IRF IRGP20B60PD

PD - 94626
IRGP20B60PD
SMPS IGBT
WARP2 SERIES IGBT WITH
ULTRAFAST SOFT RECOVERY DIODE
VCES = 600V
VCE(on) typ. = 2.05V
@ VGE = 15V IC = 13.0A
C
Applications
•
•
•
•
Telecom and Server SMPS
PFC and ZVS SMPS Circuits
Uninterruptable Power Supplies
Consumer Electronics Power Supplies
Features
•
•
•
•
•
•
•
Equivalent MOSFET
Parameters 
RCE(on) typ. = 158mΩ
ID (FET equivalent) = 20A
G
NPT Technology, Positive Temperature Coefficient
Lower VCE(SAT)
Lower Parasitic Capacitances
Minimal Tail Current
HEXFRED Ultra Fast Soft-Recovery Co-Pack Diode
Tighter Distribution of Parameters
Higher Reliability
E
n-channel
E
C
G
Benefits
• Parallel Operation for Higher Current Applications
• Lower Conduction Losses and Switching Losses
• Higher Switching Frequency up to 150kHz
TO-247AC
Absolute Maximum Ratings
Max.
Units
VCES
Collector-to-Emitter Voltage
Parameter
600
V
IC @ TC = 25°C
Continuous Collector Current
40
IC @ TC = 100°C
Continuous Collector Current
22
ICM
80
ILM
Pulse Collector Current (Ref. Fig. C.T.4)
Clamped Inductive Load Current
IF @ TC = 25°C
Diode Continous Forward Current
31
IF @ TC = 100°C
IFRM
Diode Continous Forward Current
Maximum Repetitive Forward Current
VGE
Gate-to-Emitter Voltage
±20
V
220
W
d
PD @ TC = 25°C
Maximum Power Dissipation
PD @ TC = 100°C
Maximum Power Dissipation
TJ
Operating Junction and
TSTG
Storage Temperature Range
80
A
12
e
42
86
-55 to +150
°C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal Resistance
Min.
Typ.
Max.
Units
Thermal Resistance Junction-to-Case-(each IGBT)
Parameter
–––
–––
0.58
°C/W
RθJC (Diode)
Thermal Resistance Junction-to-Case-(each Diode)
–––
–––
2.5
RθCS
Thermal Resistance, Case-to-Sink (flat, greased surface)
–––
0.24
–––
RθJA
Thermal Resistance, Junction-to-Ambient (typical socket mount)
–––
–––
40
Weight
–––
6 (0.21)
–––
RθJC (IGBT)
1
g (oz)
www.irf.com
02/06/03
IRGP20B60PD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
V(BR)CES
Collector-to-Emitter Breakdown Voltage
Parameter
600
—
—
∆V(BR)CES/∆TJ
Temperature Coeff. of Breakdown Voltage
—
0.32
—
RG
Internal Gate Resistance
—
4.3
—
—
2.05
2.35
—
2.50
2.80
—
2.65
3.00
—
3.30
3.70
VCE(on)
Collector-to-Emitter Saturation Voltage
Max. Units
VGE(th)
Gate Threshold Voltage
3.0
4.0
5.0
∆VGE(th)/∆TJ
Threshold Voltage temp. coefficient
—
-11
—
gfe
ICES
Forward Transconductance
—
19
—
Collector-to-Emitter Leakage Current
—
1.0
250
VFM
IGES
Diode Forward Voltage Drop
Gate-to-Emitter Leakage Current
V
Conditions
Ref.Fig
VGE = 0V, IC = 500µA
V/°C VGE = 0V, IC = 1mA (25°C-125°C)
Ω
1MHz, Open Collector
IC = 13A, VGE = 15V
V
IC = 20A, VGE = 15V
4, 5,6,8,9
IC = 13A, VGE = 15V, TJ = 125°C
IC = 20A, VGE = 15V, TJ = 125°C
V
IC = 250µA
7,8,9
mV/°C VCE = VGE, IC = 1.0mA
S VCE = 50V, IC = 40A, PW = 80µs
µA
VGE = 0V, VCE = 600V
VGE = 0V, VCE = 600V, TJ = 125°C
—
0.1
—
mA
—
1.4
1.7
V
—
1.3
1.6
—
—
±100
IF = 12A, VGE = 0V
10
IF = 12A, VGE = 0V, TJ = 125°C
nA
VGE = ±20V, VCE = 0V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Qg
Qgc
Total Gate Charge (turn-on)
Parameter
—
68
Max. Units
102
Gate-to-Collector Charge (turn-on)
—
24
36
Conditions
nC
17
VCC = 400V
CT1
Qge
Gate-to-Emitter Charge (turn-on)
—
10
15
Eon
Turn-On Switching Loss
—
95
140
Eoff
Turn-Off Switching Loss
—
100
145
Etotal
Total Switching Loss
—
195
285
TJ = 25°C
td(on)
Turn-On delay time
—
20
26
IC = 13A, VCC = 390V
tr
Rise time
—
5.0
7.0
td(off)
Turn-Off delay time
—
115
135
tf
Fall time
—
6.0
8.0
Eon
Turn-On Switching Loss
—
165
215
Eoff
Turn-Off Switching Loss
—
150
195
Etotal
Total Switching Loss
—
315
410
TJ = 125°C
td(on)
Turn-On delay time
—
19
25
IC = 13A, VCC = 390V
tr
Rise time
—
6.0
8.0
td(off)
Turn-Off delay time
—
125
140
tf
Fall time
—
13
17
VGE = 15V
IC = 13A, VCC = 390V
µJ
ns
f
CT3
VGE = +15V, RG = 10Ω, L = 200µH
TJ = 25°C
f
IC = 13A, VCC = 390V
µJ
ns
f
11,13
WF1,WF2
CT3
VGE = +15V, RG = 10Ω, L = 200µH
TJ = 125°C
Input Capacitance
—
1570
—
VGE = 0V
Output Capacitance
—
130
—
VCC = 30V
Cres
Reverse Transfer Capacitance
Effective Output Capacitance (Time Related)
—
20
—
Coes eff.
—
94
—
Coes eff. (ER)
Effective Output Capacitance (Energy Related)
—
76
—
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
trr
Diode Reverse Recovery Time
—
42
60
—
80
120
—
80
180
—
220
600
—
3.5
6.0
—
5.6
10
pF
CT3
VGE = +15V, RG = 10Ω, L = 200µH
Cies
g
CT3
VGE = +15V, RG = 10Ω, L = 200µH
Coes
g
Ref.Fig
IC = 13A
f
12,14
WF1,WF2
16
f = 1Mhz
VGE = 0V, VCE = 0V to 480V
15
TJ = 150°C, IC = 80A
3
VCC = 480V, Vp =600V
CT2
Rg = 22Ω, VGE = +15V to 0V
Qrr
Diode Reverse Recovery Charge
Irr
Peak Reverse Recovery Current
Notes:
 RCE(on) typ. = equivalent on-resistance = VCE(on) typ. / IC, where VCE(on) typ. = 2.05V and IC = 13A.
ns
nC
TJ = 25°C
IF = 12A, VR = 200V,
19
TJ = 125°C
di/dt = 200A/µs
IF = 12A, VR = 200V,
21
TJ = 25°C
di/dt = 200A/µs
IF = 12A, VR = 200V,
19,20,21,22
TJ = 125°C
di/dt = 200A/µs
TJ = 25°C
TJ = 125°C
A
CT5
ID (FET Equivalent) is the equivalent MOSFET ID rating @ 25°C for
applications up to 150kHz. These are provided for comparison purposes (only) with equivalent MOSFET solutions.
‚
ƒ
„
…
VCC = 80% (V CES), VGE = 15V, L = 28µH, R G = 22Ω.
Pulse width limited by max. junction temperature.
Energy losses include "tail" and diode reverse recovery. Data generated with use of Diode 8ETH06.
Coes eff. is a fixed capacitance that gives the same charging time as Coes while VCE is rising from 0 to 80% VCES .
Coes eff.(ER) is a fixed capacitance that stores the same energy as Coes while VCE is rising from 0 to 80% VCES.
2
www.irf.com
IRGP20B60PD
250
45
40
200
35
Ptot (W)
30
IC (A)
25
20
150
100
15
10
50
5
0
0
0
20
40
60
80
0
100 120 140 160
20
40
60
80
100 120 140 160
T C (°C)
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
40
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
35
30
10
IC A)
ICE (A)
25
20
15
1
10
5
0
0
10
100
1000
0
1
2
VCE (V)
Fig. 3 - Reverse Bias SOA
TJ = 150°C; VGE =15V
5
6
40
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
35
30
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
35
30
25
ICE (A)
25
ICE (A)
4
Fig. 4 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
40
20
20
15
15
10
10
5
5
0
0
0
1
2
3
4
5
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
www.irf.com
3
VCE (V)
6
0
1
2
3
4
5
6
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 125°C; tp = 80µs
3
IRGP20B60PD
450
10
400
9
8
350
7
TJ = 125°C
ICE = 20A
ICE = 13A
6
ICE = 8.0A
VCE (V)
ICE (A)
300
T J = 25°C
250
200
150
5
4
3
100
2
50
1
0
0
0
5
10
15
0
20
5
10
15
20
VGE (V)
VGE (V)
Fig. 7 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
Fig. 8 - Typical VCE vs. VGE
TJ = 25°C
10
100
7
ICE = 13A
6
ICE = 8.0A
(A)
ICE = 20A
F
8
InstantaneousForw
ardC
urrent - I
VCE (V)
9
5
4
3
2
1
TJ = 150°C
TJ = 125°C
10
TJ =
25°C
0
0
5
10
15
20
1
0.4
VGE (V)
0.8
1.2
1.6
2.0
2.4
Forward Voltage Drop - V FM (V)
Fig. 9 - Typical VCE vs. VGE
TJ = 125°C
Fig. 10 - Typ. Diode Forward Characteristics
tp = 80µs
350
1000
300
EON
tdOFF
Swiching Time (ns)
Energy (µJ)
250
200
EOFF
150
100
100
tdON
tF
10
tR
50
0
1
0
5
10
15
20
25
IC (A)
Fig. 11 - Typ. Energy Loss vs. IC
TJ = 125°C; L = 200µH; VCE = 390V, RG = 10Ω; VGE = 15V.
Diode clamp used: 8ETH06 (See C.T.3)
4
0
5
10
15
20
25
IC (A)
Fig. 12 - Typ. Switching Time vs. IC
TJ = 125°C; L = 200µH; VCE = 390V, RG = 10Ω; VGE = 15V.
Diode clamp used: 8ETH06 (See C.T.3)
www.irf.com
IRGP20B60PD
1000
250
td OFF
EON
Swiching Time (ns)
Energy (µJ)
200
EOFF
150
100
tdON
10
tF
100
tR
1
50
0
5
10
15
20
25
30
0
35
10
20
30
40
RG ( Ω)
RG ( Ω)
Fig. 13 - Typ. Energy Loss vs. RG
TJ = 125°C; L = 200µH; VCE = 390V, ICE = 13A; VGE = 15V
Diode clamp used: 8ETH06 (See C.T.3)
Fig. 14 - Typ. Switching Time vs. RG
TJ = 125°C; L = 200µH; VCE = 390V, ICE = 13A; VGE = 15V
Diode clamp used: 8ETH06 (See C.T.3)
18
10000
16
Cies
14
1000
Capacitance (pF)
Eoes (µJ)
12
10
8
6
Coes
100
Cres
10
4
2
0
1
0
100
200
300
400
500
600
700
0
20
60
80
100
VCE (V)
VCE (V)
Fig. 16- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Fig. 15- Typ. Output Capacitance
Stored Energy vs. VCE
16
1.6
14
1.5
Normalized V CE(on) (V)
400V
12
10
VGE (V)
40
8
6
4
1.4
1.3
1.2
1.1
1
0.9
0.8
2
0.7
0
0.6
0
10
20
30
40
50
60
70
80
Q G , Total Gate Charge (nC)
Fig. 17 - Typical Gate Charge vs. VGE
ICE = 13A
www.irf.com
-50
0
50
100
150
200
T J , Junction Temperature (°C)
Fig. 18 - Normalized Typical VCE(on) vs. Junction Temperature
ICE = 13A, VGE = 15V
5
IRGP20B60PD
80
20
VR = 200V
TJ = 125°C
TJ = 25°C
I F = 16A
IF
F = 8.0A
I F = 4.0A
16
60
I F = 16A
I F = 8.0A
Irr- ( A)
trr- (nC)
I F = 4.0A
40
12
8
20
4
VR = 200V
TJ = 125°C
TJ = 25°C
0
100
0
100
1000
di f /dt - (A/µs)
Fig. 20 - Typical Recovery Current vs. dif/dt
Fig. 19 - Typical Reverse Recovery vs. dif/dt
500
10000
VR = 200V
TJ = 125°C
TJ = 25°C
400
VR = 200V
TJ = 125°C
TJ = 25°C
I F = 16A
IF = 8.0A
IF = 16A
di (rec) M/dt- (A /µs)
Qrr- (nC)
1000
di f /dt - (A/µs)
IF = 4.0A
300
200
I F = 8.0A
IF = 4.0A
1000
100
0
100
di f /dt - (A/µs)
Fig. 21 - Typical Stored Charge vs. dif/dt
6
1000
100
100
1000
di f /dt - (A/µs)
Fig. 22 - Typical di(rec)M/dt vs. dif/dt,
www.irf.com
IRGP20B60PD
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.1
0.10
τJ
0.05
0.02
0.01
R1
R1
τJ
τ1
R2
R2
R3
R3
R4
R4
τC
τ
τ2
τ1
τ2
τ3
τ3
τ4
Ci= τi/Ri
Ci i/Ri
0.01
SINGLE PULSE
( THERMAL RESPONSE )
τ4
Ri (°C/W)
τi (sec)
0.12003
0.000034
0.05001
0.000034
0.23292
0.000970
0.17719
0.011265
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.05
0.1
τJ
0.02
0.01
R1
R1
τJ
τ1
R2
R2
τC
τ1
τ2
τ2
τ
Ri (°C/W) τi (sec)
0.8667 0.000121
1.6349
0.001726
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.01
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRGP20B60PD
L
L
VCC
DUT
80 V
DUT
0
480V
Rg
1K
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-off)
R=
L
PFC diode
DUT /
DRIVER
VCC
DUT
Rg
VCC
ICM
VCC
Rg
Fig.C.T.4 - Resistive Load Circuit
Fig.C.T.3 - Switching Loss Circuit
REVERSE RECOVERY CIRCUIT
VR = 200V
0.01 Ω
L = 70µH
D.U.T.
dif/dt
ADJUST
D
G
IRFP250
S
Fig. C.T.5 - Reverse Recovery Parameter
Test Circuit
8
www.irf.com
IRGP20B60PD
450
18
450
400
16
400
300
90% ICE
14
350
12
300
10
8
5% V CE
150
VCE (V)
200
6
100
5% ICE
50
0
-50
-0.20
Eoff Loss
0.00
0.20
0.40
30
tr
25
90% test current
200
10% test current
150
4
100
2
50
0
0
20
15
10
5% V CE
Eon Loss
-50
7.75
-2
0.80
0.60
35
250
ICE (A)
VCE (V)
250
40
TEST CURRENT
I CE (A)
tf
350
45
7.85
7.95
8.05
5
0
-5
8.15
Time (µs)
Time(µs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 125°C using Fig. CT.3
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 125°C using Fig. CT.3
3
trr
IF
tb
ta
0
Q rr
2
I RRM
4
0.5 I RRM
di(rec)M/dt
5
0.75 I RRM
1
di f /dt
1. dif/dt - Rate of change of current
through zero crossing
2. I RRM - Peak reverse recovery current
3. trr - Reverse recovery time measured
from zero crossing point of negative
going IF to point where a line passing
through 0.75 IRRM and 0.50 IRRM
extrapolated to zero current
4. Qrr - Area under curve defined by trr
and IRRM
trr X IRRM
Qrr =
2
5. di(rec)M/dt - Peak rate of change of
current during tb portion of trr
Fig. WF3 - Reverse Recovery Waveform and
Definitions
www.irf.com
9
IRGP20B60PD
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
3.65 (.143)
3.55 (.140)
0.25 (.010) M D B M
15.90 (.626)
15.30 (.602)
-B-
-A5.50 (.217)
20.30 (.800)
19.70 (.775)
2X
1
2
-D-
5.30 (.209)
4.70 (.185)
2.50 (.089)
1.50 (.059)
4
5.50 (.217)
4.50 (.177)
LEAD ASSIGNMENTS
1 - GATE
2 - COLLECTOR
3 - EMITTER
4 - COLLECTOR
3
-C-
*
14.80 (.583)
14.20 (.559)
2.40 (.094)
2.00 (.079)
2X
5.45 (.215)
2X
NOTES:
1 DIMENSIONS & TOLERANCING
PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH.
3 DIMENSIONS ARE SHOWN
MILLIMETERS (INCHES).
4 CONFORMS TO JEDEC OUTLINE
TO-247AC.
4.30 (.170)
3.70 (.145)
LEADED (20mm)
* LONGER
VERSION AVAILABLE (TO-247AD)
TO ORDER ADD "-E" SUFFIX
TO PART NUMBER
1.40 (.056)
3X
1.00 (.039)
0.25 (.010) M
C AS
3.40 (.133)
3.00 (.118)
0.80 (.031)
3X
0.40 (.016)
2.60 (.102)
2.20 (.087)
CONFORMS TO JEDEC OUTLINE TO-247AC (TO-3P)
Dimensions in Millimeters and (Inches)
TO-247AC Part Marking Information
1RWHV7KLVSDUWPDUNLQJLQIRUPDWLRQDSSOLHVWRGHYLFHVSURGXFHGEHIRUHRUIRU
SDUWVPDQXIDFWXUHGLQ*%
(;$03/( 7+,6,6$1,5)3(
:,7+$66(0%/<
/27&2'($4
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
,5)3(
$4
'$7(&2'(
<<::
<< <($5
:: :((.
$66(0%/<
/27&2'(
1RWHV7KLVSDUWPDUNLQJLQIRUPDWLRQDSSOLHVWRGHYLFHVSURGXFHGDIWHU
(;$03/( 7+,6,6$1,5)3(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
,5)3(
+
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1(+
TO-247AC package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 02/03
10
www.irf.com