INTERSIL ITF86130SK8T

ITF86130SK8T
TM
Data Sheet
14A, 30V, 0.0078 Ohm, N-Channel, Logic
Level, Power MOSFET
Packaging
SO8 (JEDEC MS-012AA)
BRANDING DASH
File Number
4798.4
Features
• Ultra Low On-Resistance
- rDS(ON) = 0.0078Ω, VGS = 10V
- rDS(ON) = 0.010Ω, VGS = 4.5V
- rDS(ON) = 0.012Ω, VGS = 4.0V
• Gate to Source Protection Diode
5
1
2
3
June 2000
4
• Simulation Models
- Temperature Compensated PSPICE™ and SABER
Electrical Models
- Spice and SABER Thermal Impedance Models
- www.intersil.com
• Peak Current vs Pulse Width Curve
• Transient Thermal Impedance Curve vs Board Mounting
Area
Symbol
SOURCE(1)
DRAIN(8)
SOURCE(2)
DRAIN(7)
• Switching Time vs RGS Curves
Ordering Information
PART NUMBER
SOURCE(3)
DRAIN(6)
GATE(4)
DRAIN(5)
Absolute Maximum Ratings
ITF86130SK8T
PACKAGE
SO8
BRAND
86130
NOTE: When ordering, use the entire part number. ITF86130SK8T
is available only in tape and reel.
TA = 25oC, Unless Otherwise Specified
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
Drain Current
Continuous (TA= 25oC, VGS = 10V) (Figure 2) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TA= 25oC, VGS = 4.5V) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TA= 100oC, VGS = 4.5V) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TA= 100oC, VGS = 4.0V) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM
Power Dissipation (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL
Package Body for 10s, See Tech brief TB370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
NOTES:
ITF86130SK8T
30
30
±20
UNITS
V
V
V
14.0
12.0
7.0
7.0
Figure 4
2.5
20
-55 to 150
A
A
A
A
A
W
mW/oC
oC
300
260
oC
oC
1. TJ = 25oC to 125oC.
2. 50oC/W measured using FR-4 board with 0.76in2 (490.3mm2) copper pad at 10s.
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
PSPICE® is a registered trademark of MicroSim Corporation.
1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Corporation. | Copyright © Intersil Corporation 2000
ITF86130SK8T
TA = 25oC, Unless Otherwise Specified
Electrical Specifications
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
30
-
-
V
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage
BVDSS
ID = 250µA, VGS = 0V (Figure 11)
Zero Gate Voltage Drain Current
IDSS
VDS = 30V, VGS = 0V
-
-
10
µA
Gate to Source Leakage Current
IGSS
VGS = ±20V
-
-
±10
uA
1.5
-
2.5
V
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA (Figure 10)
Drain to Source On Resistance
rDS(ON)
ID = 14.0A, VGS = 10V (Figures 8, 9)
-
0.0058
0.0078
Ω
ID = 7.0A, VGS = 4.5V (Figure 8)
-
0.007
0.010
Ω
ID = 7.0A, VGS = 4.0V (Figure 8)
-
0.008
0.012
Ω
Pad Area = 0.76 in2 (490.3 mm2) (Note 2)
-
-
50
oC/W
Pad Area = 0.054 in2 (34.8 mm2) (Figure 20)
-
-
152
oC/W
Pad Area = 0.0115 in2 (7.42 mm2) (Figure 20)
-
-
189
oC/W
VDD = 15V, ID = 7.0A,VGS = 4.5V,
RGS = 4.7Ω (Figures 14, 18, 19)
-
23
-
ns
-
84
-
ns
td(OFF)
-
33
-
ns
tf
-
42
-
ns
-
14
-
ns
-
106
-
ns
td(OFF)
-
49
-
ns
tf
-
69
-
ns
-
58
-
nC
-
31.5
-
nC
-
3
-
nC
THERMAL SPECIFICATIONS
Thermal Resistance Junction to
Ambient
RθJA
SWITCHING SPECIFICATIONS (VGS = 4.5V)
Turn-On Delay Time
td(ON)
Rise Time
tr
Turn-Off Delay Time
Fall Time
SWITCHING SPECIFICATIONS (VGS = 10V)
Turn-On Delay Time
td(ON)
Rise Time
tr
Turn-Off Delay Time
Fall Time
VDD = 15V, ID = 14.0A, VGS = 10V,
RGS = 5.1Ω
(Figures 15, 18, 19)
GATE CHARGE SPECIFICATIONS
Total Gate Charge
Qg(TOT)
VGS = 0V to 10V
Gate Charge at 5V
Qg(5)
VGS = 0V to 5V
Qg(TH)
VGS = 0V to 1V
Threshold Gate Charge
VDD = 15V,
ID = 12.0A,
Ig(REF) = 1.0mA,
(Figures 13, 16, 17)
Gate to Source Gate Charge
Qgs
-
9.5
-
nC
Gate to Drain “Miller” Charge
Qgd
-
12
-
nC
-
3050
-
pF
-
675
-
pF
-
285
-
pF
MIN
TYP
MAX
UNITS
ISD = 12.0A
-
0.79
-
V
trr
ISD = 12.0A, dISD/dt = 100A/µs
-
33
-
ns
QRR
ISD = 12.0A, dISD/dt = 100A/µs
-
32
-
nC
CAPACITANCE SPECIFICATIONS
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
VDS = 25V, VGS = 0V,
f = 1MHz
(Figure 12)
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Source to Drain Diode Voltage
VSD
Reverse Recovery Time
Reverse Recovered Charge
2
TEST CONDITIONS
ITF86130SK8T
Typical Performance Curves
15
1.0
ID, DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
1.2
0.8
0.6
0.4
VGS = 10V, RθJA = 50oC/W
12
9
6
3
0.2
VGS = 4.0V, RθJA = 189oC/W
0
0
0
25
50
75
100
125
25
150
50
75
100
125
150
TA , AMBIENT TEMPERATURE (oC)
TA , AMBIENT TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT
TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
AMBIENT TEMPERATURE
3
ZθJA, NORMALIZED
THERMAL IMPEDANCE
1
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
RθJA = 50oC/W
0.1
PDM
t1
0.01
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJA x RθJA + TA
SINGLE PULSE
0.001
10-5
10-4
10-3
10-2
10-1
100
101
102
103
t, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
2000
RθJA = 50oC/W
TA = 25oC
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
IDM, PEAK CURRENT (A)
1000
I = I25
150 - TA
125
VGS = 4.5V
100
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
10
10-5
10-4
10-3
10-2
10-1
100
t, PULSE WIDTH (s)
FIGURE 4. PEAK CURRENT CAPABILITY
3
101
102
103
ITF86130SK8T
Typical Performance Curves
(Continued)
60
RθJA = 50oC/W
SINGLE PULSE
TJ = MAX RATED
TA = 25oC
100
ID , DRAIN CURRENT (A)
ID , DRAIN CURRENT (A)
500
100µs
10
1ms
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
50
40
TJ = 150oC
30
TJ = -55oC
20
10
10ms
1
0
1
10
2.0
100
2.5
VDS , DRAIN TO SOURCE VOLTAGE (V)
60
VGS = 10V
rDS(ON), DRAIN TO SOURCE
ON RESISTANCE (mΩ)
ID, DRAIN CURRENT (A)
20
VGS = 4V
VGS = 4.5V
VGS = 3.5V
40
30
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
20
10
3.5
4.0
FIGURE 6. TRANSFER CHARACTERISTICS
VGS = 5V
50
3.0
VGS , GATE TO SOURCE VOLTAGE (V)
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
VGS = 3V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
ID = 14A
16
12
ID = 5A
8
TA = 25oC
0
4
0
0.2
0.4
0.8
0.6
2
1.0
VDS , DRAIN TO SOURCE VOLTAGE (V)
4
6
8
10
VGS , GATE TO SOURCE VOLTAGE (V)
FIGURE 7. SATURATION CHARACTERISTICS
FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
1.2
1.6
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS = VDS, ID = 250µA
VGS = 10V, ID = 14A
NORMALIZED GATE
THRESHOLD VOLTAGE
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
TJ = 25oC
1.3
1.0
0.7
-80
1.0
0.8
0.6
0.4
-40
0
40
80
120
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
4
160
-80
-40
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
ITF86130SK8T
Typical Performance Curves
(Continued)
5000
ID = 250µA
C, CAPACITANCE (pF)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
1.2
1.1
1.0
1000
CRSS = CGD
0.9
-80
VGS = 0V, f = 1MHz
-40
0
40
80
120
200
160
0.1
1.0
TJ , JUNCTION TEMPERATURE (oC)
10
30
VDS , DRAIN TO SOURCE VOLTAGE (V)
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
10
400
VDD = 15V
VGS = 4.5V, VDD = 15V, ID = 7.0A
8
SWITCHING TIME (ns)
VGS , GATE TO SOURCE VOLTAGE (V)
CISS = CGS + CGD
COSS ≅ CDS + CGD
6
4
WAVEFORMS IN
DESCENDING ORDER:
ID = 12A
ID = 2A
2
300
tr
200
tf
td(OFF)
100
td(ON)
0
0
0
10
20
30
40
50
60
0
10
Qg, GATE CHARGE (nC)
20
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
400
SWITCHING TIME (ns)
VGS = 10V, VDD = 15V, ID = 14A
td(OFF)
300
tf
200
tr
100
td(ON)
0
10
20
30
40
RGS, GATE TO SOURCE RESISTANCE (Ω)
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE
5
40
FIGURE 14. SWITCHING TIME vs GATE RESISTANCE
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT
GATE CURRENT
0
30
RGS, GATE TO SOURCE RESISTANCE (Ω)
50
50
ITF86130SK8T
Test Circuits and Waveforms
VDS
VDD
RL
Qg(TOT)
VDS
VGS = 10V
VGS
Qg(5)
+
-
VDD
VGS = 5V
VGS
DUT
VGS = 1V
0
Ig(REF)
Qg(TH)
Qgs
Qgd
Ig(REF)
0
FIGURE 16. GATE CHARGE TEST CIRCUIT
FIGURE 17. GATE CHARGE WAVEFORMS
tON
RL
td(OFF)
tf
tr
VDS
VGS
tOFF
td(ON)
+
VGS
VDS
90%
90%
0V
10%
10%
0
DUT
RGS
90%
VGS
0
FIGURE 18. SWITCHING TIME TEST CIRCUIT
The maximum rated junction temperature, TJM, and the
thermal resistance of the heat dissipating path determines the
maximum allowable device power dissipation, PDM , in an
application. Therefore the application’s ambient temperature,
TA (oC), and thermal resistance RθJA (oC/W) must be reviewed
to ensure that TJM is never exceeded. Equation 1
mathematically represents the relationship and serves as the
basis for establishing the rating of the part.
(EQ. 1)
In using surface mount devices such as the SO8 package,
the environment in which it is applied will have a significant
influence on the part’s current and maximum power
dissipation ratings. Precise determination of PDM is complex
and influenced by many factors:
6
50%
PULSE WIDTH
FIGURE 19. SWITCHING TIME WAVEFORM
Thermal Resistance vs. Mounting Pad
Area
( T JM – T A )
P DM = ------------------------------Z θJA
10%
50%
1. Mounting pad area onto which the device is attached and
whether there is copper on one side or both sides of the
board.
2. The number of copper layers and the thickness of the board.
3. The use of external heat sinks.
4. The use of thermal vias.
5. Air flow and board orientation.
6. For non steady state applications, the pulse width, the
duty cycle and the transient thermal response of the part,
the board and the environment they are in.
Intersil provides thermal information to assist the designer’s
preliminary application evaluation. Figure 20 defines the
RθJA for the device as a function of the top copper
(component side) area. This is for a horizontally positioned
FR-4 board with 1oz copper after 1000 seconds of steady
state power with no air flow. This graph provides the
necessary information for calculation of the steady state
junction temperature or power dissipation. Pulse
applications can be evaluated using the Intersil device Spice
ITF86130SK8T
Displayed on the curve are RθJA values listed in the
Electrical Specifications table. The points were chosen to
depict the compromise between the copper board area, the
thermal resistance and ultimately the power dissipation,
PDM .
Thermal resistances corresponding to other copper areas
can be obtained from Figure 20 or by calculation using
Equation 2. RθJA is defined as the natural log of the area
times a coefficient added to a constant. The area, in square
inches is the top copper area including the gate and source
pads.
R θJA = 83.2 – 23.6 ×
ln ( Area )
(EQ. 2)
The transient thermal impedance (ZθJA) is also effected by
varied top copper board area. Figure 21 shows the effect of
copper pad area on single pulse transient thermal
impedance. Each trace represents a copper pad area in
square inches corresponding to the descending list in the
graph. Spice and SABER thermal models are provided for
each of the listed pad areas.
Copper pad area has no perceivable effect on transient
thermal impedance for pulse widths less than 100ms. For
pulse widths less than 100ms the transient thermal
impedance is determined by the die and package. Therefore,
CTHERM1 through CTHERM5 and RTHERM1 through
RTHERM5 remain constant for each of the thermal models.
A listing of the model component values is available in
Table 1.
240
RθJA = 83.2 - 23.6*ln(AREA)
200
RθJA (oC/W)
thermal model or manually utilizing the normalized maximum
transient thermal impedance curve.
189oC/W - 0.0115in2
152oC/W - 0.054in2
160
120
80
0.01
0.1
1.0
AREA, TOP COPPER AREA (in2)
FIGURE 20. THERMAL RESISTANCE vs MOUNTING PAD AREA
150
ZθJA, THERMAL
IMPEDANCE (oC/W)
120
90
COPPER BOARD AREA - DESCENDING ORDER
0.04 in2
0.28 in2
0.52 in2
0.76 in2
1.00 in2
60
30
0
10-1
100
101
t, RECTANGULAR PULSE DURATION (s)
FIGURE 21. THERMAL IMPEDANCE vs MOUNTING PAD AREA
7
102
103
ITF86130SK8T
PSPICE Electrical Model
.SUBCKT ITF86130SK8T 2 1 3 ;
REV 23 Nov 1999
CA 12 8 2.00e-9
CB 15 14 2.15e-9
CIN 6 8 2.70e-9
LDRAIN
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DESD1 91 9 DESD1MOD
DESD2 91 7DESD2MOD
DPLCAP 10 5 DPLCAPMOD
DPLCAP
5
DRAIN
2
10
RLDRAIN
DBREAK
RSLC1
51
RSLC2
+
5
51
EBREAK 11 7 17 18 37.19
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
-
RDRAIN
16
6
8
ESG
EVTHRES
+ 19 8
+
GATE
1
LDRAIN 2 5 1.0e-9
LGATE 1 9 1.04e-9
LSOURCE 3 7 1.29e-10
EVTEMP
9 RGATE + 18 22
20
EBREAK
6
+
17
18
DBODY
-
21
MWEAK
MMED
MSTRO
RLGATE
DESD1
91
DESD2
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
LSOURCE
CIN
SOURCE
3
7
8
RSOURCE
RLSOURCE
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 3.50e-4
RGATE 9 20 1.13
RLDRAIN 2 5 10
RLGATE 1 9 9 10.4
RLSOURCE 3 7 1.29
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 4.55e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A
S1B
S2A
S2B
11
50
-
LGATE
IT 8 17 1
ESLC
S1A
12
S2A
13
8
14
13
S1B
CA
RBREAK
15
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
-
-
IT
14
+
+
VBAT
5
8
EDS
-
+
8
22
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
RVTHRES
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*650),2))}
.MODEL DBODYMOD D (IS = 4.33e-12 RS = 3.91e-3 TRS1 = 1.01e-3 TRS2 = 1.11e-6 CJO = 2.02e-9 TT = 3.02e-8 M = 0.50)
.MODEL DBREAKMOD D (RS = 1.08e-1 TRS1 = 1.01e-3 TRS2 = 1.04e-7)
.MODEL DESD1MOD D (BV = 16.4 Tbv1= -2.50e-3 N= 21 RS = 100)
.MODEL DESD2MOD D (BV = 16.1 Tbv1= -2.50e-3 N= 21 RS = 100)
.MODEL DPLCAPMOD D (CJO = 1.35e-9 IS = 1e-30 M = 0.50)
.MODEL MMEDMOD NMOS (VTO = 2.28 KP = 10.00 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.13)
.MODEL MSTROMOD NMOS (VTO = 2.65 KP = 275 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 1.92 KP = 0.10 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 11.3 RS = 0.1)
.MODEL RBREAKMOD RES (TC1 = 9.98e-4 TC2 = 1.01e-7)
.MODEL RDRAINMOD RES (TC1 = 3.78e-2 TC2 = 4.99e-5)
.MODEL RSLCMOD RES (TC1 = 4.07e-3 TC2 = 2.25e-5)
.MODEL RSOURCEMOD RES (TC1 = 1.00e-3 TC2 = 0)
.MODEL RVTHRESMOD RES (TC1 = -2.79e-3 TC2 = -9.65e-6)
.MODEL RVTEMPMOD RES (TC1 = -1.90e-3 TC2 = 0)
.MODEL S1AMOD VSWITCH (RON = 1e-5
.MODEL S1BMOD VSWITCH (RON = 1e-5
.MODEL S2AMOD VSWITCH (RON = 1e-5
.MODEL S2BMOD VSWITCH (RON = 1e-5
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
VON = -4.0 VOFF= -0.6)
VON = -0.6 VOFF= -4.0)
VON = -0.5 VOFF= 0)
VON = 0 VOFF= -0.5)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
8
ITF86130SK8T
SABER Electrical Model
REV 23 Nov 1999
template ITF86130SK8T n2,n1,n3
electrical n2,n1,n3
{
var i iscl
dp..model dbodymod = (is = 4.33e-12,rs=3.91e-3,trs1=1.01e-3,trs2=1.11e-6, cjo = 2.02e-9, tt = 3.02e-8, m = 0.50)
dp..model dbreakmod = (rs=1.08e-1,trs1=1.01e-3,trs2=1.04e-7)
dp..model desd1mod = (bv=16.4,tbv1=-2.50e-3,n1=21, rs=100)
dp..model desd2mod = (bv=16.1,tbv1=-2.50e-3,n1=21, rs=100)
dp..model dplcapmod = (cjo = 1.35e-9, is = 1e-30, m = 0.50)
m..model mmedmod = (type=_n, vto = 2.28, kp = 10, is = 1e-30, tox = 1)
m..model mstrongmod = (type=_n, vto = 2.65, kp = 275, is = 1e-30, tox = 1)
DPLCAP 5
m..model mweakmod = (type=_n, vto = 1.92, kp = 0.10, is = 1e-30, tox = 1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -4.0, voff = -0.6) 10
sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -0.6, voff = -4.0)
RSLC1
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.5, voff = 0)
51
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0, voff = -0.5)
RSLC2
LDRAIN
DRAIN
2
RLDRAIN
ISCL
c.ca n12 n8 = 2.00e-9
c.cb n15 n14 = 2.15e-9
c.cin n6 n8 = 2.70e-9
dp.dbody n7 n5 = model=dbodymod
dp.dbreak n5 n11 = model=dbreakmod
dp.desd1 n91 n9 = model=desd1mod
dp.desd2 n91 n7 = model=desd2mod GATE
dp.dplcap n10 n5 = model=dplcapmod 1
i.it n8 n17 = 1
l.ldrain n2 n5 = 1.00e-9
l.lgate n1 n9 = 1.04e-9
l.lsource n3 n7 = 1.29e-10
RDRAIN
6
8
ESG
DBREAK
50
EVTHRES
+ 19 8
+
LGATE
EVTEMP
RGATE + 18 22
9
20
RLGATE
DESD1
91
DESD2
21
11
DBODY
16
MWEAK
6
EBREAK
+
17
18
MMED
MSTRO
CIN
-
8
LSOURCE
7
RSOURCE
RLSOURCE
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
S1A
12
S2A
13
8
S1B
res.rbreak n17 n18 = 1, tc1 = 9.98e-4, tc2 = 1.01e-7
res.rdrain n50 n16 = 3.50e-4, tc1 = 3.78e-2, tc2 = 4.99e-5 CA
res.rgate n9 n20 = 1.13
res.rldrain n2 n5 = 10
res.rlgate n1 n9 = 10.4
res.rlsource n3 n7 = 1.29
res.rslc1 n5 n51 = 1e-6, tc1 = 4.07e-3, tc2 = 2.25e-5
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 4.55e-3, tc1 = 1.00e-3, tc2 = 0
res.rvtemp n18 n19 = 1, tc1 = -1.90e-3, tc2 = 0
res.rvthres n22 n8 = 1, tc1 = -2.79e-3, tc2 = -9.65e-6
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/650))** 2))
}
}
VBAT
5
8
EDS
-
-
IT
14
+
+
spe.ebreak n11 n7 n17 n18 = 37.19
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
9
RBREAK
15
14
13
-
+
8
22
RVTHRES
SOURCE
3
ITF86130SK8T
SPICE Thermal Model
REV 11 Nov 1999
ITF86130SK8T
Copper Area = 0.04 in2
CTHERM1 th 8 2.0e-3
CTHERM2 8 7 5.0e-3
CTHERM3 7 6 1.0e-2
CTHERM4 6 5 4.0e-2
CTHERM5 5 4 9.0e-2
CTHERM6 4 3 1.2e-1
CTHERM7 3 2 0.5
CTHERM8 2 tl 1.3
JUNCTION
th
CTHERM1
RTHERM1
8
CTHERM2
RTHERM2
RTHERM1 th 8 0.1
RTHERM2 8 7 0.5
RTHERM3 7 6 1.0
RTHERM4 6 5 5.0
RTHERM5 5 4 8.0
RTHERM6 4 3 26
RTHERM7 3 2 39
RTHERM8 2 tl 55
7
CTHERM3
RTHERM3
6
RTHERM4
SABER Thermal Model
Copper Area = 0.04 in2
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 8 = 2.0e-3
ctherm.ctherm2 8 7 = 5.0e-3
ctherm.ctherm3 7 6 = 1.0e-2
ctherm.ctherm4 6 5 = 4.0e-2
ctherm.ctherm5 5 4 = 9.0e-2
ctherm.ctherm6 4 3 = 1.2e-1
ctherm.ctherm7 3 2 = 0.5
ctherm.ctherm8 2 tl = 1.3
CTHERM4
5
CTHERM5
RTHERM5
4
RTHERM6
CTHERM6
3
CTHERM7
RTHERM7
rtherm.rtherm1 th 8 = 0.1
rtherm.rtherm2 8 7 = 0.5
rtherm.rtherm3 7 6 = 1.0
rtherm.rtherm4 6 5 = 5.0
rtherm.rtherm5 5 4 = 8.0
rtherm.rtherm6 4 3 = 26
rtherm.rtherm7 3 2 = 39
rtherm.rtherm8 2 tl = 55
}
2
CTHERM8
RTHERM8
tl
CASE
TABLE 1. Thermal Models
0.04 in2
0.28 in2
0.52 in2
0.76 in2
1.0 in2
CTHERM6
1.2e-1
1.5e-1
2.0e-1
2.0e-1
2.0e-1
CTHERM7
0.5
1.0
1.0
1.0
1.0
CTHERM8
1.3
2.8
3.0
3.0
3.0
RTHERM6
26
20
15
13
12
RTHERM7
39
24
21
19
18
RTHERM8
55
38.7
31.3
29.7
25
COMPONENT
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
10
ITF86130SK8T
MS-012AA
8 LEAD JEDEC MS-012AA SMALL OUTLINE PLASTIC PACKAGE
E
E1
INCHES
A
A1
1
e
2
6
D
5
b
MIN
MAX
MIN
MAX
NOTES
A
0.0532
0.0688
1.35
1.75
-
A1
0.004
0.0098
0.10
0.25
-
b
0.013
0.020
0.33
0.51
-
c
0.0075
0.0098
0.19
0.25
-
D
0.189
0.1968
4.80
5.00
2
E
0.2284
0.244
5.80
6.20
-
E1
0.1497
0.1574
3.80
4.00
3
e
h x 45o
c
0.004 IN
0.10 mm
L
0o-8o
0.060
1.52
0.050
1.27
0.024
0.6
0.155
4.0
0.275
7.0
MINIMUM RECOMMENDED FOOTPRINT FOR
SURFACE-MOUNTED APPLICATIONS
1.5mm
DIA. HOLE
MILLIMETERS
SYMBOL
0.050 BSC
1.27 BSC
-
H
0.0099
0.0196
0.25
0.50
-
L
0.016
0.050
0.40
1.27
4
NOTES:
1. All dimensions are within allowable dimensions of Rev. C of
JEDEC MS-012AA outline dated 5-90.
2. Dimension “D” does not include mold flash, protrusions or gate
burrs. Mold flash, protrusions or gate burrs shall not exceed
0.006 inches (0.15mm) per side.
3. Dimension “E1” does not include inter-lead flash or protrusions.
Inter-lead flash and protrusions shall not exceed 0.010 inches
(0.25mm) per side.
4. “L” is the length of terminal for soldering.
5. The chamfer on the body is optional. If it is not present, a visual index
feature must be located within the crosshatched area.
6. Controlling dimension: Millimeter.
7. Revision 8 dated 5-99.
4.0mm
2.0mm
USER DIRECTION OF FEED
1.75mm
CL
MS-012AA
12mm
12mm TAPE AND REEL
8.0mm
40mm MIN.
ACCESS HOLE
18.4mm
COVER TAPE
13mm
330mm
GENERAL INFORMATION
1. 2500 PIECES PER REEL.
2. ORDER IN MULTIPLES OF FULL REELS ONLY.
3. MEETS EIA-481 REVISION “A” SPECIFICATIONS.
11
50mm
12.4mm