V23990-K204-A-PM datasheet MiniSKiiP® 1 PIM 600V / 20A MiniSKiiP® 1 housing Features ● Solderless interconnection ● Trench Fieldstop IGBT3 technology Target Applications Schematic ● Industrial drives Types ● V23990-K204-A-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 29 A 220 A 240 A2s 46 W Tjmax 150 °C VCE 600 V 24 A 60 A 59 W ±20 V 6 360 µs V 175 °C D8,D9,D10,D11,D12,D13 Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation Ptot Maximum Junction Temperature Tj=Tjmax tp=10ms half sine wave Tj=Tjmax Th=80°C Tj=25°C Th=80°C T1,T2,T3,T4,T5,T6,T7 Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpulse Power dissipation Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature copyright Vincotech Tj=Tjmax Th=80°C tp limited by Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Revision: 3 V23990-K204-A-PM datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 20 A 40 A 38 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm D1,D2,D3,D4,D5,D6,D7 Repetitive peak reverse voltage DC forward current VRRM IF Th=80°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Thermal Properties Insulation Properties Insulation voltage copyright Vincotech Vis t=2s DC voltage 2 Revision: 3 V23990-K204-A-PM datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max D8,D9,D10,D11,D12,D13 Forward voltage VF 25 Threshold voltage (for power loss calc. only) Vto 25 Slope resistance (for power loss calc. only) rt 25 Reverse current Ir Thermal resistance chip to heatsink 1500 RthJH Thermal grease thickness≤50um λ =1 W/mK VGE(th) VCE=VGE Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,51 1,42 0,86 0,79 0,03 0,03 V V Ω 0,05 mA K/W 1,5 T1,T2,T3,T4,T5,T6,T7 Gate emitter threshold voltage Collector-emitter saturation voltage VCE(sat) 0,00029 15 15 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 5 5,8 6,5 1,1 1,87 2,04 1,9 0,14 Collector-emitter cut-off current incl. Diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Tj=25°C - td(on) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 28 26 30 35 225 245 79 117 0,72 0,86 0,46 0,59 Turn-on delay time Rise time Turn-off delay time Fall time tr td(off) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink RthJH Rgoff=8 Ω Rgon=16 Ω ±15 300 20 350 V V mA nA Ω ns mWs 1100 f=1MHz 0 Tj=25°C 25 71 pF 32 ±15 300 20 Tj=25°C Thermal grease thickness≤50um λ =1 W/mK 200 nC 1,6 K/W D1,D2,D3,D4,D5,D6,D7 Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF 20 IRRM trr Qrr diF/dt=tbd A/us 300 0 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink RthJH 20 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,84 1,85 9,97 11,88 259 358 1,02 1,66 225 64 0,18 0,31 Thermal grease thickness≤50um λ =1 W/mK 1,6 V A ns µC A/µs mWs 2,5 K/W 1000 Ω PTC Rated resistance R Deviation of R100 ∆R/R R100 T=25°C R100=1670 Ω T=100°C R -3 3 1670,313 Ω 1/K A-value B(25/50) Tol. % T=25°C 7,635*10-3 B-value B(25/100) Tol. % T=25°C 1,731*10-5 Vincotech NTC Reference copyright Vincotech % T=100°C 1/K² E 3 Revision: 3 V23990-K204-A-PM datasheet T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 50 IC (A) IC (A) 50 40 40 30 30 20 20 10 10 0 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from µs 250 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 250 µs 125 °C 7 V to 17 V in steps of 1 V FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 50 IC (A) IF (A) 24 5 20 40 Tj = 25°C 16 30 12 Tj = Tjmax-25°C 20 8 10 4 Tj = Tjmax-25°C Tj = 25°C 0 0 0 2 4 At tp = VCE = 250 10 µs V copyright Vincotech 6 8 10 V GE (V) 12 0 At tp = 4 0,5 1 250 µs 1,5 2 2,5 V F (V) 3 Revision: 3 V23990-K204-A-PM datasheet T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 2 E (mWs) 2,5 Eon High T Eon High T Eon Low T 2 Eon Low T 1,5 1,5 1 Eoff High T Eoff High T 1 Eoff Low T Eoff Low T 0,5 0,5 0 0 0 5 10 15 20 25 30 35 I C (A) 40 0 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V Rgon = Ω 32 Rgoff = 16 Ω 25 50 75 100 125 R G ( Ω ) 150 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V IC = 20 A IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,4 0,4 E (mWs) E (mWs) Erec Tj = Tjmax -25°C 0,3 0,3 Tj = Tjmax -25°C Erec Erec Tj = 25°C 0,2 0,2 Tj = 25°C Erec 0,1 0,1 0 0 0 10 20 30 I C (A) 40 0 With an inductive load at Tj = °C 25/125 VCE = 300 V VGE = 15 V Rgon = 32 Ω copyright Vincotech 25 50 75 100 125 R G ( Ω ) 150 With an inductive load at Tj = 25/125 °C VCE = 300 V VGE = 15 V IC = 20 A 5 Revision: 3 V23990-K204-A-PM datasheet T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 tdoff t ( µs) t ( µs) 1 tdoff 0,1 0,1 tdon tr tr tdon tf tf 0,01 0,01 0,001 0,001 0 10 20 30 I C (A) 40 0 With an inductive load at Tj = °C 125 VCE = 300 V VGE = 15 V Rgon = Ω 32 Rgoff = 16 Ω 25 50 75 100 R G ( Ω ) 150 125 With an inductive load at Tj = 125 °C VCE = 300 V VGE = 15 V IC = 20 A FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,5 t rr( µs) t rr( µs) 0,6 0,5 trr trr Tj = Tjmax -25°C 0,4 Tj = Tjmax -25°C Tj = 25°C 0,4 trr trr 0,3 0,3 0,2 Tj = 25°C 0,2 0,1 0,1 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 300 15 32 copyright Vincotech 20 30 I C (A) 0 40 At Tj = VR = IF = VGE = °C V V Ω 6 25 25/125 300 20 15 50 75 100 125 R g on ( Ω ) 150 °C V A V Revision: 3 V23990-K204-A-PM datasheet T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Qrr( µC) Qrr( µC) 2,5 Qrr Tj = Tjmax -25°C FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 2 Tj = Tjmax -25°C 2 Qrr 1,6 1,5 1,2 Qrr Tj = 25°C Tj = 25°C 1 0,8 0,5 0,4 0 At 0 At Tj = VCE = VGE = Rgon = Qrr 0 10 20 30 I C (A) 40 0 At Tj = VR = IF = VGE = °C V V Ω 25/125 300 15 32 FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 25 25/125 300 20 15 50 75 100 125 R g on ( Ω) 150 °C V A V FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 15 IrrM (A) IrrM (A) 15 Tj = Tjmax -25°C 12 12 Tj = Tjmax - 25°C Tj = 25°C 9 IRRM Tj = 25°C IRRM 9 IRRM IRRM 6 6 3 3 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 300 15 32 copyright Vincotech 20 30 I C (A) 0 40 At Tj = VR = IF = VGE = °C V V Ω 7 25 25/125 300 20 15 50 75 100 125 R gon ( Ω ) 150 °C V A V Revision: 3 V23990-K204-A-PM datasheet T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) 1000 direc / dt (A/ µs) 600 direc / dt (A/µ s) FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dI0/dt dIrec/dt 500 dI0/dt dIrec/dt 800 400 600 300 400 200 200 100 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/125 300 15 32 20 I C (A) 30 40 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 75 100 125 R gon ( Ω ) 150 °C V A V FWD ZthJH (K/W) Zth-JH (K/W) 101 0 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 25/125 300 20 15 50 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 10 25 10 0 10 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 -2 10 -5 At D= RthJH = 10 -4 10 -3 10 -2 10 -1 10 0 t p (s) 10 1 10 At D= RthJH = tp / T 1,6 -5 K/W 10 -4 10 -3 R (K/W) 0,04 0,17 0,65 0,39 0,24 0,12 R (K/W) 0,05 0,25 0,88 0,73 0,33 0,26 8 10 -1 10 0 t p (s) 10 1 K/W FWD thermal model values copyright Vincotech -2 tp / T 2,5 IGBT thermal model values Tau (s) 9,5E+00 7,4E-01 1,3E-01 3,0E-02 6,1E-03 4,0E-04 10 Tau (s) 9,0E+00 6,6E-01 1,2E-01 2,9E-02 4,8E-03 6,9E-04 Revision: 3 V23990-K204-A-PM datasheet T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 35 IC (A) Ptot (W) 120 100 28 80 21 60 14 40 7 20 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) °C V FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 35 Ptot (W) IF (A) 80 200 28 60 21 40 14 20 7 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 9 50 175 100 150 T h ( o C) 200 °C Revision: 3 V23990-K204-A-PM datasheet T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7 IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) 103 VGE (V) IC (A) 20 10uS 17,5 120V 100uS 10 2 15 1mS 12,5 10mS 10 1 480V 10 100mS 7,5 DC 10 5 0 2,5 0 10-1 10 0 At D= Th = VGE = Tj = 10 1 10 2 V CE (V) 0 103 At IC = single pulse 80 ºC 15 V Tjmax ºC copyright Vincotech 10 30 20 60 90 120 Q g (nC) 150 A Revision: 3 V23990-K204-A-PM datasheet D8,D9,D10,D11,D12,D13 Diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 50 IF (A) ZthJC (K/W) 101 40 10 0 30 Tj = 25°C 20 Tj = Tjmax-25°C D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 0 0 0,5 1 1,5 2 10-2 2,5 V F (V) 10 At tp = At D= RthJH = µs 250 Diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10 -4 10 -3 10 -2 10 -1 10 0 t p (s) 10 1 tp / T 1,5 K/W Diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 45 Ptot (W) IF (A) 100 80 36 60 27 40 18 20 9 0 0 0 At Tj = -5 30 150 copyright Vincotech 60 90 120 T h ( o C) 150 0 At Tj = ºC 11 30 150 60 90 120 T h ( o C) 150 ºC Revision: 3 V23990-K204-A-PM datasheet Thermistor Thermistor Figure 1 Typical PTC characteristic as a function of temperature RT = f(T) PTC-typical temperature characteristic R/Ω 2000 1800 1600 1400 1200 1000 25 copyright Vincotech 50 75 100 T (°C) 125 12 Revision: 3 V23990-K204-A-PM datasheet Switching Definitions Output Inverter General conditions = 125 °C Tj = 16 Ω Rgon Rgoff = 8Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 160 120 tdoff % 100 130 VCE 90% VGE 90% 80 IC % VCE IC 100 VGE 60 VGE tEoff 40 70 tdon 20 40 IC 1% 0 VGE10% 10 -20 VCE 3% IC10% VCE tEon -40 -0,1 -20 0 0,1 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,2 0,3 0,4 0,5 0,6 time (us) 2,8 Output inverter IGBT Figure 3 3,1 0 15 300 20 0,02 0,22 3,2 3,3 3,4 3,5 3,6 time(us) V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 120 170 fitted % 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs 0 15 300 20 0,17 0,47 2,9 VCE IC % 100 Ic 140 IC 90% 80 110 VCE IC 60% 60 IC90% 80 tr IC 40% 40 50 20 IC10% 0 -20 0,05 20 tf IC10% -10 0,1 VC (100%) = IC (100%) = tf = copyright Vincotech 0,15 300 20 0,10 0,2 0,25 0,3 0,35 0,4 time (us) 2,8 2,9 3 3,1 3,2 time(us) VC (100%) = IC (100%) = tr = V A µs 13 300 20 0,03 V A µs Revision: 3 V23990-K204-A-PM datasheet Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 180 % % Eoff Poff 100 Pon 140 80 Eon 100 60 40 60 20 VGE 90% 20 Uce3% Uge10% 0 tEoff tEon IC 1% -20 -20 -0,05 0,1 Poff (100%) = Eoff (100%) = tEoff = 0,25 5,98 0,57 0,47 0,4 0,55 time (us) 2,8 0,7 Pon (100%) = Eon (100%) = tEon = kW mJ µs 2,9 3 5,98 0,71 0,22 3,1 time(us) 3,2 kW mJ µs Output inverter IGBT Figure 7 Turn-off Switching Waveforms & definition of trr 120 % Id 80 trr 40 Vd fitted 0 IRRM10% -40 IRRM90% IRRM100% -80 -120 2,8 2,9 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 3 300 20 12 0,35 3,1 3,2 3,3 time(us) 3,4 V A A µs 14 Revision: 3 V23990-K204-A-PM datasheet Switching Definitions Output Inverter Output inverter FWD Figure 8 Output inverter FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 % % Qrr Id Erec 100 100 80 tErec tQrr 50 60 40 0 20 Prec -50 0 -100 -20 2,7 2,9 Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 3,1 3,3 20 1,69 0,83 A µC µs 3,5 3,7 time(us) 3,9 2,7 Prec (100%) = Erec (100%) = tErec = 15 2,9 3,1 5,98 0,33 0,83 3,3 3,5 3,7 time(us) 3,9 kW mJ µs Revision: 3 V23990-K204-A-PM datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version with std lid (black V23990-K12-T-PM) with std lid (black V23990-K12-T-PM) and P12 with thin lid (white V23990-K13-T-PM) with thin lid (white V23990-K13-T-PM) and P12 Ordering Code in DataMatrix as V23990-K204-A-/0A/-PM V23990-K204-A-/1A/-PM V23990-K204-A-/0B/-PM V23990-K204-A-/1B/-PM K204A K204A K204A K204A in packaging barcode as K204A-/0A/ K204A-/1A/ K204A-/0B/ K204A-/1B/ Outline Pinout copyright Vincotech 16 Revision: 3 V23990-K204-A-PM datasheet DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 17 Revision: 3