INTERSIL HUF76131SK8

HUF76131SK8
TM
Data Sheet
June 2000
10A, 30V, 0.013 Ohm, N-Channel, Logic
Level UltraFET Power MOSFET
File Number
4396.5
Features
• Logic Level Gate Drive
This N-Channel power MOSFET is
® manufactured using the innovative
UltraFET process. This advanced
process technology achieves the
lowest possible on-resistance per silicon area, resulting in
outstanding performance. This device is capable of
withstanding high energy in the avalanche mode and the
diode exhibits very low reverse recovery time and stored
charge. It was designed for use in applications where power
efficiency is important, such as switching regulators,
switching converters, motor drivers, relay drivers, lowvoltage bus switches, and power management in portable
and battery-operated products.
• 10A, 30V
• Ultra Low On-Resistance, rDS(ON) = 0.013Ω
• Temperature Compensating PSPICE® Model
• Thermal Impedance SPICE Model
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
• Related Literature
- TB334, “Guidelines for Soldering Surface Mount
Components to PC Boards”
Symbol
Formerly developmental type TA76131.
Ordering Information
PART NUMBER
HUF76131SK8
PACKAGE
MS-012AA
SOURCE(1)
DRAIN(8)
SOURCE(2)
DRAIN(7)
SOURCE(3)
DRAIN(6)
GATE(4)
DRAIN(5)
BRAND
76131SK8
NOTE: When ordering, use the entire part number. Add the suffix T
to obtain the variant in tape and reel, e.g., HUF76131SK8T.
Packaging
JEDEC MS-012AA
BRANDING DASH
5
1
2
3
1
4
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
UltraFET® is a registered trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation.
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 2000.
HUF76131SK8
Absolute Maximum Ratings
TA = 25oC, Unless Otherwise Specified
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDGR
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
Drain Current
Continuous (Figure 2) (Notes 2, 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body for 10s, See Techbrief 334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tpkg
HUF76131SK8
30
30
±16
UNITS
V
V
V
10
Figure 5
Figure 6
2.5
0.02
-55 to 150
A
W
W/oC
oC
300
260
oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 150oC.
TA = 25oC, Unless Otherwise Specified
Electrical Specifications
MIN
TYP
MAX
Drain to Source Breakdown Voltage
PARAMETER
SYMBOL
BVDSS
ID = 250µA, VGS = 0V (Figure 11)
30
-
-
V
Gate to Source Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA (Figure 10)
1
-
-
V
VDS = 25V, VGS = 0V
-
-
1
µA
Zero Gate Voltage Drain Current
IDSS
Gate to Source Leakage Current
-
-
250
µA
VGS = ±16V
-
-
±100
nA
ID = 10A, VGS = 4.5V (Figures 9,14)
-
0.017
0.018
Ω
ID = 10A, VGS = 5V
-
0.015
0.017
Ω
ID = 10A, VGS = 10V
-
0.011
0.013
Ω
VDD = 15V, ID ≅ 10A, RL = 1.5Ω, VGS = 5V,
RGS = 6.8Ω
(Figure 15)
-
-
115
ns
-
15
-
ns
-
61
-
ns
td(OFF)
-
33
-
ns
tf
-
36
-
ns
tOFF
-
-
105
ns
rDS(ON)
Turn-On Time
tON
Turn-On Delay Time
td(ON)
Rise Time
tr
Turn-Off Delay Time
Fall Time
Turn-Off Time
UNITS
VDS = 25V, VGS = 0V, TA = 150oC
IGSS
Drain to Source On Resistance
TEST CONDITIONS
Total Gate Charge
Qg(TOT)
Gate Charge at 5V
Qg(5)
VGS = 0V to 10V VDD = 15V, ID ≅ 10A,
VGS = 0V to 5V RL = 1.5Ω, Ig(REF) = 1.0mA
(Figure 13)
VGS = 0V to 1V
-
39
47
nC
-
22
26
nC
-
1.53
1.85
nC
Gate to Source Gate Charge
Qgs
-
4.00
-
nC
Gate to Drain “Miller” Charge
Qgd
-
9.50
-
nC
Threshold Gate Charge
Qg(TH)
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
Thermal Resistance Junction to Ambient
RθJA
VDS = 25V, VGS = 0V, f = 1MHz
(Figure 12)
-
1605
-
pF
-
685
-
pF
-
115
-
pF
Pad Area = 0.76 in2 (Note 2)
-
-
50
oC/W
Pad Area = 0.054 in2 (See TB377)
-
-
143.4
oC/W
Pad Area = 0.0115 in2 (See TB377)
-
-
177.3
oC/W
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Source to Drain Diode Voltage
VSD
Reverse Recovery Time
Reverse Recovered Charge
MIN
TYP
MAX
UNITS
ISD = 10A
TEST CONDITIONS
-
-
1.25
V
ISD = 2.3A
-
-
1.1
V
trr
ISD = 2.3A, dISD/dt = 100A/µs
-
-
57
ns
QRR
ISD = 2.3A, dISD/dt = 100A/µs
-
-
81
nC
NOTES:
2. 50oC/W measured using FR-4 board with 0.76 in2 footprint at 10 seconds.
3. 177.3oC/W measured using FR-4 board with 0.0115 in2 footprint at 1000 seconds.
2
HUF76131SK8
1.2
12
1.0
10
ID, DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
Typical Performance Curves
0.8
0.6
0.4
0.2
8
6
4
2
0
0
0
25
50
75
100
125
150
25
50
TA , AMBIENT TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT
TEMPERATURE
THERMAL IMPEDANCE
ZθJA, NORMALIZED
10
1
75
100
125
150
TA, AMBIENT TEMPERATURE (oC)
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
AMBIENT TEMPERATURE
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
PDM
0.1
t1
t2
0.01
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJA x RθJA + TA
SINGLE PULSE
0.001
10-5
10-4
10-3
10-2
10-1
100
101
102
103
t, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
TJ = MAX RATED
TA = 25oC
100
100µs
1ms
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
10
1000
IDM, PEAK CURRENT (A)
ID, DRAIN CURRENT (A)
500
10ms
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
VGS = 5V
100
10
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
I = I25
125
VDSS(MAX) = 30V
1
1
10
VDS , DRAIN TO SOURCE VOLTAGE (V)
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA
3
150 - TA
100
1
10-5
10-4
TA = 25oC
10-3
10-2
10-1
t, PULSE WIDTH (s)
100
FIGURE 5. PEAK CURRENT CAPABILITY
101
HUF76131SK8
Typical Performance Curves
(Continued)
50
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
ID, DRAIN CURRENT (A)
IAS, AVALANCHE CURRENT (A)
100
STARTING TJ = 25oC
10
STARTING TJ = 150oC
VGS = 10V
VGS = 5V
VGS = 4.5V
VGS = 4V
VGS = 3.5V
40
30
VGS = 3V
20
10
1
0.1
1
10
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TA = 25oC
0
100
0
0.5
1.0
1.5
2.0
VDS, DRAIN TO SOURCE VOLTAGE (V)
tAV, TIME IN AVALANCHE (ms)
2.5
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
CAPABILITY
FIGURE 7. SATURATION CHARACTERISTICS
50
1.75
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
ID, DRAIN CURRENT (A)
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
40
30
20
150oC
10
25oC
0
0.5
0
-55oC
1.0
1.5
2.0
2.5
3.0
VGS, GATE TO SOURCE VOLTAGE (V)
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS = 10V, ID = 10A
1.5
1.25
1.0
VDD = 15V
3.5
0.75
-80
4.0
40
80
120
160
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
1.2
1.2
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
VGS = VDS, ID = 250µA
NORMALIZED GATE
THRESHOLD VOLTAGE
0
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 8. TRANSFER CHARACTERISTICS
1.0
0.8
0.6
0.4
-80
-40
-40
0
40
80
120
TJ, JUNCTION TEMPERATURE (oC)
160
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
4
ID = 250µA
1.1
1.0
0.9
0.8
-80
-40
0
40
80
120
TJ , JUNCTION TEMPERATURE (oC)
160
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
HUF76131SK8
Typical Performance Curves
(Continued)
10
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS = CDS + CGD
2000
CISS
VGS , GATE TO SOURCE VOLTAGE (V)
C, CAPACITANCE (pF)
2500
1500
1000
COSS
500
CRSS
0
0
5
10
15
20
25
VDS , DRAIN TO SOURCE VOLTAGE (V)
8
6
4
2
VDD = 15V
0
30
WAVEFORMS IN
DESCENDING ORDER:
ID = 20A
ID = 10A
ID = 5A
ID = 2.5A
10
0
30
20
Qg, GATE CHARGE (nC)
40
50
NOTE: Refer to Intersil Application Notes 7254 and 7260.
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT
GATE CURRENT
200
VDD = 15V, ID = 10A, RL= 1.5Ω
ID = 10A
60
ID = 5A
40
SWITCHING TIME (ns)
rDS(ON), ON-STATE RESISTANCE (mΩ)
80
ID = 20A
ID = 2.5A
20
150
tr
td(OFF)
100
tf
50
td(ON)
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
0
0
2
6
8
4
VGS, GATE TO SOURCE VOLTAGE (V)
0
10
FIGURE 14. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
0
10
20
30
40
RGS, GATE TO SOURCE RESISTANCE (Ω)
50
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE
Test Circuits and Waveforms
VDS
BVDSS
L
VARY tP TO OBTAIN
REQUIRED PEAK IAS
tP
+
RG
VDS
IAS
VDD
VDD
-
VGS
DUT
0V
tP
IAS
0
0.01Ω
tAV
FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT
5
FIGURE 17. UNCLAMPED ENERGY WAVEFORMS
HUF76131SK8
Test Circuits and Waveforms
(Continued)
VDS
tON
tOFF
td(ON)
td(OFF)
tf
tr
RL
VDS
90%
90%
+
VGS
-
VDD
10%
10%
0
DUT
90%
RGS
VGS
VGS
0
50%
10%
FIGURE 18. SWITCHING TIME TEST CIRCUIT
50%
PULSE WIDTH
FIGURE 19. SWITCHING TIME WAVEFORM
VDS
VDD
RL
Qg(TOT)
VDS
VGS = 10V
VGS
Qg(5)
+
VDD
DUT
Ig(REF)
VGS = 5V
VGS
-
VGS = 1V
0
Qg(TH)
Ig(REF)
0
FIGURE 20. GATE CHARGE TEST CIRCUIT
6
FIGURE 21. GATE CHARGE WAVEFORMS
HUF76131SK8
Thermal Resistance vs Mounting Pad Area
The maximum rated junction temperature TJMAX constrains
the maximum allowable device power dissipation PDmax in
an application. The application ambient temperature TA (oC)
and thermal impedance ZθJA (oC/W) must be reviewed to
ensure that TJMAX (oC) is never exceeded. Equation 1
mathematically represents the relationship.
( T JMAX – T A )
P DMAX = ---------------------------------------Z θJA
Thermal resistance values corresponding to other
component side copper areas can be obtained from Figure
22 or by calculation using Equation 2. Area in Equation 2 is
the top copper area including the gate and source pads.
R θJA = 79.3 – 21.8 × ln ( Area )
(EQ. 2)
250
(EQ. 1)
1. PC heat sink area and location (top and bottom), copper
leads and mounting pad area.
2. Air Flow, board orientation and type.
200
RθJA (oC/W)
Intersil provides thermal information to assist the designer’s
preliminary application evaluation. Precise determination of
PDMAX is complex and influenced by many factors:
RθJA = 79.3 - 21.8*ln(AREA)
177.3oC/W - 0.0115in2
143.4oC/W - 0.054in2
150
100
3. Power pulse width and duty factor.
Figure 22 addresses these points by depicting RθJA values
vs. top copper (component side) heat sink area. The
measurements were performed in still air using a horizontally
positioned FR-4 board with 1oz copper after 1000 seconds
of steady state power.
Figure 22 also displays the two RθJA values listed in the
Electrical Specifications table. The two points were chosen
to graphically depict the compromise between copper board
area, thermal resistance and ultimately power dissipation.
7
50
0.001
0.01
0.1
AREA, TOP COPPER AREA (in2)
1.0
IGURE 22. THERMAL RESISTANCE vs MOUNTING PAD AREA
Figure 22 provides the necessary information for steady
state junction temperature or power dissipation calculations.
Transient pulse applications are best studied using the
Intersil device SPICE thermal model.
HUF76131SK8
PSPICE Electrical Model
SUBCKT HUF76131 2 1 3 ;
rev 12/31/97
CA 12 8 2.22-9
CB 15 14 2.13e-9
CIN 6 8 1.52e-9
LDRAIN
DPLCAP
DRAIN
2
5
10
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
DBREAK
+
RSLC2
5
51
ESLC
11
-
EBREAK 11 7 17 18 37.4
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
RDRAIN
6
8
ESG
EVTHRES
+ 19 8
+
LGATE
GATE
1
EVTEMP
RGATE +
18 22
9
20
21
DBODY
-
16
MWEAK
6
MMED
MSTRO
RLGATE
LDRAIN 2 5 1e-9
LGATE 1 9 1.04e-9
LSOURCE 3 7 1.29e-10
+
17
EBREAK 18
50
-
IT 8 17 1
LSOURCE
CIN
8
SOURCE
3
7
RSOURCE
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RLSOURCE
S1A
12
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 1.94e-3
RGATE 9 20 2.20
RLDRAIN 2 5 10
RLGATE 1 9 10.4
RLSOURCE 3 7 1.29
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 8.75e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A
S1B
S2A
S2B
RLDRAIN
RSLC1
51
S2A
13
8
14
13
S1B
17
18
RVTEMP
S2B
13
CA
RBREAK
15
CB
6
8
-
-
IT
14
+
+
EGS
19
VBAT
5
8
EDS
-
+
8
22
RVTHRES
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*275),3))}
.MODEL DBODYMOD D (IS = 2.25e-12 RS = 6.05e-3 IKF=16.00 TRS1 = 1.14e-4 TRS2 = 1.23e-6 CJO = 2.35e-9 TT = 2.71e-8 M = 0.44)
.MODEL DBREAKMOD D (RS = 1.05e-1 TRS1 = 1.01e-4 TRS2 = 1.11e-7)
.MODEL DPLCAPMOD D (CJO = 1.08e-9 IS = 1e-30 N = 10 M = 0.69)
.MODEL MMEDMOD NMOS (VTO = 1.89 KP = 5.05 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.20)
.MODEL MSTROMOD NMOS (VTO = 2.22 KP = 125.00 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 1.62 KP = 0.10 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 22.0 RS = 0.1)
.MODEL RBREAKMOD RES (TC1 = 9.54e-4 TC2 = 1.07e-7)
.MODEL RDRAINMOD RES (TC1 = 1.61e-2 TC2 = 5.17e-5)
.MODEL RSLCMOD RES (TC1 = 1.03e-5 TC2 = 7.67e-7)
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0)
.MODEL RVTHRESMOD RES (TC = -2.81e-3 TC2 = -8.75e-6)
.MODEL RVTEMPMOD RES (TC1 = -6.68e-4 TC2 = 8.80e-7)
.MODEL S1AMOD VSWITCH (RON = 1e-5
.MODEL S1BMOD VSWITCH (RON = 1e-5
.MODEL S2AMOD VSWITCH (RON = 1e-5
.MODEL S2BMOD VSWITCH (RON = 1e-5
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
VON = -5.80 VOFF= -1.50)
VON = -1.50 VOFF= -5.80)
VON = -0.50 VOFF= -0.00)
VON = 0.00 VOFF= -0.50)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
8
HUF76131SK8
SPICE Thermal Model
7
JUNCTION
REV 20 Feb 98
HUF76131
CTHERM1 7 6 3.75e-4
CTHERM2 6 5 3.05e-3
CTHERM3 5 4 3.70e-2
CTHERM4 4 3 2.52e-2
CTHERM5 3 2 8.50e-2
CTHERM6 2 1 7.95e-1
RTHERM1
RTHERM1 7 6 3.95e-2
RTHERM2 6 5 2.50e-1
RTHERM3 5 4 4.00e-1
RTHERM4 4 3 6.35
RTHERM5 3 2 2.02e1
RTHERM6 2 1 4.80e1
RTHERM2
CTHERM1
6
CTHERM2
5
RTHERM3
CTHERM3
4
RTHERM4
CTHERM4
3
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
1
CASE
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
9
HUF76131SK8
MS-012AA
8 LEAD JEDEC MS-012AA SMALL OUTLINE PLASTIC PACKAGE
E
E1
INCHES
A
A1
1
e
2
6
D
5
b
MIN
MAX
MIN
MAX
NOTES
A
0.0532
0.0688
1.35
1.75
-
A1
0.004
0.0098
0.10
0.25
-
b
0.013
0.020
0.33
0.51
-
c
0.0075
0.0098
0.19
0.25
-
D
0.189
0.1968
4.80
5.00
2
E
0.2284
0.244
5.80
6.20
-
E1
0.1497
0.1574
3.80
4.00
3
e
h x 45o
c
0.004 IN
0.10 mm
L
0o-8o
0.060
1.52
0.050
1.27
0.024
0.6
0.155
4.0
0.275
7.0
MINIMUM RECOMMENDED FOOTPRINT FOR
SURFACE-MOUNTED APPLICATIONS
1.5mm
DIA. HOLE
MILLIMETERS
SYMBOL
0.050 BSC
1.27 BSC
-
H
0.0099
0.0196
0.25
0.50
-
L
0.016
0.050
0.40
1.27
4
NOTES:
1. All dimensions are within allowable dimensions of Rev. C of
JEDEC MS-012AA outline dated 5-90.
2. Dimension “D” does not include mold flash, protrusions or gate
burrs. Mold flash, protrusions or gate burrs shall not exceed
0.006 inches (0.15mm) per side.
3. Dimension “E1” does not include inter-lead flash or protrusions.
Inter-lead flash and protrusions shall not exceed 0.010 inches
(0.25mm) per side.
4. “L” is the length of terminal for soldering.
5. The chamfer on the body is optional. If it is not present, a visual index
feature must be located within the crosshatched area.
6. Controlling dimension: Millimeter.
7. Revision 8 dated 5-99.
4.0mm
2.0mm
USER DIRECTION OF FEED
1.75mm
CL
MS-012AA
12mm
12mm TAPE AND REEL
8.0mm
40mm MIN.
ACCESS HOLE
18.4mm
COVER TAPE
13mm
330mm
GENERAL INFORMATION
1. 2500 PIECES PER REEL.
2. ORDER IN MULTIPLES OF FULL REELS ONLY.
3. MEETS EIA-481 REVISION “A” SPECIFICATIONS.
10
50mm
12.4mm