RFT3055LE Data Sheet August 1999 2.0A, 60V, 0.150 Ohm, N-Channel, Logic Level, ESD Rated, Power MOSFET • 2.0A, 60V • rDS(ON) = 0.150Ω • 2kV ESD Protected • Temperature Compensating PSPICE® Model • Thermal Impedance SPICE Model • Peak Current vs Pulse Width Curve • UIS Rating Curve Formerly developmental type TA49158. • Related Literature - TB334, “Guidelines for Soldering Surface Mount Components to PC Boards” Ordering Information RFT3055LE PACKAGE SOT-223 4537.3 Features This product is an N-Channel power MOSFET manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI circuits, gives optimum utilization of silicon, resulting in outstanding performance. It was designed for use in applications such as switching regulators, switching converters, motor drivers, and relay drivers. These transistors can be operated directly from integrated circuits. PART NUMBER File Number BRAND Symbol 3055L D NOTE: RFT3055LE is available only in tape and reel. G S Packaging SOT-223 DRAIN (FLANGE) SOURCE DRAIN GATE 8-143 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. PSPICE® is a registered trademark of MicroSim Corporation. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 RFT3055LE Absolute Maximum Ratings TA = 25oC, Unless Otherwise Specified Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (Figure 2) (Note 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg RFT3055LE 60 60 ±10 UNITS V V V 2.0 Figure 5 Figures 6, 16, 17 1.1 9.09 -55 to 150 A W mW/oC oC 300 260 oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 125oC. Electrical Specifications TA = 25oC, Unless Otherwise Specified MIN TYP MAX UNITS Drain to Source Breakdown Voltage PARAMETER SYMBOL BVDSS ID = 250µA, VGS = 0V (Figure 11) 60 - - V Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 10) 1 - 2 V VDS = 60V, VGS = 0V - - 1 µA Zero Gate Voltage Drain Current IDSS VDS = 60V, VGS = 0V, TA = 150oC - - 50 µA VGS = ±10V - - 10 µA ID = 2.0A, VGS = 5V (Figure 9) - 0.110 0.150 Ω VDD = 30V, ID ≅ 2.0A, RL = 15Ω, VGS = 5V, RGS = 5Ω (Figure 12) - - 120 ns - 10 - ns - 70 - ns td(OFF) - 30 - ns tf - 25 - ns Gate to Source Leakage Current Drain to Source On Resistance IGSS rDS(ON) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time tr Turn-Off Delay Time TEST CONDITIONS Fall Time Turn-Off Time tOFF Total Gate Charge Qg(TOT) VGS = 0V to 10V Qg(5) VGS = 0V to 5V Qg(TH) VGS = 0V to 1V Gate Charge at 10V Threshold Gate Charge Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS Thermal Resistance Junction to Ambient RθJA VDD = 30V, ID ≅ 2.0A, RL = 15Ω Ig(REF) = 1.0mA (Figure 15) VDS = 25V, VGS = 0V, f = 1MHz (Figure 12) - - 85 ns - 28 35 nC - 15 18 nC - 1.0 1.2 nC - 850 - pF - 170 - pF - 100 - pF Pad Area = 0.171 in2 (see note 2) - - 110 oC/W Pad Area = 0.068 in2 - - 128 oC/W Pad Area = 0.026 in2 - - 147 oC/W MIN TYP MAX UNITS ISD = 2.0A - - 1.5 V ISD = 2.0A, dISD/dt = 100A/µs - - 100 ns Source to Drain Diode Specifications PARAMETER Source to Drain Diode Voltage Reverse Recovery Time SYMBOL VSD trr TEST CONDITIONS NOTE: 2. 110 oC/W measured using FR-4 board with 0.171in2 footprint for 1000 seconds. 8-144 RFT3055LE Typical Performance Curves Unless otherwise specified 2.5 RθJA = 110oC/W 1.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 0.2 2.0 1.5 1.0 0.5 0 0 0 25 50 75 100 25 150 125 50 TA , AMBIENT TEMPERATURE (oC) 75 100 FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT TEMPERATURE ZθJA, NORMALIZED THERMAL IMPEDANCE 150 FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs AMBIENT TEMPERATURE 2 1 125 TA, AMBIENT TEMPERATURE (oC) RθJA = 110oC/W DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJA x RθJA + TA SINGLE PULSE 0.01 10-3 10-2 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) 102 103 FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 10 100µs 1ms 1 10ms 100ms 0.1 0.01 0.1 30 TJ = MAX RATED TA = 25oC RθJA = 110oC/W OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) DC 100 200 FIGURE 4. FORWARD BIAS SAFE OPERATING AREA 8-145 IDM, PEAK CURRENT (A) ID, DRAIN CURRENT (A) 100 TA = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 150 - TA 125 I = I25 10 RθJA = 110oC/W VGS = 5V TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 1 10-3 10-2 10-1 100 101 102 t, PULSE WIDTH (s) FIGURE 5. PEAK CURRENT CAPABILITY 103 RFT3055LE Typical Performance Curves 20 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 10 STARTING TJ = 25oC STARTING TJ = 150oC 1 0.1 0.01 VGS = 5V VGS = 4.5V VGS = 10V ID, DRAIN CURRENT (A) IAS, AVALANCHE CURRENT (A) 20 Unless otherwise specified (Continued) 0.1 1 10 tAV, TIME IN AVALANCHE (ms) 16 VGS = 4V 12 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TA = 25oC 8 VGS = 3V 4 0 100 0 1 2 3 4 5 VDS, DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 7. SATURATION CHARACTERISTICS FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY 2.0 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V 16 150oC -55oC 25oC 12 8 4 NORMALIZED DRAIN TO SOURCE ON RESISTANCE ID, DRAIN CURRENT (A) 20 1.5 3.0 4.5 1.5 1.25 1.0 0.75 0.5 -80 0 0 1.75 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 5V, ID = 2A 6.0 FIGURE 8. TRANSFER CHARACTERISTICS 40 80 120 160 1.1 1.0 0.9 0.8 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 8-146 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.15 VGS = VDS, ID = 250µA NORMALIZED GATE THRESHOLD VOLTAGE 0 FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 1.2 0.7 -80 -40 TJ, JUNCTION TEMPERATURE (oC) VGS, GATE TO SOURCE VOLTAGE (V) ID = 250µA 1.1 1.05 1.0 0.95 0.9 -80 -40 0 40 80 120 160 TJ , JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE RFT3055LE Typical Performance Curves Unless otherwise specified (Continued) 200 250 rDS(ON), ON-STATE RESISTANCE (mΩ) VDD = 30V, ID = 2A, RL = 15Ω SWITCHING TIME (ns) tR 150 100 tF tD(OFF) 50 tD(ON) 0 0 30 20 40 10 RGS, GATE TO SOURCE RESISTANCE (Ω) ID = 0.5A PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 200 150 100 50 2 50 FIGURE 12. SWITCHING TIME vs GATE RESISTANCE 4 6 8 VGS, GATE TO SOURCE VOLTAGE (V) 10 FIGURE 13. SOURCE TO DRAIN ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT 10 VGS , GATE TO SOURCE VOLTAGE (V) 1200 CISS C, CAPACITANCE (pF) ID = 2A 900 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS = CDS + CGD 600 COSS 300 CRSS WAVEFORMS IN DESCENDING ORDER: ID = 2A ID = 0.5A 8 6 4 2 0 0 0 0 5 VDD = 15V 10 15 20 25 30 VDS , DRAIN TO SOURCE VOLTAGE (V) FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE 8-147 6 12 18 Qg, GATE CHARGE (nC) 24 30 NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 15. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT RFT3055LE Test Circuits and Waveforms VDS BVDSS L tP VARY tP TO OBTAIN REQUIRED PEAK IAS IAS + RG VDS VDD VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 17. UNCLAMPED ENERGY WAVEFORMS VDS VDD RL Qg(TOT) VDS VGS = 10V VGS Qg(5) + VDD DUT VGS = 5V VGS - VGS = 1V Ig(REF) 0 Qg(TH) Ig(REF) 0 FIGURE 18. GATE CHARGE TEST CIRCUIT FIGURE 19. GATE CHARGE WAVEFORM tON tOFF td(ON) td(OFF) VDS VDS VGS tf tr RL 90% 90% + VGS - 10% 10% 0 0V RGS 90% DUT VGS 0 FIGURE 20. SWITCHING TIME TEST CIRCUIT 8-148 10% 50% 50% PULSE WIDTH FIGURE 21. RESISTIVE SWITCHING WAVEFORMS RFT3055LE Thermal Resistance vs. Mounting Pad Area ( T J ( MAX ) – T A ) P D ( MAX ) = -------------------------------------------R θJA RθJA = 75.9 - 19.3 * ln(AREA) 147oC/W - 0.026in2 RθJA (oC/W) The maximum rated junction temperature, TJ(MAX), and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PD(MAX), in an application. Therefore the application’s ambient temperature, TA (oC), and thermal impedance RθJA (oC/W) must be reviewed to ensure that TJ(MAX) is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. 200 150 128oC/W - 0.068in2 110oC/W - 0.171in2 100 (EQ. 1) 50 0.01 In using surface mount devices such as the SOT-223 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of the PD(MAX) is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Intersil provides thermal information to assist the designer’s preliminary application evaluation. Figure 22 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow.This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Intersil device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. 8-149 0.1 1.0 AREA, TOP COPPER AREA (in2) FIGURE 22. THERMAL RESISTANCE vs MOUNTING PAD AREA Displayed on the curve are the three RθJA values listed in the Electrical Specifications table. The three points were chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, PD(MAX). Thermal resistances corresponding to other component side copper areas can be obtained from Figure 22 or by calculation using Equation 2. The area, in square inches is the top copper area including the gate and source pads. R θJA = 75.9 – 19.3 × ln ( Area ) (EQ. 2) RFT3055LE PSPICE Electrical Model .SUBCKT RFT3055LE 2 1 3 ; REV May 98 CA 12 8 1.68e-9 CB 15 14 1.78e-9 CIN 6 8 7.69e-10 LDRAIN DPLCAP DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DESD1 91 9 DESD1MOD DESD2 91 7 DESD2MOD DPLCAP 10 5 DPLCAPMOD DRAIN 2 5 10 RLDRAIN RSLC1 51 + 5 ESLC 51 RSLC2 EBREAK 11 7 17 18 64.28 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 DBREAK 11 50 ESG IT 8 17 1 GATE 1 LDRAIN 2 5 1e-9 LGATE 1 9 4.6e-9 LSOURCE 3 7 4.6e-9 LGATE RLGATE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD + EBREAK 17 18 RDRAIN 16 6 8 + EVTHRES + 19 8 EVTEMP RGATE + 18 9 20 22 21 6 DBODY MWEAK MMED MSTRO DESD1 91 DESD2 LSOURCE CIN RSOURCE 8 SOURCE 3 7 RLSOURCE RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 24e-3 RGATE 9 20 9.84 RLDRAIN 2 5 10 RLGATE 1 9 46 RLSOURCE 3 7 46 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 49e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B S1A 12 13 8 S2A 15 14 13 S1B RBREAK 18 17 S2B 13 CA RVTEMP CB + EGS EDS IT 14 + 6 8 19 VBAT 5 8 + 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*45),4))} .MODEL DBODYMOD D (IS = 3.61e-13 RS = 1.78e-2 TRS1 = 1.7e-2 TRS2 = -4.69e-6 CJO = 3.88e-10 TT = 3.6e-8) .MODEL DBREAKMOD D (RS = 4.73e-1 TRS1 = -2.19e-3 TRS2 = 4.7e-5) .MODEL DESD1MOD D (BV = 12.5 NBV = 17.5 IBV = 2.5e-4 RS = 22) .MODEL DESD2MOD D (BV = 12.86 NBV = 22 IBV = 2.5e-4 RS = 0) .MODEL DPLCAPMOD D (CJO = 4.803e-10 IS = 1e-30 N = 10) .MODEL MMEDMOD NMOS (VTO = 1.78 KP = 1.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 9.84) .MODEL MSTROMOD NMOS (VTO = 2.08 KP = 10.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.55 KP = 0.1 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 98.4 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.06e-3 TC2 = -6.22e-7) .MODEL RDRAINMOD RES (TC1 = 4.5e-3 TC2 = 6e-5) .MODEL RSLCMOD RES (TC1 = 0 TC2 = 0) .MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0) .MODEL RVTHRESMOD RES (TC = 0 TC2 = -4e-6) .MODEL RVTEMPMOD RES (TC1 = -1.9e-3 TC2 = 1.3e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -4.4 VOFF= -2.4) VON = -2.4 VOFF= -4.4) VON = -2.0 VOFF= 1.15) VON = 1.15 VOFF= -2.0) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 8-150 RFT3055LE SPICE Thermal Model 9 REV May 98 RFT3055LE Copper Area = 0.077in2 CTHERM1 9 8 7.5e-5 CTHERM2 8 7 3.5e-4 CTHERM3 7 6 1.2e-3 CTHERM4 6 5 1.5e-2 CTHERM5 5 4 6.0e-2 CTHERM6 4 3 3.0e-1 CTHERM7 3 2 1.6 CTHERM8 2 1 6 RTHERM1 JUNCTION CTHERM1 8 RTHERM2 RTHERM1 9 8 8.2e-2 RTHERM2 8 7 2.7e-1 RTHERM3 7 6 1.9 RTHERM4 6 5 3.1 RTHERM5 5 4 12 RTHERM6 4 3 38 RTHERM7 3 2 32 RTHERM8 2 1 22 CTHERM2 7 RTHERM3 CTHERM3 6 RTHERM4 CTHERM4 5 RTHERM5 CTHERM5 4 RTHERM6 CTHERM6 3 RTHERM7 CTHERM7 2 RTHERM8 CTHERM8 1 8-151 AMBIENT RFT3055LE All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 8-152 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029