HUF76121SK8 Data Sheet April 1999 8A, 30V, 0.023 Ohm, N-Channel, Logic Level UltraFET Power MOSFET Features • Logic Level Gate Drive This N-Channel power MOSFET is manufactured using the innovative UltraFET™ process. This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, low-voltage bus switches, and power management in portable and batteryoperated products. • 8A, 30V • Simulation Models - Temperature Compensated PSPICE™ and SABER© Electrical Models - Spice and SABER© Thermal Impedance Models - www.Intersil.com • Peak Current vs Pulse Width Curve • UIS Rating Curve • Transient Thermal Impedance Curve vs Board Mounting Area • Related Literature - TB370, “Guidelines for Soldering Surface Mount Components to PC Boards” Formerly developmental type TA76121. Ordering Information PART NUMBER HUF76121SK8 PACKAGE MS-012AA File Number 4737 Symbol BRAND 76121SK8 NOTE: When ordering, use the entire part number. Add the suffix T to obtain the variant in tape and reel, e.g., HUF76121SK8T. NC (1) DRAIN(8) SOURCE(2) DRAIN(7) SOURCE(3) DRAIN(6) GATE(4) DRAIN(5) Packaging JEDEC MS-012AA BRANDING DASH 5 1 2 3 1 4 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. UltraFET™ is a trademark of Intersil Corporation. PSPICE™ is a trademark of MicroSim Corporation. SABER© is a Copyright of Analogy Inc. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 HUF76121SK8 Absolute Maximum Ratings TA = 25oC, Unless Otherwise Specified Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (TA= 25oC, VGS = 10V) (Figure 2) (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TA= 100oC, VGS = 5V) (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TA= 100oC, VGS = 4.5V) (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg UNITS V V V 30 30 ±16 8 2.5 2.3 Figure 4 Figures 6, 17, 18 2.5 20 -55 to 150 A A A W mW/oC oC 300 260 oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTES: 1. TJ = 25oC to 125oC. 2. 50oC/W measured using FR-4 board with 0.76 in2 footprint at 10 seconds. 3. 189oC/W measured using FR-4 board with 0.0115 in2 footprint at 1000 seconds. TA = 25oC, Unless Otherwise Specified Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS 30 - - V VDS = 25V, VGS = 0V - - 1 µA VDS = 25V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±16V - - ±100 nA OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current BVDSS IDSS Gate to Source Leakage Current IGSS ID = 250µA, VGS = 0V (Figure 12) ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 11) 1 - 3 V Drain to Source On Resistance rDS(ON) ID = 8A, VGS = 10V (Figures 9, 10) - 0.018 0.023 Ω ID = 2.5A, VGS = 5V (Figure 9) - 0.021 0.028 Ω ID = 2.3A, VGS = 4.5V (Figure 9) - 0.022 0.031 Ω Pad Area = 0.76 in2 (Note 2) - - 50 oC/W Pad Area = 0.054 in2 (Figure 23) - - 152 oC/W Pad Area = 0.0115 in2 (Figure 23) - - 189 oC/W VDD = 15V, ID ≅ 2.3A, RL = 6.5Ω, VGS = 4.5V, RGS = 10Ω (Figures 15, 21, 22) - - 85 ns - 17 - ns tr - 40 - ns td(OFF) - 40 - ns tf - 30 - ns tOFF - - 105 ns THERMAL SPECIFICATIONS Thermal Resistance Junction to Ambient RθJA SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time Turn-Off Delay Time Fall Time Turn-Off Time 2 HUF76121SK8 TA = 25oC, Unless Otherwise Specified Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS tON VDD = 15V, ID ≅ 8A, RL =1.9Ω, VGS = 10V, RGS = 12Ω (Figures 16, 21, 22) - - 60 ns - 10 - ns tr - 29 - ns td(OFF) - 64 - ns tf - 40 - ns tOFF - - 155 ns - 24 29 nC - 14 17 nC - 0.8 1.0 nC SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time td(ON) Rise Time Turn-Off Delay Time Fall Time Turn-Off Time GATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) VGS = 0V to 10V Gate Charge at 5V Qg(5) VGS = 0V to 5V Qg(TH) VGS = 0V to 1V Threshold Gate Charge VDD = 15V, ID ≅ 2.5A, RL = 6.0Ω Ig(REF) = 1.0mA (Figures 14, 19, 20) Gate to Source Gate Charge Qgs - 1.9 - nC Reverse Transfer Capacitance Qgd - 7 - nC - 850 - pF - 465 - pF - 100 - pF MIN TYP MAX UNITS - - 1.25 V 1.10 V CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage VSD TEST CONDITIONS ISD = 8A ISD = 2.5A Reverse Recovery Time Reverse Recovered Charge trr ISD = 2.5A, dISD/dt = 100A/µs - - 65 ns QRR ISD = 2.5A, dISD/dt = 100A/µs - - 100 nC Typical Performance Curves 10 1.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 8 VGS = 10V, RθJA = 50oC/W 6 4 2 0.2 VGS = 4.5V, RθJA = 189oC/W 0 0 0 25 50 75 100 125 150 TA , AMBIENT TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs AMBIENT TEMPERATURE 3 25 50 75 100 125 150 TA, AMBIENT TEMPERATURE (oC) FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs AMBIENT TEMPERATURE HUF76121SK8 Typical Performance Curves ZθJA, NORMALIZED THERMAL IMPEDANCE 10 1 (Continued) DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 RθJA = 50oC/W PDM 0.1 t1 t2 0.01 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJA x RθJA + TA SINGLE PULSE 0.001 10-5 10-4 10-3 10-2 10-1 100 101 102 103 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE IDM, PEAK CURRENT (A) 1000 RθJA = 50oC/W TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: VGS = 10V I = I25 100 150 - TA 125 VGS = 5V 10 5 10-5 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10-4 10-3 10-2 10-1 t, PULSE WIDTH (s) 100 101 102 103 FIGURE 4. PEAK CURRENT CAPABILITY ID, DRAIN CURRENT (A) TJ = MAX RATED TA = 25oC 100 100µs 1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 10 10ms 1 BVDSS MAX = 30V 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 100 IAS, AVALANCHE CURRENT (A) 100 500 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] STARTING TJ = 25oC 10 STARTING TJ = 150oC 1 0.01 0.1 1 10 100 tAV, TIME IN AVALANCHE (ms) NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 5. FORWARD BIAS SAFE OPERATING AREA 4 FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY HUF76121SK8 Typical Performance Curves (Continued) 40 40 VGS = 10V VGS = 5V VGS = 4V VDD = 15V 30 ID, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) PULSE DURATION = 250µs DUTY CYCLE = 0.5% MAX 20 10 150oC 25oC 30 VGS = 3.5V 20 VGS = 3V 10 TA = 25oC -55oC 0 0 0 1 2 3 4 0 1 VGS, GATE TO SOURCE VOLTAGE (V) 1.6 PULSE DURATION = 250µs DUTY CYCLE = 0.5% MAX NORMALIZED DRAIN TO SOURCE ON RESISTANCE rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) 3 4 FIGURE 8. SATURATION CHARACTERISTICS 40 ID = 8A 2 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 7. TRANSFER CHARACTERISTICS 35 30 ID = 2.3A 25 20 PULSE DURATION = 250µs DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 8A 1.4 1.2 1.0 0.8 0.6 15 2 4 6 8 -80 10 FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT 0 40 80 120 160 FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 1.2 1.0 0.8 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 5 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.2 VGS = VDS, ID = 250µA 0.6 -80 -40 TJ, JUNCTION TEMPERATURE (oC) VGS, GATE TO SOURCE VOLTAGE (V) NORMALIZED GATE THRESHOLD VOLTAGE PULSE DURATION = 250µs DUTY CYCLE = 0.5% MAX ID = 250µA 1.1 1.0 0.9 -80 -40 0 40 80 120 160 TJ , JUNCTION TEMPERATURE (oC) FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE HUF76121SK8 Typical Performance Curves (Continued) 1200 VGS , GATE TO SOURCE VOLTAGE (V) 10 C, CAPACITANCE (pF) VGS = 0V, f = 1MHz CISS 900 600 COSS 300 CRSS 0 VDD = 15V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 8A ID = 2.5A 2 0 0 5 10 15 20 25 30 5 0 VDS , DRAIN TO SOURCE VOLTAGE (V) 10 15 20 25 Qg, GATE CHARGE (nC) NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 200 150 VGS = 10V, VDD = 15V, ID = 8A, RL= 1.9Ω VGS = 4.5V, VDD = 15V, ID = 2.3A, RL= 6.5Ω tr td(OFF) SWITCHING TIME (ns) SWITCHING TIME (ns) 125 100 tf 75 50 td(ON) 160 td(OFF) 120 tf 80 tr 40 25 td(ON) 0 0 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 15. SWITCHING TIME vs GATE RESISTANCE 6 50 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 16. SWITCHING TIME vs GATE RESISTANCE 50 HUF76121SK8 Test Circuits and Waveforms VDS BVDSS L tP VARY tP TO OBTAIN REQUIRED PEAK IAS + RG VDS IAS VDD VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT VDS FIGURE 18. UNCLAMPED ENERGY WAVEFORMS VDD RL Qg(TOT) VDS VGS = 10V VGS Qg(5) + VDD VGS = 5V VGS - VGS = 1V DUT 0 Ig(REF) Qg(TH) Qgs Qgd Ig(REF) 0 FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + VGS - VDD 10% 10% 0 DUT 90% RGS VGS VGS 0 FIGURE 21. SWITCHING TIME TEST CIRCUIT 7 10% 50% 50% PULSE WIDTH FIGURE 22. SWITCHING TIME WAVEFORM HUF76121SK8 Thermal Resistance vs. Mounting Pad Area The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. ( T JM – T A ) P DM = ------------------------------Z θJA (EQ. 1) In using surface mount devices such as the SOP-8 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. The number of copper layers and the thickness of the board. Thermal resistances corresponding to other copper areas can be obtained from Figure 23 or by calculation using Equation 2. RθJA is defined as the natural log of the area times a cofficient added to a constant. The area, in square inches is the top copper area including the gate and source pads. R θJA = 83.2 – 23.6 × ln ( Area ) (EQ. 2) The transient thermal impedance (ZθJA) is also effected by varied top copper board area. Figure 24 shows the effect of copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square inches corresponding to the descending list in the graph. Spice and SABER thermal models are provided for each of the listed pad areas. Copper pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100ms. For pulse widths less than 100ms the transient thermal impedance is determined by the die and package. Therefore, CTHERM1 through CTHERM5 and RTHERM1 through RTHERM5 remain constant for each of the thermal models. A listing of the model component values is available in Table 1. 3. The use of external heat sinks. 240 4. The use of thermal vias. RθJA = 83.2 - 23.6*ln(AREA) 5. Air flow and board orientation. Intersil provides thermal information to assist the designer’s preliminary application evaluation. Figure 23 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Intersil device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. 200 RθJA (oC/W) 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. 189oC/W - 0.0115in2 152oC/W - 0.054in2 160 120 80 0.01 0.1 1.0 AREA, TOP COPPER AREA (in2) FIGURE 23. THERMAL RESISTANCE vs MOUNTING PAD AREA 150 ZθJA, THERMAL IMPEDANCE (oC/W) 120 90 COPPER BOARD AREA - DESCENDING ORDER 0.04 in2 0.28 in2 0.52 in2 0.76 in2 1.00 in2 60 30 0 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) FIGURE 24. THERMAL IMPEDANCE vs MOUNTING PAD AREA 8 102 103 HUF76121SK8 PSPICE Electrical Model .SUBCKT HUF76121SK8 2 1 3 ; REV January 1999 CA 12 8 1.3e-9 CB 15 14 1.28e-9 CIN 6 8 7.6e-10 LDRAIN DPLCAP DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD DRAIN 2 5 10 RLDRAIN RSLC1 51 + RSLC2 5 51 EBREAK 11 7 17 18 33.4 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 DBREAK ESLC 11 - RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE IT 8 17 1 EVTEMP RGATE + 18 22 9 20 GATE 1 LDRAIN 2 5 1e-9 LGATE 1 9 2.98e-9 LSOURCE 3 7 6.8e-10 + 17 EBREAK 18 50 - 21 16 MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN 8 SOURCE 3 7 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RSOURCE RLSOURCE S1A 12 RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 5.7e-3 RGATE 9 20 4 RLDRAIN 2 5 10 RLGATE 1 9 29.8 RLSOURCE 3 7 6.8 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 9.8e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B DBODY - S2A 13 8 14 13 S1B 17 18 RVTEMP S2B 13 CA RBREAK 15 CB 6 8 EGS - 19 - IT 14 + + VBAT 5 8 EDS - + 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*181),4))} .MODEL DBODYMOD D (IS = 2e-13 RS = 9.5e-3 TRS1 = 1e-3 TRS2 = 3e-6 CJO = 1.33e-9 TT = 2.8e-8 M = 0.4 XTI = 4.3 N = 0.95 IKF = 5) .MODEL DBREAKMOD D (RS = 1.05e-1 TRS1 = 0 TRS2 = 2.5e-5) .MODEL DPLCAPMOD D (CJO = 8.2e-10 IS = 1e-30 N = 10 M = 0.63) .MODEL MMEDMOD NMOS (VTO = 1.9 KP = 4 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 4) .MODEL MSTROMOD NMOS (VTO = 2.23 KP = 42.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.64 KP = 0.1 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 40 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 9.7e-4 TC2 = 7e-7) .MODEL RDRAINMOD RES (TC1 = 6.5e-3 TC2 = 1.8e-5) .MODEL RSLCMOD RES (TC1 = 5e-3 TC2 = 8e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RVTHRESMOD RES (TC = -1.5e-3 TC2 = -4.8e-6) .MODEL RVTEMPMOD RES (TC1 = -1.6e-3 TC2 = 1e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -5 VOFF= -3) VON = -3 VOFF= -5) VON = -1 VOFF= 1.2) VON = 1.2 VOFF= -1) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 9 HUF76121SK8 SABER Electrical Model REV January 1999 template huf76121sk8 n2, n1, n3 electrical n2, n1, n3 { var i iscl d..model dbodymod = (is = 2e-13, xti = 4.3, cjo = 1.33e-9, tt = 2.8e-8, n = 0.95, m = 0.4) d..model dbreakmod = () d..model dplcapmod = (cjo = 8.2e-10, is = 1e-30, n = 10, m = 0.63) DPLCAP m..model mmedmod = (type=_n, vto = 1.9, kp = 4, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 2.23, kp = 42.5, is = 1e-30, tox = 1) 10 m..model mweakmod = (type=_n, vto = 1.64, kp = 0.1, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -5, voff = -3) sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -3, voff = -5) RSLC2 sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1, voff = 1.2) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 1.2, voff = -1) c.ca n12 n8 = 1.3e-9 c.cb n15 n14 = 1.28e-9 c.cin n6 n8 = 7.6e-10 LDRAIN d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod GATE 1 i.it n8 n17 = 1 RDBREAK 72 ISCL 6 8 EVTHRES + 19 8 EVTEMP RGATE + 18 22 9 20 21 71 11 16 MWEAK DBODY 6 EBREAK + 17 18 MMED MSTRO RLGATE l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 2.98e-9 l.lsource n3 n7 = 6.8e-10 RDBODY DBREAK 50 RDRAIN + LGATE RLDRAIN RSLC1 51 ESG DRAIN 2 5 CIN - 8 LSOURCE SOURCE 3 7 RSOURCE RLSOURCE m.mmed n16 n6 n8 n8 = model=mmedmod, l = 1u, w = 1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l = 1u, w = 1u m.mweak n16 n21 n8 n8 = model=mweakmod, l = 1u, w = 1u res.rbreak n17 n18 = 1, tc1 = 9.7e-4, tc2 = 7e-7 res.rdbody n71 n5 = 9.5e-3, tc1 = 1e-3, tc2 = 3e-6 res.rdbreak n72 n5 = 1.05e-1, tc1 = 0, tc2 = 2.5e-5 res.rdrain n50 n16 = 5.7e-3, tc1 = 6.5e-3, tc2 = 1.8e-5 res.rgate n9 n20 = 4 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 29.8 res.rlsource n3 n7 = 6.8 res.rslc1 n5 n51 = 1e-6, tc1 = 5e-3, tc2 = 8e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 9.8e-3, tc1 = 1e-3, tc2 = 1e-6 res.rvtemp n18 n19 = 1, tc1 = -1.6e-3, tc2 = 1e-6 res.rvthres n22 n8 = 1, tc1 = -1.5e-3, tc2 = -4.8e-6 S1A 12 S2A 13 8 14 13 S1B CA 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc = 1 equations { i (n51->n50) + = iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/181))** 4)) } } - IT 14 + + spe.ebreak n11 n7 n17 n18 = 33.4 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 10 RBREAK 15 VBAT 5 8 EDS - + 8 22 RVTHRES HUF76121SK8 SPICE Thermal Model REV November 1998 HUF76121SK8 Copper Area = 0.04 in2 CTHERM1 th 8 2.0e-3 CTHERM2 8 7 5.0e-3 CTHERM3 7 6 1.0e-2 CTHERM4 6 5 4.0e-2 CTHERM5 5 4 9.0e-2 CTHERM6 4 3 1.2e-1 CTHERM7 3 2 0.5 CTHERM8 2 tl 1.3 th JUNCTION CTHERM1 RTHERM1 8 CTHERM2 RTHERM2 RTHERM1 th 8 0.1 RTHERM2 8 7 0.5 RTHERM3 7 6 1.0 RTHERM4 6 5 5.0 RTHERM5 5 4 8.0 RTHERM6 4 3 26 RTHERM7 3 2 39 RTHERM8 2 tl 55 7 CTHERM3 RTHERM3 6 RTHERM4 SABER Thermal Model CTHERM4 5 Copper Area = 0.04 in2 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 8 = 2.0e-3 ctherm.ctherm2 8 7 = 5.0e-3 ctherm.ctherm3 7 6 = 1.0e-2 ctherm.ctherm4 6 5 = 4.0e-2 ctherm.ctherm5 5 4 = 9.0e-2 ctherm.ctherm6 4 3 = 1.2e-1 ctherm.ctherm7 3 2 = 0.5 ctherm.ctherm8 2 tl = 1.3 CTHERM5 RTHERM5 4 RTHERM6 CTHERM6 3 RTHERM7 CTHERM7 2 rtherm.rtherm1 th 8 = 0.1 rtherm.rtherm2 8 7 = 0.5 rtherm.rtherm3 7 6 = 1.0 rtherm.rtherm4 6 5 = 5.0 rtherm.rtherm5 5 4 = 8.0 rtherm.rtherm6 4 3 = 26 rtherm.rtherm7 3 2 = 39 rtherm.rtherm8 2 tl = 55 } RTHERM8 CTHERM8 tl CASE TABLE 1. Thermal Models 0.04 in2 0.28 in2 0.52 in2 0.76 in2 1.0 in2 CTHERM6 1.2e-1 1.5e-1 2.0e-1 2.0e-1 2.0e-1 CTHERM7 0.5 1.0 1.0 1.0 1.0 CTHERM8 1.3 2.8 3.0 3.0 3.0 RTHERM6 26 20 15 13 12 RTHERM7 39 24 21 19 18 RTHERM8 55 38.7 31.3 29.7 25 COMPONANT All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com 11