 10-3 10 -5 At D= RthJH = 10 -4 10 -3 10 -2 10 -1 10 0 10 1 t p (s) 10 10-5 2 At D= RthJH = tp / T 0,13 K/W 10-4 10-2 10-1 100 101 t p (s) 10 2 tp / T 0,23 IGBT thermal model values K/W FWD thermal model values Thermal grease Thermal grease R (C/W) 0,06 0,03 0,03 0,01 0,00 R (C/W) 0,05 0,07 0,02 0,06 0,02 Tau (s) 2,5E+00 4,7E-01 3,9E-02 1,2E-02 1,2E-03 copyright by Vincotech 10-3 9 Tau (s) 5,2E+00 1,1E+00 2,0E-01 4,6E-02 1,7E-02 Revision: 7 70-W212NMA400SC-M209P datasheet Buck half bridge IGBT and neutral point FWD IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 1400 IC (A) Ptot (W) 500 1200 400 1000 300 800 600 200 400 100 200 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 800 200 IF (A) Ptot (W) 500 400 600 300 400 200 200 100 0 0 0 At Tj = 50 175 copyright by Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 10 50 175 100 150 T h ( o C) 200 °C Revision: 7 70-W212NMA400SC-M209P datasheet Buck half bridge IGBT and neutral point FWD IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) IC (A) VGE (V) VGE = f(Qg) 20 18 1 103 1 1 10 IGBT Figure 26 Gate voltage vs Gate charge 2 240V 16 960V 14 1 12 10 101 8 6 100 4 10 -1 2 0 0 102 101 100 At D= 103 Tj = 800 1200 1600 2000 2400 2800 Q g (nC) At IC = single pulse 80 ºC ±15 V Tjmax ºC Th = VGE = 400 V CE (V) 400 A IGBT Figure 27 Reverse bias safe operating area IC = f(VCE) IC (A) 1000 ICMAX 800 VCE MAX 400 Ic CHIP Ic MODULE 600 200 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tjmax-25 Tj = Uccminus=Uccplus ºC Switching mode : 3 level switching copyright by Vincotech 11 Revision: 7 70-W212NMA400SC-M209P datasheet Boost neutral point IGBT and half bridge FWD IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 1800 IC (A) IC (A) 1800 1500 1500 1200 1200 900 900 600 600 300 300 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 1 At tp = Tj = VGE from 350 µs 25 °C 8 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 2 3 4 5 350 µs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) 1600 IF (A) IC (A) 500 V CE (V) Tj = 25°C 400 1200 300 800 200 Tj = Tjmax-25°C Tj = Tjmax-25°C 400 Tj = 25°C 100 0 0 0 At tp = VCE = 2 350 0 copyright by Vincotech 4 6 8 10 V GE (V) 12 0 At tp = µs V 12 1 350 2 3 4 V F (V) 5 µs Revision: 7 70-W212NMA400SC-M209P datasheet Boost neutral point IGBT and half bridge FWD IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) 25 40 Eon High T E (mWs) Eoff High T E (mWs) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) Eon Low T 20 30 Eoff Low T 15 Eoff High T 20 Eoff Low T 10 Eon High T Eon Low T 10 5 0 0 0 200 400 600 I C (A) 0 800 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 1 Ω Rgoff = 1 Ω 2 4 6 R G( Ω ) 8 10 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = A 400 FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 20 E (mWs) E (mWs) 15 Erec High T 12 15 Erec High T 9 Erec Low T 10 6 Erec Low T 5 3 0 0 0 200 400 600 800 0 I C (A) With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 1 Ω copyright by Vincotech 2 4 6 8 RG (Ω ) 10 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 400 A 13 Revision: 7 70-W212NMA400SC-M209P datasheet Boost neutral point IGBT and half bridge FWD IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 1 t ( µs) t ( µs) tdoff tdoff tdon 0,1 tdon tf 0,1 tf tr tr 0,01 0,01 0,001 0,001 0 200 400 600 0 800 I C (A) With an inductive load at Tj = °C 125 VCE = 350 V VGE = ±15 V Rgon = 1 Ω Rgoff = 1 Ω 2 4 6 8 10 R G( Ω ) With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 400 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,8 t rr(ms) t rr(ms) 0,2 trr High T trr High T 0,2 0,6 0,1 0,4 trr Low T trr Low T 0,2 0,1 0 0,0 0 At Tj = VCE = VGE = Rgon = 200 25/125 350 ±15 1 copyright by Vincotech 400 600 I C (A) 0 800 At Tj = VR = IF = VGE = °C V V Ω 14 2 25/125 350 400 ±15 4 6 8 R gon ( Ω) 10 °C V A V Revision: 7 70-W212NMA400SC-M209P datasheet Boost neutral point IGBT and half bridge FWD FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr (mC) 60 Qrr (mC) 75 Qrr High T 50 Qrr High T 60 40 45 Qrr Low T 30 30 Qrr Low T 20 15 10 0 0 0 200 At At Tj = VCE = VGE = Rgon = 400 600 I C (A) 800 0 At Tj = VR = IF = VGE = °C V V Ω 25/125 350 ±15 1 2 FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 4 25/125 350 400 ±15 6 8 10 °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 600 IrrM (A) 600 R gon ( Ω) IRRM High T 500 500 IRRM Low T 400 400 300 300 200 200 IRRM High T IRRM Low T 100 100 0 0 0 At Tj = VCE = VGE = Rgon = 200 25/125 350 ±15 1 copyright by Vincotech 400 600 I C (A) 0 800 2 4 6 8 10 R gon ( Ω) At Tj = VR = IF = VGE = °C V V Ω 15 25/125 350 400 ±15 °C V A V Revision: 7 70-W212NMA400SC-M209P datasheet Boost neutral point IGBT and half bridge FWD FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) direc / dt (A/ms) direc / dt (A/ms) 25000 dIrec/dt T dI0/dt T 20000 25000 dIrec/dt T dI0/dt T 20000 15000 15000 10000 10000 5000 5000 0 0 0 At Tj = VCE = VGE = Rgon = 200 400 600 0 800 I C (A) At Tj = VR = IF = VGE = °C V V Ω 25/125 350 ±15 1 IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) -3 6 8 R gon ( Ω) 10 °C V A V FWD ZthJH (K/W) ZthJH (K/W) 10 25/125 350 400 ±15 4 100 10-1 10-1 -2 2 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 10 FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-5 At D= RthJH = 10-4 10-3 tp / T 0,17 10-2 10-1 100 101 t p (s) 10-3 10-5 102 At D= RthJH = K/W IGBT thermal model values IGBT thermal model values R (C/W) Tau (s) 0,03 8,9E+00 0,07 2,2E+00 0,02 3,7E-01 0,04 4,3E-02 0,01 1,1E-02 0,00 1,9E-03 copyright by Vincotech D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-4 tp / T 0,18 10-3 10-2 10-1 100 101 t p (s) 102 K/W FWD thermal model values FWD thermal model values R (C/W) Tau (s) 0,02 9,8E+00 0,05 2,5E+00 0,03 6,5E-01 0,03 8,1E-02 0,03 2,7E-02 0,01 4,1E-03 16 Revision: 7 70-W212NMA400SC-M209P datasheet Boost neutral point IGBT and half bridge FWD IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 500 Ptot (W) IC (A) 1200 1000 400 800 300 600 200 400 100 200 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = ºC 175 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 175 15 100 150 T h ( o C) 200 ºC V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 500 Ptot (W) IF (A) 1000 800 400 600 300 400 200 200 100 0 0 0 At Tj = 50 50 175 copyright by Vincotech 100 150 Th ( o C) 0 200 At Tj = ºC 17 50 175 100 150 Th ( o C) 200 ºC Revision: 7 70-W212NMA400SC-M209P datasheet Boost neutral point IGBT IGBT Figure 25 Reverse bias safe operating area IC = f(VCE) IC (A) 1400 Ic MODULE 1000 Ic CHIP ICMAX 1200 VCE MAX 800 600 400 200 0 0 100 200 300 400 500 600 700 V CE (V) At Tj = Tjmax-25 Uccminus=Uccplus ºC Switching mode : 3 level switching copyright by Vincotech 18 Revision: 7 70-W212NMA400SC-M209P datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 50 copyright by Vincotech 75 100 T (°C) 125 19 Revision: 7 70-W212NMA400SC-M209P datasheet Switching Definitions half bridge IGBT General conditions = 125 °C Tj = 1Ω Rgon Rgoff = 1Ω half bridge IGBT Figure 1 half bridge IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 200 150 % % tdoff 100 IC VCE 150 VGE 90% IC VCE 100 50 VGE VCE 90% tEoff tdon 50 IC 1% 0 VGE 10% VGE -50 -0,3 VCE3% IC 10% 0 tEon -50 0 0,3 0,6 0,9 1,2 3,9 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs -15 15 350 400 0,35 1,12 4,1 half bridge IGBT Figure 3 4,3 -15 15 350 400 0,25 0,56 4,5 4,7 V V V A µs µs half bridge IGBT Figure 4 Turn-off Switching Waveforms & definition of tf time(us) Turn-on Switching Waveforms & definition of tr 125 175 fitted % IC % IC 150 100 IC 90% 125 75 VCE 100 IC IC 90% 60% 75 50 tr IC 40% 50 25 VCE 25 IC10% 0 IC 10% tf 0 -25 -25 0,1 0,2 VC (100%) = IC (100%) = tf = copyright by Vincotech 0,3 350 400 0,09 0,4 0,5 time (us) 4,2 0,6 4,25 4,3 4,35 4,4 4,45 4,5 time(us) VC (100%) = IC (100%) = tr = V A µs 20 350 400 0,06 V A µs Revision: 7 70-W212NMA400SC-M209P datasheet Switching Definitions half bridge IGBT half bridge IGBT Figure 5 half bridge IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % IC 1% % Eon Poff 100 100 Eoff Pon 75 75 50 50 25 25 VGE90% VGE 10% 0 -25 -0,2 tEoff tEon -25 0 0,2 Poff (100%) = Eoff (100%) = tEoff = 0,4 140,00 22,08 1,12 0,6 0,8 1 1,2 time (us) 3,7 3,9 Pon (100%) = Eon (100%) = tEon = kW mJ µs Figure 7 Gate voltage vs Gate charge (measured) VGE (V) VCE 3% 0 half bridge IGBT 4,1 4,3 140,00 12,30 0,56 kW mJ µs 4,5 4,7 time(us) 4,9 neutral point FWD Figure 8 Turn-off Switching Waveforms & definition of trr 20 125 15 100 10 75 5 50 0 25 -5 0 % Id trr Vd fitted IRRM 10% -10 -25 -15 -50 -20 -1000 -75 0 1000 2000 3000 4000 IRRM 90% IRRM 100% 4,2 4,3 4,4 4,5 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright by Vincotech -15 15 350 400 3059 4,6 4,7 4,8 time(us) Qg (nC) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 21 350 400 -262 0,30 V A A µs Revision: 7 70-W212NMA400SC-M209P datasheet Switching Definitions half bridge IGBT neutral point FWD Figure 9 neutral point FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 125 % % 100 Erec Qrr Id 100 tErec 75 tQrr 50 50 0 25 Prec -50 0 -100 -25 4,2 4,4 4,6 4,8 5 5,2 4,2 time(us) Id (100%) = Qrr (100%) = tQrr = 400 33,04 0,64 Prec (100%) = Erec (100%) = tErec = A µC µs 4,4 4,6 140,00 7,44 0,64 4,8 5 time(us) 5,2 kW mJ µs half bridge IGBT switching measurement circuit Figure 11 copyright by Vincotech 22 Revision: 7 70-W212NMA400SC-M209P datasheet Switching Definitions neutral point IGBT General conditions = 125 °C Tj = 1Ω Rgon Rgoff = 1Ω neutral point IGBT Figure 1 neutral point IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 250 tdoff % % 100 IC 200 VGE 90% IC 75 150 VGE 50 100 VCE tEoff 90% VGE tdon VCE 25 50 VCE 0 VGE 10% 0 IC 10% IC 1% -25 -0,2 VCE 3% tEon -50 0 0,2 0,4 0,6 3,9 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 4,1 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs -15 15 700 400 0,23 0,58 4 neutral point IGBT Figure 3 4,2 -15 15 700 400 0,20 0,38 4,3 time(us) 4,5 V V V A µs µs neutral point IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 4,4 Turn-on Switching Waveforms & definition of tr 250 125 % % fitted Ic IC 200 100 IC 90% 150 75 IC 60% 100 50 IC 40% tr VCE IC 90% 50 25 IC 10% VCE 0 0 tf -50 4,15 -25 0,1 0,2 VC (100%) = IC (100%) = tf = copyright by Vincotech 0,3 700 400 0,088 0,4 time (us) 0,5 VC (100%) = IC (100%) = tr = V A µs 23 IC 10% 4,20 4,25 700 400 0,032 4,30 time(us) 4,35 V A µs Revision: 7 70-W212NMA400SC-M209P datasheet Switching Definitions neutral point IGBT neutral point IGBT Figure 5 neutral point IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 125 % % IC 1% Eon Eoff 100 100 75 75 50 50 Pon Poff 25 25 Uce 3% Uge 10% Uge 90% 0 0 tEon tEoff -25 -0,2 -25 0 0,2 0,4 3,9 0,6 4 4,1 4,2 4,3 time (us) Poff (100%) = Eoff (100%) = tEoff = 280,22 14,07 0,58 Pon (100%) = Eon (100%) = tEon = kW mJ µs neutral point IGBT Figure 7 280,2184 13,39 0,38 kW mJ µs half bridge FWD Figure 8 Gate voltage vs Gate charge (measured) Uge (V) 4,4 time(us) Turn-off Switching Waveforms & definition of trr 20 150 % 15 Id 100 10 trr 50 5 Ud 0 fitted 0 IRRM 10% -5 -50 -10 -100 -15 -20 -1000 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright by Vincotech IRRM 90% IRRM 100% 0 1000 -15 15 700 400 3442 2000 -150 4,15 3000 Qg (nC) 4,2 4,25 4,3 4,35 4,4 4,45 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 24 700 400 -521 0,15 V A A µs Revision: 7 70-W212NMA400SC-M209P datasheet Switching Definitions neutral point IGBT Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr= integrating time for Qrr) half bridge FWD Figure 10 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 half bridge FWD 125 % % Id 100 Erec 100 tQint 50 tErec 75 Qrr 0 50 -50 25 -100 0 Prec -150 -25 4 4,3 4,6 4,9 5,2 5,5 4 4,3 4,6 4,9 Id (100%) = Qrr (100%) = tQint = 400 49,18 0,33 5,2 5,5 time(us) time(us) Prec (100%) = Erec (100%) = tErec = A µC µs 280,22 12,71 0,33 kW mJ µs neutral point IGBT switching measurement circuit Figure 11 copyright by Vincotech 25 Revision: 7 70-W212NMA400SC-M209P datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Standard Ordering Code 70-W212NMA400SC-M209P in DataMatrix as M209P in packaging barcode as M209P Outline copyright by Vincotech 26 Revision: 7 70-W212NMA400SC-M209P datasheet Ordering Code and Marking - Outline - Pinout Pinout copyright by Vincotech 27 Revision: 7 70-W212NMA400SC-M209P datasheet DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright by Vincotech 28 Revision: 7