70-W212NMA400SC-M209P Maximum Ratings

70-W212NMA400SC-M209P
datasheet
flow MNPC 4w
1200V/400A
Features
flow SCREW 4w housing
● Mixed voltage NPC
● Low inductive
● High power screw interface
● Integrated DC-snubber capacitors
Target Applications
● Solar inverter
● UPS
Schematic
● High speed motor drive
Types
● 70-W212NMA400SC-M209P
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
338
439
A
1200
A
729
1104
W
±20
V
10
800
µs
V
800
A
175
°C
600
V
309
415
A
890
A
3960
A 2s
half bridge IGBT ( T1 , T4 )
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Turn off safe operating area (RBSOA)
Icmax
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
VCE max = 1200V
Tvj max= 150°C
Tjmax
neutral point FWD ( D2 , D3 )
Peak Repetitive Reverse Voltage
DC forward current
Surge forward current
I2t-value
Repetitive peak forward current
Power dissipation per FWD
Maximum Junction Temperature
copyright by Vincotech
VRRM
IF
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
tp = 10 ms, sine halfwave
Tvj < 150°C
IFSM
I2t
IFRM
Ptot
tP = 1 ms
Tvj < 150°C
800
A
Tj=Tjmax
Th=80°C
Tc=80°C
421
637
W
175
°C
Tjmax
1
Revision: 7
70-W212NMA400SC-M209P
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
329
430
A
1200
A
574
870
W
±20
V
6
360
µs
V
800
A
175
°C
1200
V
270
356
A
2200
A
6052
A 2s
1200
A
540
818
W
175
°C
630
V
neutral point IGBT ( T2 , T3 )
Collector-emitter break down voltage
DC collector current
VCE
IC
Th=80°C
Tj=Tjmax
Tc=80°C
Repetitive peak collector current
ICpuls
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Turn off safe operating area (RBSOA)
Icmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
VCE max = 1200V
Tvj max= 150°C
Tjmax
half bridge FWD ( D1 , D4 )
Peak Repetitive Reverse Voltage
DC forward current
Surge forward current
I2t-value
VRRM
IF
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms , sin 180°
Tj=150°C
IFSM
I2t
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per FWD
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tjmax
DC link Capacitor
Max.DC voltage
VMAX
Tc=100°C
General Module Properties
Material of module baseplate
Cu
Al2O3
Material of internal isulation
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Comparative tracking index
copyright by Vincotech
Vis
t=2s
DC voltage
CTI
>200
2
Revision: 7
70-W212NMA400SC-M209P
datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Unit
Typ
Max
5
5,8
6,5
1,5
1,97
2,23
2,4
half bridge IGBT ( T1 , T4 )
VCE=VGE
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Collector-emitter cut-off current incl. FWD
Rise time
Turn-off delay time
Fall time
0,0152
400
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
0,6
3000
Rgoff=1 Ω
Rgon=1 Ω
±15
350
400
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
1,88
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
235
247
46
55
292
354
55
92
7,95
12,30
13,25
22,08
ns
mWs
24600
f=1MHz
0
25
1620
Tj=25°C
pF
1380
±15
960
400
Tj=25°C
2030
Thermal grease
thickness≤50um
λ = 1 W/mK
nC
0,13
K/W
0,09
neutral point FWD ( D2 , D3 )
FWD forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
400
IRRM
trr
Qrr
Rgon=1 Ω
±15
350
400
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Thermal grease
thickness≤50um
λ = 1 W/mK
Gate emitter threshold voltage
VGE(th)
VCE=VGE
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl FWD
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,2
1,67
1,56
204
262
183
295
17
33
3129
1705
3,78
7,44
2,2
V
A
ns
µC
A/µs
mWs
0,23
K/W
0,15
neutral point IGBT ( T2 , T3 )
Rise time
Turn-off delay time
Fall time
400
tf
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
5
5,8
6,5
1
1,56
1,80
2,2
0,1
3000
0,5
tr
td(off)
Turn-on energy loss per pulse
copyright by Vincotech
0,0064
Rgoff=1 Ω
Rgon=1 Ω
±15
350
400
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
201
204
29
32
248
272
71
88
3,93
5,61
10,49
14,07
V
V
mA
nA
Ω
ns
mWs
24640
f=1MHz
0
25
Tj=25°C
1536
pF
732
±15
Thermal grease
thickness≤50um
λ = 1 W/mK
3
480
400
Tj=25°C
2480
nC
0,17
K/W
0,11
Revision: 7
70-W212NMA400SC-M209P
datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
1
2,29
2,37
Unit
Max
half bridge FWD ( D1 , D4 )
FWD forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
400
Ir
1200
IRRM
trr
Qrr
Rgon=1 Ω
±15
350
400
di(rec)max
/dt
Reverse recovery energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
3
480
410
521
63
149
24
49
18915
15110
5,79
12,71
Thermal grease
thickness≤50um
λ = 1 W/mK
V
µA
A
ns
µC
A/µs
mWs
0,18
K/W
0,12
DC link Capacitor
C value
C
2 * 0,68
µF
Stray inductance of on board capacitors
ESL
26/2
nH
Series resistance of on board capacitors
ESR
14/2
mΩ
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
Tj=25°C
R100=1486 Ω
Power dissipation constant
Tj=100°C
5
%
Tj=25°C
200
mW
Tj=25°C
2
mW/K
K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3950
B-value
B(25/100)
Tol. ±3%
Tj=25°C
3996
Vincotech NTC Reference
Ω
22000
-5
Tj=25°C
K
B
Module Properties
Module inductance (from chips to PCB)
LsCE
5
Module inductance (from PCB to PCB using Intercon board)
LsCE
3
nH
1,5
mΩ
Resistance of Intercon boards (from PCB to PCB using Intercon board)
Rcc'1+EE' Tc=25°C, per switch
Mounting torque
M
Mounting torque
M
Terminal connection torque
M
Weight
G
copyright by Vincotech
Screw M4 - mounting according to valid application note
FSWB1-4TY-M-*-HI
Screw M5 - mounting according to valid application note
FSWB1-4TY-M-*-HI
Screw M6 - mounting according to valid application note
FSWB1-4TY-M-*-HI
4
nH
2
2,2
Nm
4
6
Nm
2,5
5
Nm
710
g
Revision: 7
70-W212NMA400SC-M209P
datasheet
Buck
half bridge IGBT and neutral point FWD
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
1600
IC (A)
IC (A)
1600
1400
1400
1200
1200
1000
1000
800
800
600
600
400
400
200
200
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
0
5
At
tp =
Tj =
VGE from
350
µs
25
°C
8 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
350
µs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
1800
IC (A)
IF (A)
500
5
V CE (V)
1500
400
1200
300
900
Tj = Tjmax-25°C
200
600
Tj = Tjmax-25°C
Tj = 25°C
100
300
Tj = 25°C
0
0
0
At
tp =
VCE =
2
350
10
copyright by Vincotech
4
6
8
10
V GE (V)
0
12
At
tp =
µs
V
5
0,5
350
1
1,5
2
2,5
V F (V)
3
µs
Revision: 7
70-W212NMA400SC-M209P
datasheet
Buck
half bridge IGBT and neutral point FWD
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
40
Eon High T
E (mWs)
E (mWs)
40
Eoff High T
Eon Low T
30
30
Eon High T
Eoff High T
Eoff Low T
20
20
Eoff Low T
Eon Low T
10
10
0
0
0
200
400
600
I C (A)
800
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
1
Ω
Rgoff =
1
Ω
2
4
6
8
R G ( Ω)
10
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
IC =
A
400
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
10
10
E (mWs)
E (mWs)
Erec High T
8
8
6
6
Erec High T
Erec Low T
4
4
2
2
Erec Low T
0
0
0
200
400
600
I C (A)
800
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
1
Ω
copyright by Vincotech
2
4
6
8
R G ( Ω)
10
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
400
A
6
Revision: 7
70-W212NMA400SC-M209P
datasheet
Buck
half bridge IGBT and neutral point FWD
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
1,00
tdoff
t (ms)
t (ms)
tdoff
tdon
tdon
tf
tf
0,10
0,10
tr
tr
0,01
0,01
0,00
0,00
0
200
400
600
0
800
2
4
6
8
I C (A)
10
R G ( Ω)
With an inductive load at
Tj =
°C
125
VCE =
350
V
VGE =
±15
V
Rgon =
1,0
Ω
Rgoff =
1,0
Ω
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
400
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,5
trr High T
t rr(ms)
t rr(ms)
0,4
trr High T
0,4
trr Low T
0,3
0,3
trr Low T
0,2
0,2
0,1
0,1
0,0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
200
25/125
350
±15
1
copyright by Vincotech
400
600
I C (A)
0
800
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
2
25/125
350
400
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
Revision: 7
70-W212NMA400SC-M209P
datasheet
Buck
half bridge IGBT and neutral point FWD
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr (mC)
40
Qrr (mC)
50
Qrr High T
Qrr High T
40
30
30
20
Qrr Low T
20
Qrr Low T
10
10
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
200
400
600
I C (A)
0
800
At
Tj =
VR =
IF =
VGE =
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
4
6
8
10
R gon ( Ω)
°C
V
V
Ω
25/125
350
±15
1
2
25/125
350
400
±15
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
350
IrrM (A)
IrrM (A)
400
IRRM High T
300
300
250
IRRM Low T
200
200
150
IRRM High T
100
IRRM Low T
100
50
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
200
25/125
350
±15
1
copyright by Vincotech
400
600
I C (A)
0
800
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
8
2
25/125
350
400
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
Revision: 7
70-W212NMA400SC-M209P
datasheet
Buck
half bridge IGBT and neutral point FWD
FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
12000
direc / dt (A/ms)
10000
direc / dt (A/ms)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dt T
dI0/dt T
8000
dIrec/dt T
dI0/dt T
10000
8000
6000
6000
4000
4000
2000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
200
400
600
I C (A)
800
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
25/125
350
±15
1
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
2
4
25/125
350
400
±15
6
8
R gon ( Ω)
10
°C
V
A
V
FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
ZthJH (K/W)
ZthJH (K/W)
100
10
-1
10
-2
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-2
10-3
10-3
10
-5
At
D=
RthJH =
10
-4
10
-3
10
-2
10
-1
10
0
10
1
t p (s)
10
10-5
2
At
D=
RthJH =
tp / T
0,13
K/W
10-4
10-2
10-1
100
101
t p (s)
10
2
tp / T
0,23
IGBT thermal model values
K/W
FWD thermal model values
Thermal grease
Thermal grease
R (C/W)
0,06
0,03
0,03
0,01
0,00
R (C/W)
0,05
0,07
0,02
0,06
0,02
Tau (s)
2,5E+00
4,7E-01
3,9E-02
1,2E-02
1,2E-03
copyright by Vincotech
10-3
9
Tau (s)
5,2E+00
1,1E+00
2,0E-01
4,6E-02
1,7E-02
Revision: 7
70-W212NMA400SC-M209P
datasheet
Buck
half bridge IGBT and neutral point FWD
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
1400
IC (A)
Ptot (W)
500
1200
400
1000
300
800
600
200
400
100
200
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
800
200
IF (A)
Ptot (W)
500
400
600
300
400
200
200
100
0
0
0
At
Tj =
50
175
copyright by Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
10
50
175
100
150
T h ( o C)
200
°C
Revision: 7
70-W212NMA400SC-M209P
datasheet
Buck
half bridge IGBT and neutral point FWD
IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
IC (A)
VGE (V)
VGE = f(Qg)
20
18
1
103
1
1
10
IGBT
Figure 26
Gate voltage vs Gate charge
2
240V
16
960V
14
1
12
10
101
8
6
100
4
10
-1
2
0
0
102
101
100
At
D=
103
Tj =
800
1200
1600
2000
2400
2800
Q g (nC)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Th =
VGE =
400
V CE (V)
400
A
IGBT
Figure 27
Reverse bias safe operating area
IC = f(VCE)
IC (A)
1000
ICMAX
800
VCE MAX
400
Ic CHIP
Ic MODULE
600
200
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tjmax-25
Tj =
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
copyright by Vincotech
11
Revision: 7
70-W212NMA400SC-M209P
datasheet
Boost
neutral point IGBT and half bridge FWD
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
1800
IC (A)
IC (A)
1800
1500
1500
1200
1200
900
900
600
600
300
300
0
0
0
At
tp =
Tj =
VGE from
1
2
3
4
V CE (V)
5
0
1
At
tp =
Tj =
VGE from
350
µs
25
°C
8 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
2
3
4
5
350
µs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical FWD forward current as
a function of forward voltage
IF = f(VF)
1600
IF (A)
IC (A)
500
V CE (V)
Tj = 25°C
400
1200
300
800
200
Tj = Tjmax-25°C
Tj = Tjmax-25°C
400
Tj = 25°C
100
0
0
0
At
tp =
VCE =
2
350
0
copyright by Vincotech
4
6
8
10
V GE (V)
12
0
At
tp =
µs
V
12
1
350
2
3
4
V F (V)
5
µs
Revision: 7
70-W212NMA400SC-M209P
datasheet
Boost
neutral point IGBT and half bridge FWD
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
25
40
Eon High T
E (mWs)
Eoff High T
E (mWs)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
Eon Low T
20
30
Eoff Low T
15
Eoff High T
20
Eoff Low T
10
Eon High T
Eon Low T
10
5
0
0
0
200
400
600
I C (A)
0
800
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
1
Ω
Rgoff =
1
Ω
2
4
6
R G( Ω )
8
10
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
A
400
FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
20
E (mWs)
E (mWs)
15
Erec High T
12
15
Erec High T
9
Erec Low T
10
6
Erec Low T
5
3
0
0
0
200
400
600
800
0
I C (A)
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
1
Ω
copyright by Vincotech
2
4
6
8
RG (Ω )
10
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
400
A
13
Revision: 7
70-W212NMA400SC-M209P
datasheet
Boost
neutral point IGBT and half bridge FWD
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
1
t ( µs)
t ( µs)
tdoff
tdoff
tdon
0,1
tdon
tf
0,1
tf
tr
tr
0,01
0,01
0,001
0,001
0
200
400
600
0
800
I C (A)
With an inductive load at
Tj =
°C
125
VCE =
350
V
VGE =
±15
V
Rgon =
1
Ω
Rgoff =
1
Ω
2
4
6
8
10
R G( Ω )
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
400
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,8
t rr(ms)
t rr(ms)
0,2
trr High T
trr High T
0,2
0,6
0,1
0,4
trr Low T
trr Low T
0,2
0,1
0
0,0
0
At
Tj =
VCE =
VGE =
Rgon =
200
25/125
350
±15
1
copyright by Vincotech
400
600
I C (A)
0
800
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
14
2
25/125
350
400
±15
4
6
8
R gon ( Ω)
10
°C
V
A
V
Revision: 7
70-W212NMA400SC-M209P
datasheet
Boost
neutral point IGBT and half bridge FWD
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr (mC)
60
Qrr (mC)
75
Qrr High T
50
Qrr High T
60
40
45
Qrr Low T
30
30
Qrr Low T
20
15
10
0
0
0
200
At
At
Tj =
VCE =
VGE =
Rgon =
400
600
I C (A)
800
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
25/125
350
±15
1
2
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
4
25/125
350
400
±15
6
8
10
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
600
IrrM (A)
600
R gon ( Ω)
IRRM High T
500
500
IRRM Low T
400
400
300
300
200
200
IRRM High T
IRRM Low T
100
100
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
200
25/125
350
±15
1
copyright by Vincotech
400
600
I C (A)
0
800
2
4
6
8
10
R gon ( Ω)
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
15
25/125
350
400
±15
°C
V
A
V
Revision: 7
70-W212NMA400SC-M209P
datasheet
Boost
neutral point IGBT and half bridge FWD
FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
direc / dt (A/ms)
direc / dt (A/ms)
25000
dIrec/dt T
dI0/dt T
20000
25000
dIrec/dt T
dI0/dt T
20000
15000
15000
10000
10000
5000
5000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
200
400
600
0
800
I C (A)
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
25/125
350
±15
1
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
-3
6
8
R gon ( Ω)
10
°C
V
A
V
FWD
ZthJH (K/W)
ZthJH (K/W)
10
25/125
350
400
±15
4
100
10-1
10-1
-2
2
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
10
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-5
At
D=
RthJH =
10-4
10-3
tp / T
0,17
10-2
10-1
100
101
t p (s)
10-3
10-5
102
At
D=
RthJH =
K/W
IGBT thermal model values
IGBT thermal model values
R (C/W)
Tau (s)
0,03
8,9E+00
0,07
2,2E+00
0,02
3,7E-01
0,04
4,3E-02
0,01
1,1E-02
0,00
1,9E-03
copyright by Vincotech
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-4
tp / T
0,18
10-3
10-2
10-1
100
101
t p (s)
102
K/W
FWD thermal model values
FWD thermal model values
R (C/W)
Tau (s)
0,02
9,8E+00
0,05
2,5E+00
0,03
6,5E-01
0,03
8,1E-02
0,03
2,7E-02
0,01
4,1E-03
16
Revision: 7
70-W212NMA400SC-M209P
datasheet
Boost
neutral point IGBT and half bridge FWD
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
500
Ptot (W)
IC (A)
1200
1000
400
800
300
600
200
400
100
200
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
175
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
175
15
100
150
T h ( o C)
200
ºC
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
500
Ptot (W)
IF (A)
1000
800
400
600
300
400
200
200
100
0
0
0
At
Tj =
50
50
175
copyright by Vincotech
100
150
Th ( o C)
0
200
At
Tj =
ºC
17
50
175
100
150
Th ( o C)
200
ºC
Revision: 7
70-W212NMA400SC-M209P
datasheet
Boost
neutral point IGBT
IGBT
Figure 25
Reverse bias safe operating area
IC = f(VCE)
IC (A)
1400
Ic MODULE
1000
Ic CHIP
ICMAX
1200
VCE MAX
800
600
400
200
0
0
100
200
300
400
500
600
700
V CE (V)
At
Tj =
Tjmax-25
Uccminus=Uccplus
ºC
Switching mode :
3 level switching
copyright by Vincotech
18
Revision: 7
70-W212NMA400SC-M209P
datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
24000
20000
16000
12000
8000
4000
0
25
50
copyright by Vincotech
75
100
T (°C)
125
19
Revision: 7
70-W212NMA400SC-M209P
datasheet
Switching Definitions half bridge IGBT
General conditions
= 125 °C
Tj
= 1Ω
Rgon
Rgoff
= 1Ω
half bridge IGBT
Figure 1
half bridge IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
200
150
%
%
tdoff
100
IC
VCE
150
VGE 90%
IC
VCE
100
50
VGE
VCE 90%
tEoff
tdon
50
IC 1%
0
VGE 10%
VGE
-50
-0,3
VCE3%
IC 10%
0
tEon
-50
0
0,3
0,6
0,9
1,2
3,9
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
-15
15
350
400
0,35
1,12
4,1
half bridge IGBT
Figure 3
4,3
-15
15
350
400
0,25
0,56
4,5
4,7
V
V
V
A
µs
µs
half bridge IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
time(us)
Turn-on Switching Waveforms & definition of tr
125
175
fitted
%
IC
%
IC
150
100
IC 90%
125
75
VCE
100
IC
IC 90%
60%
75
50
tr
IC 40%
50
25
VCE
25
IC10%
0
IC 10%
tf
0
-25
-25
0,1
0,2
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
0,3
350
400
0,09
0,4
0,5
time (us)
4,2
0,6
4,25
4,3
4,35
4,4
4,45
4,5
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
20
350
400
0,06
V
A
µs
Revision: 7
70-W212NMA400SC-M209P
datasheet
Switching Definitions half bridge IGBT
half bridge IGBT
Figure 5
half bridge IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
IC 1%
%
Eon
Poff
100
100
Eoff
Pon
75
75
50
50
25
25
VGE90%
VGE 10%
0
-25
-0,2
tEoff
tEon
-25
0
0,2
Poff (100%) =
Eoff (100%) =
tEoff =
0,4
140,00
22,08
1,12
0,6
0,8
1
1,2
time (us)
3,7
3,9
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Figure 7
Gate voltage vs Gate charge (measured)
VGE (V)
VCE 3%
0
half bridge IGBT
4,1
4,3
140,00
12,30
0,56
kW
mJ
µs
4,5
4,7
time(us)
4,9
neutral point FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
20
125
15
100
10
75
5
50
0
25
-5
0
%
Id
trr
Vd
fitted
IRRM 10%
-10
-25
-15
-50
-20
-1000
-75
0
1000
2000
3000
4000
IRRM 90%
IRRM 100%
4,2
4,3
4,4
4,5
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright by Vincotech
-15
15
350
400
3059
4,6
4,7
4,8
time(us)
Qg (nC)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
21
350
400
-262
0,30
V
A
A
µs
Revision: 7
70-W212NMA400SC-M209P
datasheet
Switching Definitions half bridge IGBT
neutral point FWD
Figure 9
neutral point FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
125
%
%
100
Erec
Qrr
Id
100
tErec
75
tQrr
50
50
0
25
Prec
-50
0
-100
-25
4,2
4,4
4,6
4,8
5
5,2
4,2
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
400
33,04
0,64
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
4,4
4,6
140,00
7,44
0,64
4,8
5
time(us)
5,2
kW
mJ
µs
half bridge IGBT switching measurement circuit
Figure 11
copyright by Vincotech
22
Revision: 7
70-W212NMA400SC-M209P
datasheet
Switching Definitions neutral point IGBT
General conditions
= 125 °C
Tj
= 1Ω
Rgon
Rgoff
= 1Ω
neutral point IGBT
Figure 1
neutral point IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
250
tdoff
%
%
100
IC
200
VGE 90%
IC
75
150
VGE
50
100
VCE
tEoff
90%
VGE
tdon
VCE
25
50
VCE
0
VGE 10%
0
IC 10%
IC 1%
-25
-0,2
VCE 3%
tEon
-50
0
0,2
0,4
0,6
3,9
time (us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
4,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
-15
15
700
400
0,23
0,58
4
neutral point IGBT
Figure 3
4,2
-15
15
700
400
0,20
0,38
4,3
time(us)
4,5
V
V
V
A
µs
µs
neutral point IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
4,4
Turn-on Switching Waveforms & definition of tr
250
125
%
%
fitted
Ic
IC
200
100
IC 90%
150
75
IC 60%
100
50
IC 40%
tr
VCE
IC 90%
50
25
IC 10%
VCE
0
0
tf
-50
4,15
-25
0,1
0,2
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
0,3
700
400
0,088
0,4
time (us)
0,5
VC (100%) =
IC (100%) =
tr =
V
A
µs
23
IC 10%
4,20
4,25
700
400
0,032
4,30
time(us)
4,35
V
A
µs
Revision: 7
70-W212NMA400SC-M209P
datasheet
Switching Definitions neutral point IGBT
neutral point IGBT
Figure 5
neutral point IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
125
%
%
IC 1%
Eon
Eoff
100
100
75
75
50
50
Pon
Poff
25
25
Uce 3%
Uge 10%
Uge 90%
0
0
tEon
tEoff
-25
-0,2
-25
0
0,2
0,4
3,9
0,6
4
4,1
4,2
4,3
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
280,22
14,07
0,58
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
neutral point IGBT
Figure 7
280,2184
13,39
0,38
kW
mJ
µs
half bridge FWD
Figure 8
Gate voltage vs Gate charge (measured)
Uge (V)
4,4
time(us)
Turn-off Switching Waveforms & definition of trr
20
150
%
15
Id
100
10
trr
50
5
Ud
0
fitted
0
IRRM 10%
-5
-50
-10
-100
-15
-20
-1000
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright by Vincotech
IRRM 90%
IRRM 100%
0
1000
-15
15
700
400
3442
2000
-150
4,15
3000
Qg (nC)
4,2
4,25
4,3
4,35
4,4
4,45
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
24
700
400
-521
0,15
V
A
A
µs
Revision: 7
70-W212NMA400SC-M209P
datasheet
Switching Definitions neutral point IGBT
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr= integrating time for Qrr)
half bridge FWD
Figure 10
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
half bridge FWD
125
%
%
Id
100
Erec
100
tQint
50
tErec
75
Qrr
0
50
-50
25
-100
0
Prec
-150
-25
4
4,3
4,6
4,9
5,2
5,5
4
4,3
4,6
4,9
Id (100%) =
Qrr (100%) =
tQint =
400
49,18
0,33
5,2
5,5
time(us)
time(us)
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
280,22
12,71
0,33
kW
mJ
µs
neutral point IGBT switching measurement circuit
Figure 11
copyright by Vincotech
25
Revision: 7
70-W212NMA400SC-M209P
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Standard
Ordering Code
70-W212NMA400SC-M209P
in DataMatrix as
M209P
in packaging barcode as
M209P
Outline
copyright by Vincotech
26
Revision: 7
70-W212NMA400SC-M209P
datasheet
Ordering Code and Marking - Outline - Pinout
Pinout
copyright by Vincotech
27
Revision: 7
70-W212NMA400SC-M209P
datasheet
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright by Vincotech
28
Revision: 7