10-PZ12NMA030MR-M340F18Y preliminary datasheet 1200V/ 30mΩ flowMNPC 0-SIC Features flow0 12mm housing ● Rohm™ Silicon Carbide Power MOSFET ● Rohm™ Silicon Carbide Power Schottky Diode ● MNPC Topology with Splitted Output ● Ultra Low Inductance with Integrated DC-capacitors ● Extremely Fast Switching with No "Tail" Current ● Unsensitivity for Cross Through Conduction ● Solderless Press-fit Mounting Technology Schematic Target Applications ● High Efficient Solar Inverter ● UPS Types ● 10-PZ12NMA030MR-M340F18Y Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 20 20 A 43 A 10 A²s Half Bridge Inv. Diode VRRM Tj=25°C IF Tj=Tjmax IFRM tp=10ms I2t-value I2t Tj=Tjmax Power dissipation per Diode Ptot 65 99 W Tjmax 150 °C VDSS 1200 V 52 60 A 120 A 149 226 W -6 to +22 V tbd. tbd. μs V 150 °C Repetitive Peak Reverse Voltage Forward current per diode Surge forward current Maximum Junction Temperature Th=80°C Tc=80°C Th=80°C Tc=80°C Half Bridge MOSFET Drain-source break down voltage DC drain current Repetitive peak drain current ID IDpulse Power dissipation per IGBT Ptot Gate-source peak voltage VGS Short circuit ratings tSC VCC Maximum Junction Temperature copyright Vincotech Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Neutral Point FWD Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C 40 Tc=80°C 40 A 108 A 73 111 W Tjmax 150 °C VCE 600 V 57 75 A 200 A 126 191 W ±20 V 5 400 μs V 175 °C 1200 V 12 19 A 12 A 40 60 W 175 °C 1200 V 19 24 A 43 A 52 79 W 150 °C Th=80°C Tc=80°C Neutral Point IGBT Collector-emitter break down voltage DC collector current IC Tj=Tjmax Repetitive peak collector current ICpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Th=80°C Tc=80°C Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax Neutral Point Inv. Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tc=25°C IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Th=80°C Tc=80°C Tjmax Half Bridge FWD Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature copyright Vincotech Tjmax 2 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 500 V DC link Capacitor Max.DC voltage VMAX Tc=25°C Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Comparative tracking index copyright Vincotech Vis t=2s DC voltage CTI >200 3 Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Unit Typ Max 1,44 1,67 1,05 1,06 0,04 0,06 1,7 Half Bridge Inv. Diode Forward voltage Vf 10 Threshold voltage (for power loss calc. only) Vto 44 Slope resistance (for power loss calc. only) rt 44 Reverse current Ir 1200 Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Thermal grease thickness≤50um λ = 1 W/mK Rds(on) VCE=VGE Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V Ω 0,2 mA 1,07 K/W 0,71 Half Bridge MOSFET Drain-source on-state resistance Gate threshold voltage V(GS)th 16 60 VDS=VGS 0,0132 Total Gate Reverse Leakage IGSS+ IGSS- 22 -6 0 Zero Gate Voltage Drain Current IDSS 0 1200 Turn-on delay time Rise time Turn-off delay time Fall time td(on) tr td(off) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge * Qg Rgoff=1 Ω Rgon=1 Ω 16/-5 350 44 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=25°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,7 0,04 0,05 2,20 3,05 0,12 3,7 0,3 -0,3 300 36 35 14 12 102 108 29 22 0,24 0,20 0,15 0,13 Ω V mA nA ns mWs 294 pF Gate to source charge Qgs 90 pF Gate to drain charge Qgd 90 pF Input capacitance * Cies 6600 Output capacitance Coss Reverse transfer capacitance Crss Gate capacitor CGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 18 f=1MHz 600 0 30 25 Tj=25°C Tj=25°C pF 1143 138 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK nC tbd. 0,47 K/W 0,31 Neutral Point FWD Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Rgon=1 Ω 16/-5 350 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC copyright Vincotech 30 Thermal grease thickness≤50um λ = 1 W/mK 44 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,42 1,57 28 32 13 21 0,24 0,30 6266 6890 0,04 0,06 1,7 V A ns μC A/μs mWs 0,95 K/W 0,63 4 Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 4,1 5,1 5,7 1,81 2,03 2,3 Neutral Point IGBT VCE=VGE Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time 0,0008 50 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C tr tf 100 none td(on) td(off) 0,04 Rgoff=4 Ω Rgon=4 Ω Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate f=1MHz Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Thermal grease thickness≤50um λ = 1 W/mK 0 ±15 V V mA nA Ω 62 62 8 9 95 115 10 15 0,28 0,36 0,32 0,57 ns mWs 2960 f=1MHz 350 ±15 44 Tj=25°C pF 116 96 25 0 Tj=25°C nC 315 0,75 K/W 0,50 Neutral Point Inv. Diode Diode forward voltage VF Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 6 Tj=25°C Tj=125°C Thermal grease thickness≤50um λ = 1 W/mK 1,25 1,72 1,70 1,95 V 2,39 K/W 1,57 Half Bridge FWD Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir trr Reverse recovered charge Qrr Rgon=4 Ω 350 ±15 di(rec)max /dt Reverse recovery energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC copyright Vincotech 1200 IRRM Reverse recovery time Peak rate of fall of recovery current 10 Thermal grease thickness≤50um λ = 1 W/mK 44 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,45 1,77 1,7 200 29 28 25 26 0,29 0,26 4940 6243 0,04 0,03 V μA A ns μC A/μs mWs 1,34 K/W 0,88 5 Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max DC link Capacitor C value C 270 nF Thermistor Rated resistance R Deviation of R100 ΔR/R Power dissipation P Tc=100°C Tj=25°C Power dissipation constant Ω 22000 Tj=25°C R100=1486 Ω +5 -5 % 200 mW Tj=25°C 2 mW/K B-value B(25/50) Tol. ±3% Tj=25°C 3950 K B-value B(25/100) Tol. ±3% Tj=25°C 3996 K Vincotech NTC Reference copyright Vincotech B 6 Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Half Bridge half bridge MOSFET and neutral point FWD MOSFET Figure 1 Typical output characteristics IC = f(VCE) 100 IC (A) 100 IC (A) MOSFET Figure 2 Typical output characteristics IC = f(VCE) 75 75 50 50 25 25 0 0 -25 -25 -50 -50 -75 -75 -100 -100 -5 At tp = Tj = VGE from -4 -3 -2 -1 0 1 2 3 4 V CE (V) 5 -5 -3 -2 -1 0 1 2 3 4 5 V CE (V) At tp = Tj = VGE from 250 μs 25 °C -6 V to 20 V in steps of 2 V MOSFET Figure 3 Typical transfer characteristics IC = f(VGE) -4 250 μs 125 °C -6 V to 20 V in steps of 2 V FWD Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) 125 IF (A) IC (A) 40 100 30 75 20 50 10 25 Tj = Tjmax-25°C Tj = 25°C Tj = Tjmax-25°C 0 At tp = VCE = Tj = 25°C 0 0 3 250 10 copyright Vincotech 6 9 V GE (V) 12 0 At tp = μs V 7 1 250 2 3 V F (V) 4 μs Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Half Bridge half bridge MOSFET and neutral point FWD MOSFET Figure 5 Typical switching energy losses as a function of collector current E = f(IC) 0,4 2,0 E (mWs) Eoff Low T E (mWs) MOSFET Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) Eon Low T Eoff High T Eon Low T 1,5 0,3 Eon High T Eon High T 0,2 1,0 0,1 0,5 0,0 0,0 Eoff Low T Eoff High T 0 20 40 60 80 I C (A) 0 100 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = +16/-5 V Rgon = 1 Ω Rgoff = 1 Ω 4 8 12 16 R G (Ω) 20 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = +16/-5 V IC = 44 A FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,08 E (mWs) E (mWs) 0,06 Erec Low T 0,05 Erec High T 0,06 Erec High T 0,04 0,03 0,04 Erec Low T 0,02 0,02 0,01 0 0 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = +16/-5 V Rgon = 1 Ω copyright Vincotech 4 8 12 16 R G (Ω) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = +16/-5 V IC = 44 A 8 Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Half Bridge MOSFET MOSFET 1,00 1,00 t (ms) Figure 10 Typical switching times as a function of gate resistor t = f(RG) t (ms) Figure 9 Typical switching times as a function of collector current t = f(IC) tdoff tdoff 0,10 tdon 0,10 tr tdon tf tr tf 0,01 0,01 0,00 0,00 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = 125 °C VCE = 350 V VGE = +16/-5 V Rgon = 1 Ω Rgoff = 1 Ω 4 8 12 16 R G (Ω) 20 With an inductive load at Tj = 125 °C VCE = 350 V VGE = +16/-5 V IC = 44 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,03 t rr(ms) t rr(ms) 0,10 trr High T 0,03 0,08 0,02 0,06 0,02 trr High T trr Low T trr Low T 0,04 0,01 0,02 0,01 0,00 0,00 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 +16/-5 1 copyright Vincotech 40 60 80 I C (A) 0 100 At Tj = VR = IF = VGE = °C V V Ω 9 4 25/125 350 44 +16/-5 8 12 16 R gon (Ω) 20 °C V A V Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Half Bridge half bridge MOSFET and neutral point FWD FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 0,4 Qrr (mC) Qrr (mC) 0,4 0,3 Qrr High T 0,3 Qrr Low T Qrr Low T Qrr High T 0,2 0,2 0,1 0,1 0 0 0 At At Tj = VCE = VGE = Rgon = 20 25/125 350 +16/-5 1 40 60 80 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 4 25/125 350 44 +16/-5 8 12 16 R gon ( Ω) 20 °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 40 40 IrrM (A) IrrM (A) IRRM High T IRRM Low T 30 30 20 20 10 10 IRRM High T IRRM Low T 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 +16/-5 1 copyright Vincotech 40 60 80 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω 10 4 25/125 350 44 +16/-5 8 12 16 R gon (Ω) 20 °C V A V Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Half Bridge half bridge MOSFET and neutral point FWD FWD FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 10000 10000 dIrec/dt T direc / dt (A/ms) direc / dt (A/ms) Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) di0/dtT 8000 dIrec/dt T di0/dtT 8000 6000 6000 4000 4000 2000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 +16/-5 1 40 60 80 I C (A) 0 100 At Tj = VR = IF = VGE = °C V V Ω MOSFET 25/125 350 44 +16/-5 8 12 16 100 100 ZthJH (K/W) -1 20 R gon (Ω) °C V A V FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 4 10-1 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 -3 -3 10 10 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 101 tp / T 0,47 K/W 10-5 10-4 At D= RthJH = tp / T 0,95 10-3 FWD thermal model values R (C/W) 0,09 0,18 0,12 0,06 0,02 R (C/W) 0,02 0,12 0,18 0,29 0,17 0,18 copyright Vincotech 11 10-1 100 t p (s) 101 K/W IGBT thermal model values Tau (s) 1,5E+00 2,3E-01 7,4E-02 1,1E-02 2,7E-03 10-2 Tau (s) 8,7E+00 1,3E+00 2,3E-01 4,7E-02 8,7E-03 2,0E-03 Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Half Bridge half bridge MOSFET and neutral point FWD MOSFET Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) MOSFET Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 80 IC (A) Ptot (W) 350 300 60 250 200 40 150 100 20 50 0 0 0 At Tj = 50 150 100 150 T h ( o C) 0 200 At Tj = VGE = °C FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 150 15 100 150 T h ( o C) 200 °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 50 IF (A) Ptot (W) 180 150 40 120 30 90 20 60 10 30 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 12 50 150 100 150 T h ( o C) 200 °C Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Half Bridge half bridge MOSFET and neutral point FWD MOSFET IC (A) Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) 10 1 3 100mS 10 100uS 1mS 102 10mS 1 DC 100 10 -1 101 100 10 2 103 V CE (V) At single pulse 80 ºC 15 V Tjmax ºC D= Th = VGE = Tj = MOSFET Figure 27 Reverse bias safe operating area IC = f(VCE) IC (A) 150 IC MAX Ic CHIP 120 Ic MODULE 90 VCE MAX 60 30 0 0 200 400 600 At Tjmax-25 Tj = Uccminus=Uccplus ºC Switching mode : 3 level switching copyright Vincotech 800 1000 1200 1400 V CE (V) 13 Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Neutral Point neutral point IGBT and half bridge FWD IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 200 IC (A) IC (A) 200 150 150 100 100 50 50 0 0 0 At tp = Tj = VGE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 μs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 5 250 μs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) 50 IF (A) IC (A) 50 40 40 30 30 20 20 10 10 Tj = Tjmax-25°C Tj = 25°C Tj = Tjmax-25°C Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 8 10 V GE (V) 0 12 At tp = μs V 14 1 250 2 3 4 V F (V) 5 μs Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Neutral Point neutral point IGBT and half bridge FWD IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 1,2 E (mWs) E (mWs) 1,2 1 Eoff High T Eon High T 0,8 Eon Low T 0,8 Eon Low T 0,6 Eon High T 1 Eoff High T 0,6 Eoff Low T 0,4 0,4 Eoff Low T 0,2 0,2 0 0 0 20 40 60 80 I C (A) 0 100 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 44 A FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,05 E (mWs) E (mWs) 0,1 0,08 Erec High T 0,04 Erec High T Erec Low T 0,03 0,06 Erec Low T 0,04 0,02 0,02 0,01 0 0 0 20 40 60 80 I C (A) 0 100 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω copyright Vincotech 4 8 12 16 RG (Ω ) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 44 A 15 Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Neutral Point neutral point IGBT and half bridge FWD IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( μs) t ( μs) 1 tdoff tdon tdoff 0,1 0,1 tdon tr tr tf tf 0,01 0,01 0,001 0,001 0 20 40 60 80 I C (A) 0 100 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 44 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,04 t rr(ms) t rr(ms) 0,04 0,03 0,03 trr Low T trr High T trr High T trr Low T 0,02 0,02 0,01 0,01 0,00 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 ±15 4 copyright Vincotech 40 60 80 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω 16 4 25/125 350 44 ±15 8 12 16 R gon (Ω) 20 °C V A V Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Neutral Point neutral point IGBT and half bridge FWD FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 0,5 Qrr (mC) Qrr (mC) 0,5 Qrr High T 0,4 0,4 Qrr High T Qrr Low T 0,3 0,3 Qrr Low T 0,2 0,2 0,1 0,1 0,0 0 0 20 At At Tj = VCE = VGE = Rgon = 25/125 350 ±15 4 40 60 80 I C (A) 100 °C V V Ω FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 0 4 8 At Tj = VR = IF = VGE = 25/125 350 44 ±15 12 16 °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 40 R gon ( Ω) 20 IrrM (A) IrrM (A) 40 IRRM Low T IRRM High T 30 IRRM Low T 30 IRRM High T 20 20 10 10 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 ±15 4 copyright Vincotech 40 60 80 I C (A) 0 100 At Tj = VR = IF = VGE = °C V V Ω 17 4 25/125 350 44 ±15 8 12 16 R gon (Ω) 20 °C V A V Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Neutral Point neutral point IGBT and half bridge FWD FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 8000 direc / dt (A/ms) direc / dt (A/ms) 6000 dIrec/dt T di0/dt T 5000 dIrec/dt T dI0/dtT 6000 4000 3000 4000 2000 2000 1000 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 ±15 4 40 60 80 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 12 16 20 R gon (Ω) °C V A V FWD ZthJH (K/W) ZthJH (K/W) 101 100 100 10 25/125 350 44 ±15 8 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 10 4 -1 -1 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 -3 10-3 10 10-5 At D= RthJH = 10-4 tp / T 0,75 10-3 10-2 10-1 100 t p (s) 10-5 101 10 At D= RthJH = K/W 10-4 tp / T 1,34 10-3 FWD thermal model values R (C/W) 0,08 0,12 0,18 0,25 0,07 R (C/W) 0,03 0,07 0,18 0,50 0,38 copyright Vincotech 18 10-1 100 t p (s) 101 10 K/W IGBT thermal model values Tau (s) 2,57 0,60 0,13 0,04 0,01 10-2 Tau (s) 4,10 0,76 0,09 0,02 0,00 Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Neutral Point neutral point IGBT and half bridge FWD IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 250 Ptot (W) IC (A) 100 200 80 150 60 100 40 50 20 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = ºC FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) ºC V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 120 200 IF (A) Ptot (W) 40 100 30 80 20 60 40 10 20 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 Th ( o C) 0 200 At Tj = ºC 19 50 150 100 150 Th ( o C) 200 ºC Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Neutral Point neutral point IGBT IGBT Figure 25 Reverse bias safe operating area IC = f(VCE) IC (A) 120 IC MAX 100 Ic CHIP Ic MODULE 80 60 VCE MAX 40 20 0 0 200 400 600 800 V CE (V) At Tjmax-25 Tj = Uccminus=Uccplus ºC Switching mode : 3 level switching copyright Vincotech 20 Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Neutral Point Inverse Diode Neutral Point Inverse Diode Figure 25 Typical FWD forward current as a function of forward voltage IF = f(VF) Neutral Point Inverse Diode Figure 26 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 25 ZthJC (K/W) IF (A) 101 20 100 15 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 5 Tj = Tjmax-25°C Tj = 25°C 0 -2 0 At tp = 1 2 3 V F (V) 10 4 -5 Neutral Point Inverse Diode Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10 tp / T 2,39 -2 10 10 -1 0 10 t p (s) 1 10 10 K/W Neutral Point Inverse Diode Figure 28 Forward current as a function of heatsink temperature IF = f(Th) 15 IF (A) Ptot (W) 75 60 12 45 9 30 6 15 3 0 0 0 At Tj = -3 10 At D= RthJH = μs 250 -4 10 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 21 50 175 100 150 Th ( o C) 200 ºC Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Half Bridge Inv. FWD Half Bridge Inv. FWD Figure 1 Typical FWD forward current as a function of forward voltage IF= f(VF) Half Bridge Inv. FWD Figure 2 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 50 ZthJC (K/W) IF (A) 101 40 0 10 30 20 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 Tj = 25°C -1 10 10 Tj = Tjmax-25°C 0 0 At tp = 1 2 3 V F (V) -2 10 4 μs 250 Half Bridge Inv. FWD Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) t p (s) 10-5 10-4 At D= RthJH = tp / T 1,07 10-2 10-1 100 101 K/W Half Bridge Inv. FWD Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 25 IF (A) Ptot (W) 150 120 20 90 15 60 10 30 5 0 0 At Tj = 10-3 50 150 copyright Vincotech 100 150 T h ( o C) 0 200 0 At Tj = ºC 22 50 150 100 150 T h ( o C) 200 ºC Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 copyright Vincotech 50 75 100 T (°C) 125 23 Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Switching Definitions Half Bridge MOSFET General conditions = 125 °C Tj = 1Ω Rgon Rgoff = 1Ω Half bridge MOSFET Figure 1 Half bridge MOSFET Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 200 tdoff % % IC 100 VGE 90% 150 VCE 90% IC VGE 75 VGE 100 50 tdon VCE tEoff 50 25 IC 1% VGE 10% VCE 0 -25 0 0,05 0,1 0,15 time (us) 16 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -5 16 700 44 0,11 0,12 tEon -50 2,95 0,2 3 3,05 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs Half bridge MOSFET Figure 3 VCE 5% IC10% 0 -5 16 700 44 0,04 0,06 3,1 3,15 V V V A μs μs Half bridge MOSFET Figure 4 Turn-off Switching Waveforms & definition of tf time(us) Turn-on Switching Waveforms & definition of tr 200 130 % % fitted IC Ic 150 100 IC 90% VCE 70 100 IC 60% IC 90% tr 50 40 IC 40% VCE IC 10% 10 0 IC 10% tf -50 3,03 -20 0,1 0,11 VC (100%) = IC (100%) = tf = copyright Vincotech 0,12 700 44 0,02 0,13 0,14 time (us) 0,15 3,04 3,05 3,06 3,07 time(us) VC (100%) = IC (100%) = tr = V A μs 24 700 44 0,01 V A μs Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Switching Definitions Half Bridge MOSFET Half bridge MOSFET Figure 5 Half bridge MOSFET Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 120 % IC 1% % Eoff 100 Eon 100 80 75 60 50 40 25 20 VGE 90% Pon 0 0 -20 -0,02 VCE 3% VGE 10% Poff tEon tEoff 0,02 0,06 0,1 0,14 -25 2,95 0,18 time (us) Poff (100%) = Eoff (100%) = tEoff = 30,94 0,13 0,12 3 3,05 3,1 3,15 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ μs 30,94 0,20 0,06 kW mJ μs neutral point FWD Figure 8 Turn-off Switching Waveforms & definition of trr 120 % Id 80 trr 40 Vd fitted 0 IRRM 10% -40 IRRM 90% IRRM 100% -80 3,03 3,04 3,05 3,06 3,07 3,08 3,09 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 25 700 44 -32 0,02 V A A μs Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Switching Definitions Half Bridge MOSFET neutral point FWD Figure 9 neutral point FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 150 % % Erec Id 100 Qrr 100 tErec tQrr 50 50 0 Prec 0 -50 -100 3,03 3,045 Id (100%) = Qrr (100%) = tQrr = 3,06 44 0,30 0,04 3,075 3,09 time(us) -50 3,03 3,105 3,045 3,06 3,075 3,09 3,105 time(us) Prec (100%) = Erec (100%) = tErec = A μC μs 30,94 0,06 0,04 kW mJ μs Half Bridge MOSFET switching measurement circuit Figure 11 copyright Vincotech 26 Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Switching Definitions Neutral Point IGBT General conditions = 125 °C Tj = 4Ω Rgon Rgoff = 4Ω Neutral Point IGBT Figure 1 Neutral Point IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 200 tdoff % % 100 VGE 150 90% IC 75 VGE IC 50 100 tdon VCE 90% tEoff VGE 50 25 VCE IC 1% 0 VCE -25 -0,1 IC 10% VGE 10% 0 VCE 3% tEon -50 -0,05 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,05 -15 15 700 44 0,10 0,17 0,1 0,15 time (us) 0,2 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs Neutral Point IGBT Figure 3 3,05 3,1 -15 15 700 44 0,06 0,12 3,15 3,2 V V V A μs μs Neutral Point IGBT Figure 4 Turn-off Switching Waveforms & definition of tf time(us) Turn-on Switching Waveforms & definition of tr 200 125 fitted % % Ic 100 IC 150 IC 90% 75 100 IC 60% VCE IC 90% 50 tr VCE IC 40% 50 25 IC 10% IC 10% 0 -25 0,04 VC (100%) = IC (100%) = tf = copyright Vincotech 0 tf -50 0,06 0,08 700 44 0,015 0,10 time (us) 3 0,12 VC (100%) = IC (100%) = tr = V A μs 27 3,05 3,1 700 44 0,009 3,15 time(us) 3,2 V A μs Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Switching Definitions Neutral Point IGBT Neutral Point IGBT Figure 5 Neutral Point IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 100 125 % Eon % Ic 1% Eoff 100 75 75 50 50 25 25 Poff Pon 0 0 tEon tEoff -25 -0,2 Uce 3% Uge 10% Uge 90% -25 -0,1 0 0,1 0,2 2,8 0,3 2,9 3 3,1 3,2 Poff (100%) = Eoff (100%) = tEoff = 30,78 0,57 0,17 Pon (100%) = Eon (100%) = tEon = kW mJ μs Neutral Point IGBT Figure 7 3,3 time(us) time (us) 30,7818 0,38 0,12 kW mJ μs Half Bridge FWD Figure 8 Gate voltage vs Gate charge (measured) Turn-off Switching Waveforms & definition of trr 20 UGE (V) 150 % Id 100 10 trr 50 0 Ud 0 IRRM 10% -10 -50 IRRM 90% IRRM 100% fitted -20 -200 -100 0 200 400 600 800 3 Qg (nC) VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright Vincotech -15 15 700 44 3441,54 3,05 3,1 3,15 3,2 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 28 700 44 -29 0,04 V A A μs Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Switching Definitions Neutral Point IGBT Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr= integrating time for Qrr) Half Bridge FWD Figure 10 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 Half Bridge FWD 150 % % Erec Id 100 100 tErec tQint 50 50 Prec Qrr 0 0 -50 -50 -100 3,05 3,07 3,09 3,11 -100 2,95 3,13 time(us) Id (100%) = Qrr (100%) = tQint = copyright Vincotech 44 0,25 0,09 Prec (100%) = Erec (100%) = tErec = A μC μs 29 3 3,05 3,1 30,78 0,03 0,09 kW mJ μs 3,15 3,2 time(us) 3,25 Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Neutral Point IGBT switching measurement circuit Figure 11 copyright Vincotech 30 Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code 10-PZ12NMA030MR-M340F18Y in DataMatrix as M340F18Y in packaging barcode as M340F18Y Outline Pinout copyright Vincotech 31 Revision: 1 10-PZ12NMA030MR-M340F18Y preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 32 Revision: 1