Previous Datasheet Index Next Data Sheet PD - 5.022B CPV364MF Fast IGBT IGBT SIP MODULE Features • • • • 1 Fully isolated printed circuit board mount package Switching-loss rating includes all "tail" losses TM HEXFRED soft ultrafast diodes Optimized for medium operating frequency (1 to 10kHz) See Fig. 1 for Current vs. Frequency curve 3 D1 Q1 9 D3 Q3 15 4 6 D2 Q2 Product Summary 12 D5 Q5 10 D4 Q4 7 18 16 D6 Q6 13 19 Output Current in a Typical 5.0 kHz Motor Drive 12 ARMS per phase (3.8 kW total) with TC = 90°C, TJ = 125°C, Supply Voltage 360Vdc, Power Factor 0.8, Modulation Depth 80% (See Figure 1) Description The IGBT technology is the key to International Rectifier's advanced line of IMS (Insulated Metal Substrate) Power Modules. These modules are more efficient than comparable bipolar transistor modules, while at the same time having the simpler gate-drive requirements of the familiar power MOSFET. This superior technology has now been coupled to a state of the art materials system that maximizes power throughput with low thermal resistance. This package is highly suited to motor drive applications and where space is at a premium. IMS-2 Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM VGE VISOL PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current, each IGBT Continuous Collector Current, each IGBT Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Isolation Voltage, any terminal to case, 1 minute Maximum Power Dissipation, each IGBT Maximum Power Dissipation, each IGBT Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw. Max. Units 600 27 15 80 80 9.3 80 ±20 2500 63 25 -40 to +150 V A V VRMS W °C 300 (0.063 in. (1.6mm) from case) 5-7 lbf•in (0.55-0.8 N•m) Thermal Resistance Parameter RθJC (IGBT) RθJC (DIODE) RθCS (MODULE) Wt Junction-to-Case, each IGBT, one IGBT in conduction Junction-to-Case, each diode, one diode in conduction Case-to-Sink, flat, greased surface Weight of module Typ. Max. — — 0.1 20 (0.7) 2.0 3.0 — — Units °C/W g (oz) Revision 1 C-157 To Order Previous Datasheet Index Next Data Sheet CPV364MF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) VCE(on) Parameter Collector-to-Emitter Breakdown Voltage Temp. Coeff. of Breakdown Voltage Collector-to-Emitter Saturation Voltage VGE(th) ∆VGE(th)/∆TJ gfe ICES Gate Threshold Voltage Temp. Coeff. of Threshold Voltage Forward Transconductance Zero Gate Voltage Collector Current VFM Diode Forward Voltage Drop IGES Gate-to-Emitter Leakage Current V(BR)CES ∆V(BR)CES/∆TJ Min. Typ. Max. Units 600 — — V — 0.69 — V/°C — 1.4 1.6 — 1.8 — V — 1.5 — 3.0 — 5.5 — -12 — mV/°C 9.2 12 — S — — 250 µA — — 3500 — 1.3 1.7 V — 1.2 1.6 — — ±500 nA Conditions VGE = 0V, IC = 250µA VGE = 0V, IC = 1.0mA IC = 15A VGE = 15V IC = 27A See Fig. 2, 5 IC = 15A, TJ = 150°C VCE = VGE, IC = 250µA VCE = VGE, IC = 250µA VCE = 100V, IC = 27A VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 150°C IC = 15A See Fig. 13 IC = 15A, TJ = 150°C VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets Cies Coes Cres trr Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Irr Diode Peak Reverse Recovery Current Qrr Diode Reverse Recovery Charge di(rec)M/dt Diode Peak Rate of Fall of Recovery During tb Min. — — — — — — — — — — — — — — — — — — — — — — — — — — Typ. 59 8.6 25 26 37 240 230 0.53 1.3 1.8 28 37 380 460 3.4 1500 190 20 42 74 4.0 6.5 80 220 188 160 Max. Units Conditions 80 IC = 27A 10 nC VCC = 400V 42 See Fig. 8 — TJ = 25°C — ns IC = 27A, VCC = 480V 410 VGE = 15V, RG = 10Ω 420 Energy losses include "tail" and — diode reverse recovery — mJ See Fig. 9, 10, 11, 18 2.8 — TJ = 150°C, See Fig. 9, 10, 11, 18 — ns IC = 27A, VCC = 480V — VGE = 15V, RG = 10Ω — Energy losses include "tail" and — mJ diode reverse recovery — VGE = 0V — pF VCC = 30V See Fig. 7 — ƒ = 1.0MHz 60 ns TJ = 25°C See Fig. 120 TJ = 125°C 14 IF = 15A 6.0 A TJ = 25°C See Fig. 10 TJ = 125°C 15 V R = 200V 180 nC TJ = 25°C See Fig. 600 TJ = 125°C 16 di/dt = 200A/µs — A/µs TJ = 25°C See Fig. — TJ = 125°C 17 Notes: Repetitive rating; V GE=20V, pulse width limited by max. junction temperature. ( See fig. 20 ) VCC=80%(VCES), VGE=20V, L=10µH, RG= 10Ω, ( See fig. 19 ) Pulse width ≤ 80µs; duty factor ≤ 0.1%. C-158 To Order Pulse width 5.0µs, single shot. Previous Datasheet Index Next Data Sheet 20 6.2 16 5.0 12 3.7 8 2.5 TC = 90°C TJ = 125°C Power Factor = 0.8 Modulation Depth = 0.8 VC C = 60% of Rated Voltage 4 Total O utpu t P ow e r (kW ) Lo ad C urrent (A ) CPV364MF 1.2 0 0 0.1 1 10 100 f, F re quenc y (kH z) Fig. 1 - RMS Current and Output Power, Synthesized Sine Wave 1000 IC , C olle ctor-to -E m itte r C u rren t (A ) I C , Collector-to-E m itter C urrent (A) 1000 TJ = 25 °C 100 TJ = 15 0 °C 10 V G E = 1 5V 2 0µ s P U LS E W IDTH 1 0.1 1 100 T J = 1 50 °C 10 T J = 25 °C 1 0.1 V C C = 1 00 V 5µ s P U LS E W IDTH 0.01 10 5 V C E , C ollector-to-E m itter V oltage (V ) 10 15 V G E , G ate -to-E m itter V olta ge (V ) Fig. 3 - Typical Transfer Characteristics Fig. 2 - Typical Output Characteristics C-159 To Order 20 S Previous Datasheet Index Next Data Sheet CPV364MF 3.0 V G E = 15 V V C E , C ollector-to-E m itter V oltage (V) M axim um DC Collector C urrent (A ) 50 40 30 20 10 0 VG E = 1 5 V 80 µs P UL S E W ID TH 2.5 I C = 54 A 2.0 I C = 27 A 1.5 I C = 1 4A 1.0 25 50 75 100 125 150 -60 T C , C ase Tem perature (°C ) -40 -20 0 20 40 60 80 1 00 120 140 160 TC , C ase Tem perature (°C ) Fig. 5 - Collector-to-Emitter Voltage vs. Case Temperature Fig. 4 - Maximum Collector Current vs. Case Temperature T h e rm a l R e sp o n s e (Z thJC ) 10 1 D = 0 .5 0 0 .2 0 0 .1 0 PD M 0 .0 5 0.1 t 0 .0 2 0 .0 1 0.01 0.00001 1 t S IN G L E P U L S E (T H E R M A L R E S P O N S E ) N o te s: 1 . D u ty fa c to r D = t 1 / t 2 2 2 . P e a k TJ = P D M x Z thJ C + T C 0.0001 0.001 0.01 0.1 1 t 1 , R e c ta n gu la r P u ls e D ura tio n (s e c ) Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case C-160 To Order 10 Previous Datasheet Index Next Data Sheet CPV364MF 3000 V G E , G ate-to-E m itter V oltag e (V ) 2500 C , C apacitance (pF) 20 V GE = 0V, f = 1MHz C ies = C ge + C gc , Cce SHORTED C res = C gc C oes = C ce + C gc 16 Cies 2000 V C E = 40 0V I C = 2 7A 12 Coes 1500 1000 Cres 500 0 8 4 0 1 10 0 1 00 10 V C E , C ollector-to-E m itter V oltage (V) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage VC C VG E TC IC 4 .7 30 40 50 60 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 100 = 4 80 V = 15 V = 25°C = 2 7A To ta l S w itc hing Lo ss es (m J) Total S w itching Losses (m J) 4 .8 20 Q g , T o tal G a te C h a rg e (n C ) 4 .6 4 .5 4 .4 R G = 10 Ω V GE = 1 5V V CC = 48 0V I C = 5 4A 10 4 .3 I C = 2 7A I C = 14 A 1 0 10 20 30 40 50 60 -60 R G , G ate R es istance (Ω ) -40 -20 0 20 40 60 80 100 120 140 160 TC , C ase Tem perature (°C ) W Fig. 9 - Typical Switching Losses vs. Gate Resistance Fig. 10 - Typical Switching Losses vs. Case Temperature C-161 To Order Previous Datasheet Index Next Data Sheet CPV364MF 16 1000 = 10 Ω = 150 °C = 4 80 V = 15 V I C , C o lle c to r-to -E m itte r C u rre n t (A ) RG TC V CC VGE 12 8 4 VGGE E= 20 V T J = 12 5°C 100 S A FE O P E RA TIN G A RE A 10 1 0 0 20 40 1 60 10 100 V C E , C o lle cto r-to -E m itte r V o lta g e (V ) I C , C o llector-to -E m itte r Current (A ) Fig. 12 - Turn-Off SOA Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 100 Instantaneous Forward Current - I F (A) Total S w itching Losses (m J) 20 10 TJ = 150°C TJ = 125°C TJ = 25°C 1 0.8 1.2 1.6 2.0 2.4 Forward Voltage Drop - V FM (V) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current C-162 To Order 1000 Previous Datasheet Index Next Data Sheet CPV364MF 100 100 VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C 80 I IRRM - (A) t rr - (ns) I F = 30A I F = 30A 60 I F = 15A IF = 15A 10 I F = 5.0A 40 I F = 5.0A 20 100 1 100 1000 di f /dt - (A/µs) di f /dt - (A/µs) 1000 Fig. 15 - Typical Recovery Current vs. dif/dt Fig. 14 - Typical Reverse Recovery vs. dif/dt 800 1000 VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C di(rec)M/dt - (A/µs) 600 Q RR - (nC) IF = 30A 400 I F = 15A IF = 5.0A I F = 5.0A I F = 15A I F = 30A 200 0 100 1000 di f /dt - (A/µs) Fig. 16 - Typical Stored Charge vs. dif/dt 100 100 di f /dt - (A/µs) Fig. 17 - Typical di(rec)M/dt vs. dif/dt C-163 To Order 1000 Previous Datasheet Index Next Data Sheet CPV364MF 90% Vge +Vge Vce Same type device as D.U.T. 90% Ic 10% Vce Ic Ic 5% Ic 430µF 80% of Vce td(off) D.U.T. tf Eoff = Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1 ∫ t1+5µS Vce ic dt t1 t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf trr GATE VOLTAGE D.U.T. 10% +Vg Qrr = Ic ∫ trr id dt tx +Vg tx 10% Vcc 10% Irr Vcc DUT VOLTAGE AND CURRENT Vce Vpk Irr Vcc 10% Ic Ipk 90% Ic Ic DIODE RECOVERY WAVEFORMS tr td(on) t1 5% Vce ∫ t2 Eon = Vce ie dt t1 DIODE REVERSE RECOVERY ENERGY t2 t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, ∫ t4 Erec = Vd id dt t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr Defining Erec, trr, Qrr, Irr Refer to Section D for the following: Appendix D: Section D - page D-6 Fig. 18e - Macro Waveforms for Test Circuit Fig. 18a Fig. 19 - Clamped Inductive Load Test Circuit Fig. 20 - Pulsed Collector Current Test Circuit Package Outline 5 - IMS-2 Package (13 pins) Section D - page D-14 C-164 To Order