RFT2P03L Data Sheet July 1999 2.1A, 30V, 0.150 Ohm, P-Channel Logic Level, Power MOSFET Features This product is a P-Channel power MOSFET manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI circuits, gives optimum utilization of silicon, resulting in outstanding performance. It was designed for use in applications such as switching regulators, switching converters, motor drivers, and relay drivers. This transistor can be operated directly from integrated circuits. • rDS(ON) = 0.150Ω • 2.1A, 30V • Temperature Compensating PSPICE® Model • Thermal Impedance SPICE Model • Peak Current vs Pulse Width Curve • UIS Rating Curve • Related Literature - TB334, “Guidelines for Soldering Surface Mount Components to PC Boards” Formerly developmental type TA49222. Ordering Information PART NUMBER RFT2P03L Symbol PACKAGE SOT-223 File Number 4574.2 BRAND D 2P03L NOTE: RFT2P03L is available only in tape and reel. Use the entire part number and add the suffix T. G S Packaging SOT-223 DRAIN (FLANGE) SOURCE DRAIN GATE 7-7-19 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. PSPICE® is a registered trademark of MicroSim Corporation. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 RFT2P03L Absolute Maximum Ratings TA = 25oC, Unless Otherwise Specified Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (Note 2) (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg UNITS V V V -30 -30 ±20V 2.1 Figure 5 Figures 6, 14, 15 1.1 0.009 -55 to 150 A W W/oC oC 300 260 oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 125oC. Electrical Specifications TA = 25oC, Unless Otherwise Specified TEST CONDITIONS MIN TYP MAX UNITS Drain to Source Breakdown Voltage PARAMETER SYMBOL BVDSS ID = 250µA, VGS = 0V (Figure 11) -30 - - V Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 10) -1 - -3 V VDS = -30V, VGS = 0V - - -1 µA VDS = -30V, VGS = 0V, TA = 150oC - - -50 µA VGS = ±20V - - ±100 nA ID = 2.1A, VGS = -10V (Figure 9) - 0.120 0.150 Ω ID = 2.1A, VGS = -4.5V (Figure 9) - 0.300 0.360 Ω VDD = -15V, ID ≅ 2.1A, RL = 7.1Ω, VGS = −10V, RGS = 21Ω - - 50 ns - 13 - ns Zero Gate Voltage Drain Current IDSS Gate to Source Leakage Current Drain to Source On Resistance IGSS rDS(ON) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time tr Turn-Off Delay Time Fall Time Turn-Off Time - 18 - ns td(OFF) - 43 - ns tf - 24 - ns tOFF Total Gate Charge Qg(TOT) VGS = 0V to -20V Gate Charge at -10V Qg(-10) VGS = 0V to -10V Threshold Gate Charge Qg(TH) VGS = 0V to -2V VDD = -15V, ID ≅ 2.1A, RL = 7.1Ω Ig(REF) = -1.0mA (Figure 13) - - 100 ns - 27 33 nC - 14 17 nC - 1.3 1.6 nC VDS = -25V, VGS = 0V, f = 1MHz (Figure 12) - 620 - pF - 240 - pF - 30 - pF Pad Area = 0.171 in2 (See note 2) - - 110 oC/W Pad Area = 0.068 in2 (See Tech Brief 377) - - 128 oC/W Pad Area = 0.026 in2 (See Tech Brief 377) - - 147 oC/W MIN TYP MAX UNITS ISD = -2.1A - - -1.25 V trr ISD = -2.1A, dISD/dt = 100A/µs - - 49 ns QRR ISD = -2.1A, dISD/dt = 100A/µs - - 45 nC Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS Thermal Resistance Junction to Ambient RθJA Source to Drain Diode Specifications PARAMETER Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge SYMBOL VSD TEST CONDITIONS NOTE: 2. 110oC/W measured using FR-4 board with 0.171 in2 footprint for 1000 seconds. 7-7-20 RFT2P03L Typical Performance Curves Unless Otherwise Specified -2.5 RθJA = 110oC/W ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 1.0 0.8 0.6 0.4 -2.0 -1.5 -1.0 -0.5 0.2 0 0 0 25 50 75 100 25 150 125 50 FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT TEMPERATURE 2 ZθJA, NORMALIZED THERMAL IMPEDANCE 1 0.1 75 100 125 150 TA, AMBIENT TEMPERATURE (oC) TA , AMBIENT TEMPERATURE (oC) FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs AMBIENT TEMPERATURE DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM t1 NOTES: DUTY FACTOR: D = t1/t2 0.01 t2 PEAK TJ = PDM x ZθJA x RθJA + TA RθJA = 110oC/W SINGLE PULSE 0.001 10-5 10-4 10-3 10-2 10-1 100 t, RECTANGULAR PULSE DURATION (s) 101 102 103 FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE -30 TJ = MAX RATED TA = 25oC RθJA = 110oC/W IDM, PEAK CURRENT (A) ID, DRAIN CURRENT (A) -100 100µs -10 1ms 10ms -1 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) RθJA = 110oC/W TA = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 150 - TA 125 I = I25 -10 -0.1 -1 -10 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 4. FORWARD BIAS SAFE OPERATING AREA 7-7-21 -100 -1 10-3 10-2 10-1 100 101 102 t, PULSE WIDTH (s) FIGURE 5. PEAK CURRENT CAPABILITY 103 RFT2P03L Typical Performance Curves Unless Otherwise Specified (Continued) -6 VGS = -20V -4 STARTING TJ = 25oC ID, DRAIN CURRENT (A) IAS, AVALANCHE CURRENT (A) -20 -5 -3 STARTING TJ = 150oC -2 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] -1 1 10 tAV, TIME IN AVALANCHE (ms) VGS = -10V -16 VGS = -7V -12 VGS = -6V -8 VGS = -5V VGS = -4.5V -4 PULSE DURATION = 250µs DUTY CYCLE = 0.5% MAX TA = 25oC 0 100 0 -1.5 -3.0 -4.5 -6.0 -7.5 VDS, DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY 1.8 PULSE DURATION = 250µs DUTY CYCLE = 0.5% MAX VDD = 15V -16 -55oC 25oC 150oC -12 -8 -4 NORMALIZED DRAIN TO SOURCE ON RESISTANCE ID, DRAIN CURRENT (A) -20 FIGURE 7. SATURATION CHARACTERISTICS -1.5 -3.0 -4.5 -6.0 1.4 1.2 1.0 0.8 0.6 -80 0 0 1.6 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = -10V, ID = 2.1A -7.5 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 8. TRANSFER CHARACTERISTICS FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 1.2 VGS = VDS, ID = 250µA 1.0 0.8 0.6 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 7-7-22 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.2 NORMALIZED GATE THRESHOLD VOLTAGE -40 ID = 250µA 1.1 1.0 0.9 -80 -40 0 40 80 120 160 TJ , JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE RFT2P03L Typical Performance Curves Unless Otherwise Specified (Continued) CISS C, CAPACITANCE (pF) 600 VGS = 0V, f = 0.1MHz CISS = CGS + CGD CRSS = CGD COSS ≈ CDS + CGD 450 COSS 300 150 CRSS VGS , GATE TO SOURCE VOLTAGE (V) -10 750 WAVEFORMS IN DESCENDING ORDER: ID = 2.1A ID = 1A -8 VDD = -15V -6 -4 -2 0 0 0 -5 -10 -15 -20 -25 0 -30 3 VDS , DRAIN TO SOURCE VOLTAGE (V) 6 9 Qg, GATE CHARGE (nC) 12 15 NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT Test Circuits and Waveforms VDS tAV L 0 VARY tP TO OBTAIN REQUIRED PEAK IAS - RG + VDD DUT 0V VDD tP VGS IAS IAS VDS tP 0.01Ω BVDSS FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS VDS VDS Qg(TH) RL 0 VGS= -2V VGS - Qg(-10) + DUT VGS= -10V -VGS VDD VGS= -20V VDD Ig(REF) Qg(TOT) 0 Ig(REF) FIGURE 16. GATE CHARGE TEST CIRCUIT 7-7-23 FIGURE 17. GATE CHARGE WAVEFORM RFT2P03L Test Circuits and Waveforms (Continued) tON tOFF td(OFF) td(ON) tf tr VDS 0 RL 10% 10% VGS VDS VDD + VGS VGS 0 DUT RGS 90% 90% 10% 50% 50% PULSE WIDTH 90% FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. RESISTIVE SWITCHING WAVEFORMS The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application’s ambient temperature, TA (oC), and thermal impedance RθJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. ( T JM – T A ) P DM = ------------------------------R θJA (EQ. 1) In using surface mount devices such as the SOT-223 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of the PDM is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board 2. The number of copper layers and the thickness of the board 3. The use of external heat sinks 4. The use of thermal vias 5. Air flow and board orientation 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Intersil provides thermal information to assist the designer’s preliminary application evaluation. Figure 20 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the 7-7-24 necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Intersil device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. 200 RθJA = 75.9 - 19.3 * in(AREA) 147oC/W - 0.026in2 RθJA (oC/W) Thermal Resistance vs. Mounting Pad Area 150 128oC/W - 0.068in2 110oC/W - 0.171in2 100 50 0.01 0.1 1.0 AREA, TOP COPPER AREA (in2) FIGURE 20. THERMAL RESISTANCE vs MOUNTING PAD AREA Displayed on the curve are RθJA values listed in the Electrical Specifications table. The points were chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, PDM. Thermal resistances corresponding to other component side copper areas can be obtained from Figure 20 or by calculation using Equation 2. The area, in square inches is the top copper area including the gate and source pads. R θJA = 75.9 – 19.3 × in ( Area ) (EQ. 2) RFT2P03L PSPICE Electrical Model .SUBCKT RFT2P03L 2 1 3 ; REV July 1998 CA 12 8 6.5e-10 CB 15 14 6.4e-10 CIN 6 8 5.77e-10 ESG 8 6 10 DBODY 5 7 DBODYMOD DBREAK 7 11 DBREAKMOD DPLCAP 10 6 DPLCAPMOD LDRAIN DRAIN 2 5 + RLDRAIN RSLC1 51 + 5 ESLC 51 RSLC2 EBREAK 5 11 17 18 -41.2 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 5 10 8 6 1 EVTHRES 6 21 19 8 1 EVTEMP 6 20 18 22 1 + 17 18 EBREAK 50 DPLCAP IT 8 17 1 GATE 1 LDRAIN 2 5 1e-9 LGATE 1 9 1.27e-9 LSOURCE 3 7 4.2e-10 RDRAIN 16 EVTHRES + 19 8 EVTEMP LGATE RGATE 9 20 18 + 22 DBODY 11 21 6 MWEAK MMED MSTRO RLGATE DBREAK LSOURCE CIN RSOURCE 8 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD SOURCE 3 7 RLSOURCE S1A 12 13 8 RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 24e-3 RGATE 9 20 5.2 RLDRAIN 2 5 10 RLGATE 1 9 12.7 RLSOURCE 3 7 4.2 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 68e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S2A 15 14 13 S1B RBREAK 18 17 S2B 13 CA RVTEMP CB + EGS EDS IT 14 + 6 8 19 VBAT 5 8 + 8 22 RVTHRES S1A S1B S2A S2B 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*45),2.5))} .MODEL DBODYMOD D (IS = 2e-13 RS = 3.5e-2 IKF = 0.7 XTI = 8.2 TRS1 = 6e-4 TRS2 = 5e-7 CJO = 7.3e-10 TT = 3.51e-8 M = 0.4 .MODEL DBREAKMOD D (RS = 2e-1 TRS1 = 1e-4 TRS2 = 1e-5) .MODEL DPLCAPMOD D (CJO = 2.65e-10 IS = 1e-30 N = 10 M = 0.63) .MODEL MMEDMOD PMOS (VTO = -2.6 KP = 1.2 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 5.2) .MODEL MSTROMOD PMOS (VTO = -3.27 KP = 6 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD PMOS (VTO = -2.11 KP = 0.07 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 52 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 9.2e-4 TC2 = -1e-7) .MODEL RDRAINMOD RES (TC1 = 1.8e-2 TC2 = 2.1e-5) .MODEL RSLCMOD RES (TC1 = 3.5e-3 TC2 = 1.3e-6) .MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0) .MODEL RVTHRESMOD RES (TC1 = 8.8e-4 TC2 = 6.1e-6) .MODEL RVTEMPMOD RES (TC1 = -2e-3 TC2 = 1e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = 5.7 VOFF= 2.7) VON = 2.7 VOFF= 5.7) VON = -0.1 VOFF= -2.4) VON = -2.4 VOFF= -0.1) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 7-7-25 RFT2P03L SPICE Thermal Model 9 REV July 98 JUNCTION RFT2P03L CTHERM1 9 8 1.9e-5 CTHERM2 8 7 3.0e-4 CTHERM3 7 6 1.2e-3 CTHERM4 6 5 3.5e-3 CTHERM5 5 4 2.0e-2 CTHERM6 4 3 6.5e-2 CTHERM7 3 2 2.0e-1 CTHERM8 2 1 1 RTHERM1 CTHERM1 8 RTHERM2 RTHERM1 9 8 3.5e-2 RTHERM2 8 7 8.5e-2 RTHERM3 7 6 3.5e-1 RTHERM4 6 5 1.85 RTHERM5 5 4 2.75 RTHERM6 4 3 15 RTHERM7 3 2 30 RTHERM8 2 1 50 CTHERM2 7 RTHERM3 CTHERM3 6 RTHERM4 CTHERM4 5 RTHERM5 CTHERM5 4 RTHERM6 CTHERM6 3 RTHERM7 CTHERM7 2 RTHERM8 CTHERM8 1 7-7-26 AMBIENT RFT2P03L All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 7-7-27 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029