HRF3205, HRF3205S Data Sheet 100A, 55V, 0.008 Ohm, N-Channel, Power MOSFETs These are N-Channel enhancement mode silicon gate power field effect transistors. They are advanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits. NOTE: Calculated continuous current based on maximum allowable junction temperature. Package limited to 75A continuous, see Figure 9. June 1999 PACKAGE 4447.4 Features • 100A, 55V (See Note) • Low On-Resistance, rDS(ON) = 0.008Ω • Temperature Compensating PSPICE® Model • Thermal Impedance SPICE Model • UIS Rating Curve • Related Literature - TB334, “Guidelines for Soldering Surface Mount Components to PC Boards” Symbol D Ordering Information PART NUMBER File Number G BRAND HRF3205 TO-220AB HRF3205 HRF3205S TO-263AB HRF3205S S NOTE: When ordering, use the entire part number. Add the suffix T to obtain the TO-263AB variant in tape and reel, e.g., HRF3205ST. Packaging JEDEC TO-220AB JEDEC TO-263AB SOURCE DRAIN GATE DRAIN (FLANGE) DRAIN (FLANGE) GATE SOURCE 4-29 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. PSPICE® is a registered trademark of MicroSim Corporation. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 HRF3205, HRF3205S TC = 25oC, Unless Othewise Specified Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VGS Drain Current Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .EAS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg Absolute Maximum Ratings 55 55 ±20V V V V 100 390 Figure 10 175 1.17 -55 to 175 A A W W/oC oC 300 260 oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 150oC. Electrical Specifications TC = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Drain to Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V 55 - - V Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA 2 - 4 V Zero Gate Voltage Drain Current Gate to Source Leakage Current Breakdown Voltage Temperature Coefficient Drain to Source On Resistance Turn-On Delay Time VDS = 55V, VGS = 0V - - 25 µA VDS = 44V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±20V - - 100 nA ∆V(BR)DSS/ ∆TJ Reference to 25oC, ID = 250µA - 0.057 - V rDS(ON) ID = 59A, VGS = 10V (Figure 4) - 0.0065 0.008 Ω VDD = 28V, ID ≅ 59A, RL = 0.47Ω, VGS = 10V, RGS = 2.5Ω - 14 - ns IDSS IGSS td(ON) Rise Time tr Turn-Off Delay Time Fall Time Total Gate Charge - 100 - ns td(OFF) - 43 - ns tf - 70 - ns - - 170 nC - - 32 nC - - 74 nC - 4000 - pF - 1300 - pF - 480 - pF - 7.5 - nH - 4.5 - nH - - 0.85 oC/W TO-220 - - 62 oC/W TO-263 (PCB Mount, Steady State) - - 40 oC/W Qg Gate to Source Charge Qgs Gate to Drain “Miller” Charge Qgd Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDD = 44V, ID ≅ 59A, VGS = 10V, Ig(REF) = 3mA (Figure 6) VDS = 25V, VGS = 0V, f = 1MHz (Figure 5) Internal Source Inductance LS Measured From the Contact Modified MOSFET Screw on Tab to Center of Die Symbol Showing the Internal Devices InMeasured From the Drain ductances Lead, 6mm (0.25in) From D Package to Center of Die Internal Drain Inductance LD Measured From the Source Lead, 6mm (0.25in) From Header to Source Bonding Pad LD G LS S Thermal Resistance Junction to Case RθJC Thermal Resistance Junction to Ambient RθJA 4-30 HRF3205, HRF3205S Source to Drain Diode Specifications PARAMETER SYMBOL Continuous Source to Drain Current MIN TYP MAX UNITS - - 100 (Note 1 A - - 390 A ISD = 59A (Note 4) - - 1.3 V trr ISD = 59A, dISD/dt = 100A/µs (Note 4) - 110 170 ns QRR ISD = 59A, dISD/dt = 100A/µs (Note 4) - 450 680 nC ISD Pulsed Source to Drain Current (Note 2) ISDM TEST CONDITIONS MOSFET Symbol Showing The Integral Reverse P-N Junction Diode D G S Source to Drain Diode Voltage VSD Reverse Recovery Time Reverse Recovered Charge NOTE: 2. Repetitive rating; pulse width limited by maximum junction temperature (See Figure 11) Typical Performance Curves 1000 ID, DRAIN TO SOURCE CURRENT (A) ID, DRAIN TO SOURCE CURRENT (A) 1000 VGS IN DECENDING ORDER 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 100 4.5V 20µs PULSE WIDTH TC = 25oC 10 0.1 1.0 10 100 VGS IN DECENDING ORDER 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 100 4.5V 10 0.1 VDS, DRAIN TO SOURCE VOLTAGE (V) 1 10 100 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 1. OUTPUT CHARACTERISTICS FIGURE 2. OUTPUT CHARACTERISTICS 1000 2.5 NORMALIZED DRAIN TO SOURCE ON RESISTANCE ID, DRAIN TO SOURCE CURRENT(A) 20µs PULSE WIDTH TC = 175oC TJ = 25oC 100 TJ = 175oC 10 VDS = 25V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 1 3 4.5 6 7.5 VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 3. TRANSFER CHARACTERISTICS 4-31 9 2.0 ID = 98A, VGS = 10V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 1.5 1.0 0.5 0 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 4. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 200 HRF3205, HRF3205S Typical Performance Curves (Continued) 20 8000 7000 C, CAPACITANCE (pF) 6000 VGS, GATE TO SOURCE VOLTAGE (V) VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS ≈ CDS + CGS 5000 CISS 4000 3000 COSS 2000 CRSS 1000 VDS = 28V 16 VDS = 11V 12 VDS = 44V 8 4 0 0 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 1 1000 1 1.0 1.5 100 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 10 VDSS(MAX) = 55V 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 60 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 100 30 CURRENT LIMITED BY PACKAGE 100 125 150 175 TC, CASE TEMPERATURE (oC) FIGURE 9. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 4-32 100 FIGURE 8. FORWARD BIAS SAFE OPERATING AREA IAS, AVALANCHE CURRENT (A) ID, DRAIN CURRENT (A) 90 1ms 10ms 1 1000 120 75 180 100µs 1 2.0 FIGURE 7. SOURCE TO DRAIN DIODE FORWARD VOLTAGE 50 144 10µs VSD, SOURCE TO DRAIN VOLTAGE (V) 0 25 108 FIGURE 6. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT ID, DRAIN CURRENT (A) TJ = 25oC 0.5 72 1000 TJ = 175oC 10 36 Qg , GATE CHARGE (nC) PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 100 0 100 FIGURE 5. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE ISD, REVERSE DRAIN CURRENT(A) ID = 59A STARTING TJ = 25oC STARTING TJ = 150oC 10 0.01 0.1 1 10 tAV, TIME IN AVALANCHE (ms) FIGURE 10. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY 100 HRF3205, HRF3205S Typical Performance Curves (Continued) ZθJC, NORMALIZED THERMAL IMPEDANCE 10 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 1 PDM 0.1 t1 0.01 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 10-5 10-4 10-3 10-2 10-1 t, RECTANGULAR PULSE DURATION (s) 100 101 FIGURE 11. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE Test Circuits and Waveforms VDS BVDSS L tP VARY tP TO OBTAIN REQUIRED PEAK IAS + RG VDS IAS VDD VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV FIGURE 12. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 13. UNCLAMPED ENERGY WAVEFORMS VDD VDS RL Qg(TOT) Qgd VGS Qgs VGS + VDD VDS DUT 0 IG(REF) IG(REF) 0 FIGURE 14. GATE CHARGE TEST CIRCUIT 4-33 FIGURE 15. GATE CHARGE WAVEFORM HRF3205, HRF3205S Test Circuits and Waveforms (Continued) VDS tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + VGS - VDD 10% 10% 0 DUT 90% RGS VGS VGS 0 FIGURE 16. SWITCHING TIME TEST CIRCUIT 4-34 10% 50% 50% PULSE WIDTH FIGURE 17. RESISTIVE SWITCHING WAVEFORMS HRF3205, HRF3205S PSPICE Electrical Model SUBCKT HRF3205P3 2 1 3 ; rev 7/25/97 CA 12 8 4.9e-9 CB 15 14 4.9e-9 CIN 6 8 3.45e-9 LDRAIN DPLCAP DRAIN 2 5 10 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD - EBREAK 11 7 17 18 57 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 EVTHRES + 19 8 + LGATE GATE 1 11 + 17 EBREAK 18 - 50 EVTEMP RGATE + 18 22 9 20 21 16 DBODY MWEAK 6 MMED MSTRO RLGATE LDRAIN 2 5 1e-9 LGATE 1 9 2.6e-9 LSOURCE 3 7 1.1e-9 K1 LGATE LSOURCE 0.0085 ESLC RDRAIN 6 8 ESG DBREAK + RSLC2 5 51 IT 8 17 1 RLDRAIN RSLC1 51 LSOURCE CIN 8 SOURCE 3 7 RSOURCE RLSOURCE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 3.5e-4 RGATE 9 20 0.36 RLDRAIN 2 5 10 RLGATE 1 9 26 RLSOURCE 3 7 11 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 4.5e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B S1A 12 S2A 13 8 S1B CA RBREAK 15 14 13 17 18 RVTEMP S2B 13 CB 6 8 VBAT 5 8 EDS - IT 14 + + EGS 19 - + 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*550),3))} .MODEL DBODYMOD D (IS = 4.25e-12 RS = 1.8e-3 TRS1 = 2.75e-3 TRS2 = 5e-6 CJO = 5.95e-9 TT = 4e-7 M = 0.55) .MODEL DBREAKMOD D (RS = 0.06 IKF = 30 TRS1 = -3e-3 TRS2 = 3e-6) .MODEL DPLCAPMOD D (CJO = 4.45e-9 IS = 1e-30 N = 1 M = 0.88 VJ = 1.45) .MODEL MMEDMOD NMOS (VTO = 2.93 KP = 9.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1) .MODEL MSTROMOD NMOS (VTO = 3.23 KP = 150 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 2.35 KP = 0.02 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 10) .MODEL RBREAKMOD RES (TC1 = 8e-4 TC2 = 4e-6) .MODEL RDRAINMOD RES (TC1 = 8e-2 TC2 = 5e-6) .MODEL RSLCMOD RES (TC1 = 1e-4 TC2 = 1.05e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-4 TC2 = 1.5e-5) .MODEL RVTHRESMOD RES (TC1 = -2.3e-3 TC2 = -1.2e-5) .MODEL RVTEMPMOD RES (TC1 = -2.2e-3 TC2 = -7e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -9 VOFF= -4) VON = -4 VOFF= -9) VON = 0 VOFF= 2.5) VON = 2.5 VOFF= 0) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 4-35 HRF3205, HRF3205S SPICE Thermal Model 7 JUNCTION REV 25 July 97 HRF3205 CTHERM1 7 6 2.53e-5 CTHERM2 6 5 1.38e-3 CTHERM3 5 4 7.00e-3 CTHERM4 4 3 2.50e-2 CTHERM5 3 2 1.33e-1 CTHERM6 2 1 5.75e-1 RTHERM1 RTHERM1 7 6 7.78e-4 RTHERM2 6 5 8.55e-3 RTHERM3 5 4 3.00e-2 RTHERM4 4 3 1.42e-1 RTHERM5 3 2 2.65e-1 RTHERM6 2 1 2.33e-1 RTHERM2 CTHERM1 6 CTHERM2 5 RTHERM3 CTHERM3 4 RTHERM4 CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 1 CASE All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 4-36 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029