V23990 K204 A D3 14

V23990-K204-A-PM
datasheet
MiniSKiiP® 1 PIM
600V / 20A
MiniSKiiP® 1 housing
Features
● Solderless interconnection
● Trench Fieldstop IGBT3 technology
Target Applications
Schematic
● Industrial drives
Types
● V23990-K204-A-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
29
A
220
A
240
A2s
46
W
Tjmax
150
°C
VCE
600
V
24
A
60
A
59
W
±20
V
6
360
µs
V
175
°C
D8,D9,D10,D11,D12,D13
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation
Ptot
Maximum Junction Temperature
Tj=Tjmax
tp=10ms
half sine wave
Tj=Tjmax
Th=80°C
Tj=25°C
Th=80°C
T1,T2,T3,T4,T5,T6,T7
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Power dissipation
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Th=80°C
tp limited by Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Revision: 3
V23990-K204-A-PM
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
20
A
40
A
38
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
D1,D2,D3,D4,D5,D6,D7
Repetitive peak reverse voltage
DC forward current
VRRM
IF
Th=80°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Thermal Properties
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
t=2s
DC voltage
2
Revision: 3
V23990-K204-A-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Unit
Max
D8,D9,D10,D11,D12,D13
Forward voltage
VF
25
Threshold voltage (for power loss calc. only)
Vto
25
Slope resistance (for power loss calc. only)
rt
25
Reverse current
Ir
Thermal resistance chip to heatsink
1500
RthJH
Thermal grease
thickness≤50um
λ =1 W/mK
VGE(th)
VCE=VGE
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,51
1,42
0,86
0,79
0,03
0,03
V
V
Ω
0,05
mA
K/W
1,5
T1,T2,T3,T4,T5,T6,T7
Gate emitter threshold voltage
Collector-emitter saturation voltage
VCE(sat)
0,00029
15
15
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
5
5,8
6,5
1,1
1,87
2,04
1,9
0,14
Collector-emitter cut-off current incl. Diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Tj=25°C
-
td(on)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
28
26
30
35
225
245
79
117
0,72
0,86
0,46
0,59
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tr
td(off)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink
RthJH
Rgoff=8 Ω
Rgon=16 Ω
±15
300
20
350
V
V
mA
nA
Ω
ns
mWs
1100
f=1MHz
0
Tj=25°C
25
71
pF
32
±15
300
20
Tj=25°C
Thermal grease
thickness≤50um
λ =1 W/mK
200
nC
1,6
K/W
D1,D2,D3,D4,D5,D6,D7
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
20
IRRM
trr
Qrr
diF/dt=tbd A/us
300
0
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink
RthJH
20
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,84
1,85
9,97
11,88
259
358
1,02
1,66
225
64
0,18
0,31
Thermal grease
thickness≤50um
λ =1 W/mK
1,6
V
A
ns
µC
A/µs
mWs
2,5
K/W
1000
Ω
PTC
Rated resistance
R
Deviation of R100
∆R/R
R100
T=25°C
R100=1670 Ω
T=100°C
R
-3
3
1670,313
Ω
1/K
A-value
B(25/50) Tol. %
T=25°C
7,635*10-3
B-value
B(25/100) Tol. %
T=25°C
1,731*10-5
Vincotech NTC Reference
copyright Vincotech
%
T=100°C
1/K²
E
3
Revision: 3
V23990-K204-A-PM
datasheet
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
50
IC (A)
IC (A)
50
40
40
30
30
20
20
10
10
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
µs
250
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
250
µs
125
°C
7 V to 17 V in steps of 1 V
FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
50
IC (A)
IF (A)
24
5
20
40
Tj = 25°C
16
30
12
Tj = Tjmax-25°C
20
8
10
4
Tj = Tjmax-25°C
Tj = 25°C
0
0
0
2
4
At
tp =
VCE =
250
10
µs
V
copyright Vincotech
6
8
10
V GE (V)
12
0
At
tp =
4
0,5
1
250
µs
1,5
2
2,5
V F (V)
3
Revision: 3
V23990-K204-A-PM
datasheet
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
2
E (mWs)
2,5
Eon High T
Eon High T
Eon Low T
2
Eon Low T
1,5
1,5
1
Eoff High T
Eoff High T
1
Eoff Low T
Eoff Low T
0,5
0,5
0
0
0
5
10
15
20
25
30
35 I C (A) 40
0
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
Rgon =
Ω
32
Rgoff =
16
Ω
25
50
75
100
125
R G ( Ω ) 150
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
IC =
20
A
IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,4
0,4
E (mWs)
E (mWs)
Erec
Tj = Tjmax -25°C
0,3
0,3
Tj = Tjmax -25°C
Erec
Erec
Tj = 25°C
0,2
0,2
Tj = 25°C
Erec
0,1
0,1
0
0
0
10
20
30
I C (A)
40
0
With an inductive load at
Tj =
°C
25/125
VCE =
300
V
VGE =
15
V
Rgon =
32
Ω
copyright Vincotech
25
50
75
100
125
R G ( Ω ) 150
With an inductive load at
Tj =
25/125
°C
VCE =
300
V
VGE =
15
V
IC =
20
A
5
Revision: 3
V23990-K204-A-PM
datasheet
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
tdoff
t ( µs)
t ( µs)
1
tdoff
0,1
0,1
tdon
tr
tr
tdon
tf
tf
0,01
0,01
0,001
0,001
0
10
20
30
I C (A)
40
0
With an inductive load at
Tj =
°C
125
VCE =
300
V
VGE =
15
V
Rgon =
Ω
32
Rgoff =
16
Ω
25
50
75
100
R G ( Ω ) 150
125
With an inductive load at
Tj =
125
°C
VCE =
300
V
VGE =
15
V
IC =
20
A
FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,5
t rr( µs)
t rr( µs)
0,6
0,5
trr
trr
Tj = Tjmax -25°C
0,4
Tj = Tjmax -25°C
Tj = 25°C
0,4
trr
trr
0,3
0,3
0,2
Tj = 25°C
0,2
0,1
0,1
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
300
15
32
copyright Vincotech
20
30
I C (A)
0
40
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
6
25
25/125
300
20
15
50
75
100
125
R g on ( Ω )
150
°C
V
A
V
Revision: 3
V23990-K204-A-PM
datasheet
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Qrr( µC)
Qrr( µC)
2,5
Qrr
Tj = Tjmax -25°C
FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
2
Tj = Tjmax -25°C
2
Qrr
1,6
1,5
1,2
Qrr
Tj = 25°C
Tj = 25°C
1
0,8
0,5
0,4
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
Qrr
0
10
20
30
I C (A)
40
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
25/125
300
15
32
FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
25
25/125
300
20
15
50
75
100
125
R g on ( Ω) 150
°C
V
A
V
FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
15
IrrM (A)
IrrM (A)
15
Tj = Tjmax -25°C
12
12
Tj = Tjmax - 25°C
Tj = 25°C
9
IRRM
Tj = 25°C
IRRM
9
IRRM
IRRM
6
6
3
3
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
300
15
32
copyright Vincotech
20
30
I C (A)
0
40
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
25
25/125
300
20
15
50
75
100
125 R gon ( Ω ) 150
°C
V
A
V
Revision: 3
V23990-K204-A-PM
datasheet
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
1000
direc / dt (A/ µs)
600
direc / dt (A/µ s)
FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dI0/dt
dIrec/dt
500
dI0/dt
dIrec/dt
800
400
600
300
400
200
200
100
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
300
15
32
20
I C (A)
30
40
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
75
100
125
R gon ( Ω ) 150
°C
V
A
V
FWD
ZthJH (K/W)
Zth-JH (K/W)
101
0
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
25/125
300
20
15
50
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
10
25
10
0
10
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
-2
10
-5
At
D=
RthJH =
10
-4
10
-3
10
-2
10
-1
10
0
t p (s)
10
1
10
At
D=
RthJH =
tp / T
1,6
-5
K/W
10
-4
10
-3
R (K/W)
0,04
0,17
0,65
0,39
0,24
0,12
R (K/W)
0,05
0,25
0,88
0,73
0,33
0,26
8
10
-1
10
0
t p (s)
10
1
K/W
FWD thermal model values
copyright Vincotech
-2
tp / T
2,5
IGBT thermal model values
Tau (s)
9,5E+00
7,4E-01
1,3E-01
3,0E-02
6,1E-03
4,0E-04
10
Tau (s)
9,0E+00
6,6E-01
1,2E-01
2,9E-02
4,8E-03
6,9E-04
Revision: 3
V23990-K204-A-PM
datasheet
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
35
IC (A)
Ptot (W)
120
100
28
80
21
60
14
40
7
20
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
°C
V
FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
35
Ptot (W)
IF (A)
80
200
28
60
21
40
14
20
7
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
9
50
175
100
150
T h ( o C)
200
°C
Revision: 3
V23990-K204-A-PM
datasheet
T1,T2,T3,T4,T5,T6,T7 / D1,D2,D3,D4,D5,D6,D7
IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
103
VGE (V)
IC (A)
20
10uS
17,5
120V
100uS
10
2
15
1mS
12,5
10mS
10
1
480V
10
100mS
7,5
DC
10
5
0
2,5
0
10-1
10
0
At
D=
Th =
VGE =
Tj =
10
1
10
2
V CE (V)
0
103
At
IC =
single pulse
80
ºC
15
V
Tjmax
ºC
copyright Vincotech
10
30
20
60
90
120
Q g (nC)
150
A
Revision: 3
V23990-K204-A-PM
datasheet
D8,D9,D10,D11,D12,D13
Diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
50
IF (A)
ZthJC (K/W)
101
40
10
0
30
Tj = 25°C
20
Tj = Tjmax-25°C
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10
0
0
0,5
1
1,5
2
10-2
2,5
V F (V)
10
At
tp =
At
D=
RthJH =
µs
250
Diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10
-4
10
-3
10
-2
10
-1
10
0
t p (s)
10
1
tp / T
1,5
K/W
Diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
45
Ptot (W)
IF (A)
100
80
36
60
27
40
18
20
9
0
0
0
At
Tj =
-5
30
150
copyright Vincotech
60
90
120
T h ( o C)
150
0
At
Tj =
ºC
11
30
150
60
90
120
T h ( o C)
150
ºC
Revision: 3
V23990-K204-A-PM
datasheet
Thermistor
Thermistor
Figure 1
Typical PTC characteristic
as a function of temperature
RT = f(T)
PTC-typical temperature characteristic
R/Ω
2000
1800
1600
1400
1200
1000
25
copyright Vincotech
50
75
100
T (°C)
125
12
Revision: 3
V23990-K204-A-PM
datasheet
Switching Definitions Output Inverter
General conditions
= 125 °C
Tj
= 16 Ω
Rgon
Rgoff
= 8Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
160
120
tdoff
%
100
130
VCE 90%
VGE 90%
80
IC
%
VCE
IC
100
VGE
60
VGE
tEoff
40
70
tdon
20
40
IC 1%
0
VGE10%
10
-20
VCE 3%
IC10%
VCE
tEon
-40
-0,1
-20
0
0,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,2
0,3
0,4
0,5
0,6
time (us)
2,8
Output inverter IGBT
Figure 3
3,1
0
15
300
20
0,02
0,22
3,2
3,3
3,4
3,5
3,6
time(us)
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
120
170
fitted
%
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
0
15
300
20
0,17
0,47
2,9
VCE
IC
%
100
Ic
140
IC 90%
80
110
VCE
IC 60%
60
IC90%
80
tr
IC 40%
40
50
20
IC10%
0
-20
0,05
20
tf
IC10%
-10
0,1
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,15
300
20
0,10
0,2
0,25
0,3
0,35
0,4
time (us)
2,8
2,9
3
3,1
3,2
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
13
300
20
0,03
V
A
µs
Revision: 3
V23990-K204-A-PM
datasheet
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
180
%
%
Eoff
Poff
100
Pon
140
80
Eon
100
60
40
60
20
VGE 90%
20
Uce3%
Uge10%
0
tEoff
tEon
IC 1%
-20
-20
-0,05
0,1
Poff (100%) =
Eoff (100%) =
tEoff =
0,25
5,98
0,57
0,47
0,4
0,55
time (us)
2,8
0,7
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
2,9
3
5,98
0,71
0,22
3,1
time(us)
3,2
kW
mJ
µs
Output inverter IGBT
Figure 7
Turn-off Switching Waveforms & definition of trr
120
%
Id
80
trr
40
Vd
fitted
0
IRRM10%
-40
IRRM90%
IRRM100%
-80
-120
2,8
2,9
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
3
300
20
12
0,35
3,1
3,2
3,3
time(us)
3,4
V
A
A
µs
14
Revision: 3
V23990-K204-A-PM
datasheet
Switching Definitions Output Inverter
Output inverter FWD
Figure 8
Output inverter FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
%
%
Qrr
Id
Erec
100
100
80
tErec
tQrr
50
60
40
0
20
Prec
-50
0
-100
-20
2,7
2,9
Id (100%) =
Qrr (100%) =
tQrr =
copyright Vincotech
3,1
3,3
20
1,69
0,83
A
µC
µs
3,5
3,7
time(us)
3,9
2,7
Prec (100%) =
Erec (100%) =
tErec =
15
2,9
3,1
5,98
0,33
0,83
3,3
3,5
3,7
time(us)
3,9
kW
mJ
µs
Revision: 3
V23990-K204-A-PM
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
with std lid (black V23990-K12-T-PM)
with std lid (black V23990-K12-T-PM) and P12
with thin lid (white V23990-K13-T-PM)
with thin lid (white V23990-K13-T-PM) and P12
Ordering Code
in DataMatrix as
V23990-K204-A-/0A/-PM
V23990-K204-A-/1A/-PM
V23990-K204-A-/0B/-PM
V23990-K204-A-/1B/-PM
K204A
K204A
K204A
K204A
in packaging barcode as
K204A-/0A/
K204A-/1A/
K204A-/0B/
K204A-/1B/
Outline
Pinout
copyright Vincotech
16
Revision: 3
V23990-K204-A-PM
datasheet
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
17
Revision: 3