RFT1P06E Data Sheet August 1999 1.4A, 60V, 0.285 Ohm, ESD Rated, P-Channel Power MOSFET File Number 4495.1 Features • 1.4A, 60V These products are P-Channel power MOSFETs manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI circuits, gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers, and relay drivers. These transistors can be operated directly from integrated circuits. • rDS(ON) = 0.285Ω • 2kV ESD Protected • Temperature Compensating PSPICE® Model • SPICE Thermal Model • Peak Current vs Pulse Width Curve • UIS Rating Curve Formerly developmental type TA49044. • 150oC Operating Temperature Ordering Information • Related Literature - TB334, “Guidelines for Soldering Surface Mount Components to PC Boards” PART NUMBER RFT1P06E PACKAGE SOT-223 BRAND R1P06E Symbol NOTE: RFT1P06E is available only in tape and reel. D G S Packaging SOT-223 DRAIN (FLANGE) SOURCE DRAIN GATE 4-171 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. PSPICE® is a registered trademark of MicroSim Corporation. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999. RFT1P06E Absolute Maximum Ratings TA = 25oC, Unless Otherwise Specified Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (Figure 2) (Note 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tpkg RFT1P06E -60 -60 ±20V UNITS V V V 1.4 Figure 5 Figures 6, 14, 15 1.1 9.09 -55 to 150 A W mW/oC oC 300 260 oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 125oC. Electrical Specifications TA = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Drain to Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V (Figure 11) -60 - - V Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 10) -2 - -4 V Zero Gate Voltage Drain Current IDSS Gate to Source Leakage Current Drain to Source On Resistance IGSS rDS(ON) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time tr Turn-Off Delay Time VDS = -60V, VGS = 0V - - -1 µA VDS = -60V, VGS = 0V, TA = 150oC - - -50 µA VGS = ±10V - - ±100 nA ID = 1.4A, VGS = -10V (Figure 9) - 0.215 0.285 W VDD = -30V, ID ≅ 1.4A, RL = 21.4Ω, VGS = -10V, RGS = 18Ω - - 51 ns - 9 - ns - 25 - ns td(OFF) - 35 - ns tf - 28 - ns tOFF - - 95 ns - 31 37 nC - 17 20 nC - 1.1 1.3 nC VDS =-25V, VGS = 0V, f = 1MHz (Figure 12) - 600 - pF - 175 - pF - 40 - pF Pad Area = 0.122in2 (Note 2) - - 110 oC/W Pad Area = 0.071in2 (Note 2) - - 119 oC/W Pad Area = 0.026in2 (Note 2) - - 137 oC/W Fall Time Turn-Off Time Total Gate Charge Qg(TOT) VGS = 0V to -20V Gate Charge at 10V Qg(-10) VGS = 0V to -10V Threshold Gate Charge Qg(TH) VGS = 0V to -2V Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS Thermal Resistance Junction to Ambient RθJA VDD = -30V, ID ≅ 1.4A, RL = 21.4Ω IG(REF) = 1.0mA (Figure 13) NOTE: 2. 110oC/W measured using FR-4 board with 0.122in2 footprint at 1000 seconds (See Technical Brief 337). Source to Drain Diode Specifications PARAMETER Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge 4-172 SYMBOL MIN TYP MAX UNITS ISD = -1.4A - - -1.25 V trr ISD = -1.4A, dISD/dt = -100A/µs - - 71 ns QRR ISD = -1.4A, dISD/dt = -100A/µs - - 192 nC VSD TEST CONDITIONS RFT1P06E Typical Performance Curves -1.5 RθJA = 110 oC/W 1.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 -1.125 -0.75 -0.375 0.2 -0 25 0 0 25 50 75 100 150 125 50 TA , AMBIENT TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT TEMPERATURE THERMAL IMPEDANCE ZθJA, NORMALIZED 1 75 100 125 150 TA, AMBIENT TEMPERATURE (oC) FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs AMBIENT TEMPERATURE DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 RθJA = 110 oC/W 0.1 0.05 0.02 0.01 0.01 0.001 0.0001 PDM t1 SINGLE PULSE 10-5 10-4 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJA x RθJA + TA 10-3 10-2 10-1 100 101 102 103 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE ID, DRAIN CURRENT (A) TJ = MAX RATED TA = 25oC -10 100µs 1ms -1 -0.1 10ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) -1 -30 TA = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: IDM, PEAK CURRENT (A) -100 I = I25 -10 150 - TA 125 VDSS(MAX) = -60V -10 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 4. FORWARD BIAS SAFE OPERATING AREA 4-173 -100 -1 10-3 10-2 10-1 100 101 t, PULSE WIDTH (s) 102 FIGURE 5. PEAK CURRENT CAPABILITY 103 RFT1P06E Typical Performance Curves (Continued) -10 -20 ID, DRAIN CURRENT (A) IAS, AVALANCHE CURRENT (A) If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] STARTING TJ = 25oC STARTING TJ = 150oC PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TA = 25oC VGS = -20V -15 VGS = -10V VGS = -7V -10 VGS = -6V -5 VGS = -5V 0 -1 0 10 0.1 1 tAV, TIME IN AVALANCHE (ms) 0.01 -1.5 -3.0 -4.5 -6 -7.5 100 VDS , DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 7. SATURATION CHARACTERISTICS FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY -20 2.5 -55oC NORMALIZED DRAIN TO SOURCE ON RESISTANCE ID, DRAIN CURRENT (A) PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = -15V 25oC -15 -10 150oC -5 0 -2 0 -4 -6 -8 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = -10V, ID = -1.4A 2.0 1.5 1.0 0.5 -80 -10 -40 VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 8. TRANSFER CHARACTERISTICS 0.8 0.6 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 4-174 80 120 160 1.2 VGS = VDS, ID = -250µA 1.0 0.4 -80 40 FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE NORMALIZED GATE THRESHOLD VOLTAGE 1.2 0 TJ, JUNCTION TEMPERATURE (oC) ID = -250µA 1.1 1.0 0.9 0.8 -80 -40 0 40 80 120 160 TJ , JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE RFT1P06E Typical Performance Curves (Continued) 800 VGS , GATE TO SOURCE VOLTAGE (V) -10 C, CAPACITANCE (pF) CISS 600 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS = CDS + CGD 400 COSS 200 CRSS 0 WAVEFORMS IN DESCENDING ORDER: ID = -1.4A ID = -1.0A ID = -0.5A -8 VDD = -30V -6 -4 -2 0 0 -10 -20 -30 -40 -50 VDS , DRAIN TO SOURCE VOLTAGE (V) -60 FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE 0 5 10 Qg, GATE CHARGE (nC) 15 20 NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT Test Circuits and Waveforms VDS tAV L 0 VARY tP TO OBTAIN REQUIRED PEAK IAS - RG VDD + 0V VDD DUT tP IAS IAS VDS tP 0.01Ω -VGS BVDSS FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT VDS FIGURE 15. UNCLAMPED ENERGY WAVEFORMS VDS Qg(TH) 0 RL VGS = -2V VGS = -10V -VGS VGS - Qg(-10) VDD + VGS = -20V VDD DUT Qg(TOT) IG(REF) 0 IG(REF) FIGURE 16. GATE CHARGE TEST CIRCUIT 4-175 FIGURE 17. GATE CHARGE WAVEFORM RFT1P06E Test Circuits and Waveforms (Continued) tON tOFF td(OFF) td(ON) tf tr 0 RL VDS + VGS VDS 0V 0 RGS 10% 10% - 90% 90% 10% DUT 50% -VGS VGS FIGURE 18. SWITCHING TIME TEST CIRCUIT 50% PULSE WIDTH 90% FIGURE 19. RESISTIVE SWITCHING WAVEFORMS Thermal Resistance vs Mounting Pad Area The maximum rated junction temperature, TJ(MAX) , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PD(MAX) , in an application. Therefore the application’s ambient temperature, TA (oC), and thermal impedance RθJA (oC/W) must be reviewed to ensure that TJ(MAX) (oC) is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. ( T JMAX – T A ) P DMAX = ---------------------------------------R θJA state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Intersil device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. 200 RθJA = 73.0 - 17.4 * ln(AREA) In using surface mount devices such as the SOT-223 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of the PD(MAX) is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Intersil provides thermal information to assist the designer’s preliminary application evaluation. Figure 20 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady 4-176 RθJA (oC/W) (EQ. 1) 150 137oC/W - 0.026in2 110oC/W - 0.122in2 119oC/W - 0.071in2 100 50 0.01 0.1 1.0 AREA, TOP COPPER AREA (in2) FIGURE 20. THERMAL RESISTANCE vs MOUNTING PAD AREA Displayed on the curve are the three RθJA values listed in the Electrical Specifications table. The three points where chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, PD(MAX) . Thermal resistances corresponding to other component side copper areas can be obtained from Figure 20 or by calculation using Equation 2. The area, in square inches is the top copper area including the gate and source pads. R θJA = 73.0 – 17.4 × ln ( Area ) (EQ. 2) RFT1P06E PSPICE Electrical Model SUBCKT RFT1P06E 2 1 3; rev 10/16/97 CA 12 8 7.42e-10 CB 15 14 8.04e-10 CIN 6 8 5.5e-10 ESG 8 6 10 LDRAIN DRAIN 2 5 + RLDRAIN DBODY 5 7DBODYMOD DBREAK 7 11 DBREAKMOD DPLCAP 10 6DPLCAPMOD DESD1 91 9 DESD1MOD DESD2 91 7DESD2MOD RSLC1 51 + 5 ESLC 51 RSLC2 50 DPLCAP EBREAK 5 11 17 18 -69.1 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 5 10 8 6 1 EVTHRES 6 21 19 8 1 EVTEMP 6 20 18 22 1 GATE 1 RGATE 9 IT 8 17 1 RDRAIN 16 EVTHRES + 19 8 EVTEMP LGATE RLGATE 20 18 + 22 DBODY 11 21 6 MWEAK MMED MSTRO DESD1 91 DESD2 LDRAIN 2 5 1e-9 LGATE 1 9 1.73e-9 LSOURCE 3 7 3.9e-10 DBREAK LSOURCE CIN RSOURCE 8 SOURCE 3 7 RLSOURCE S1A 12 13 8 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD S2A 15 14 13 S1B RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 9.52e-2 RGATE 9 20 3.95 RLDRAIN 2 5 10 RLGATE 1 9 17.3 RLSOURCE 3 7 39 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD .144 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 RBREAK 18 17 S2B 13 S1A S1B S2A S2B + 17 18 EBREAK CA RVTEMP CB + EGS 6 8 EDS IT 14 + 19 VBAT 5 8 + 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*22),9))} .MODEL DBODYMOD D (IS = 4.15e-15 RS = 5.54e-2 TRS1 = -1.32e-3 TRS2 = -2.48e-6 CJO = 6.06e-10 TT = 7.54e-8) .MODEL DBREAKMOD D (RS = 4.66e-1 TRS1 = 1.48e-3 TRS2 = -7.49e-6) .MODEL DPLCAPMOD D (CJO = 2.49e-10 IS = 1e-30 N = 10) .MODEL DESD1MOD D (BV=20.2 TBV1=-1.25e-3 TBV2=5.79e-7 RS=36 NBV=1 IBV=7e6) .MODEL DESD2MOD D (BV=25.4 TBV1=-8.3e-4 TBV2=8.9e-7 NBV=1 IBV=7e6) .MODEL MMEDMOD NMOS (VTO = -3.32 KP =.258 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MSTROMOD NMOS (VTO = -3.824 KP = 4.8 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = -3.0 KP = 0.05 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL RBREAKMOD RES (TC1 = 9.48e-4 TC2 = -1.42e-7) .MODEL RDRAINMOD RES (TC1 = 5.4e-3 TC2 = 1.25e-5) .MODEL RSLCMOD RES (TC1 = 1.75e-3 TC2 = 3.9e-6) .MODEL RSOURCEMOD RES (TC1 = 5.4e-3 TC2 = 1.25e-5) .MODEL RVTHRESMOD RES (TC1 = 0 TC2 = 0) .MODEL RVTEMPMOD RES (TC1 = -3.55e-3 TC2 = -3.43e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON =5.1 VOFF= 3.1) VON =3.1 VOFF= 5.1) VON = 2.10 VOFF= -2.9) VON = -2.9 VOFF= 2.10) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 4-177 RFT1P06E SPICE Thermal Model 7 JUNCTION rev 10/16/97 RFT1P06E RTHERM1 CTHERM1 7 6 1.3e-4 CTHERM2 6 5 5.0e-4 CTHERM3 5 4 2.0e-3 CTHERM4 4 3 5.0e-3 CTHERM5 3 2 4.75e-2 CTHERM6 2 1 3.8e-1 CTHERM1 6 RTHERM2 RTHERM1 7 6 4.0e-2 RTHERM2 6 5 9.0e-2 RTHERM3 5 4 5.0e-1 RTHERM4 4 3 3.5 RTHERM5 3 2 20 RTHERM6 2 1 75 CTHERM2 5 RTHERM3 CTHERM3 4 RTHERM4 CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 1 CASE All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 4-178 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029