IRF CPV364MF

Previous Datasheet
Index
Next Data Sheet
PD - 5.022B
CPV364MF
Fast IGBT
IGBT SIP MODULE
Features
•
•
•
•
1
Fully isolated printed circuit board mount package
Switching-loss rating includes all "tail" losses
TM
HEXFRED soft ultrafast diodes
Optimized for medium operating frequency (1 to
10kHz) See Fig. 1 for Current vs. Frequency curve
3
D1
Q1
9
D3
Q3
15
4
6
D2
Q2
Product Summary
12
D5
Q5
10
D4
Q4
7
18
16
D6
Q6
13
19
Output Current in a Typical 5.0 kHz Motor Drive
12 ARMS per phase (3.8 kW total) with TC = 90°C, TJ = 125°C, Supply Voltage 360Vdc,
Power Factor 0.8, Modulation Depth 80% (See Figure 1)
Description
The IGBT technology is the key to International Rectifier's advanced line of
IMS (Insulated Metal Substrate) Power Modules. These modules are more
efficient than comparable bipolar transistor modules, while at the same time
having the simpler gate-drive requirements of the familiar power MOSFET.
This superior technology has now been coupled to a state of the art materials
system that maximizes power throughput with low thermal resistance. This
package is highly suited to motor drive applications and where space is at a
premium.
IMS-2
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
IFM
VGE
VISOL
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current, each IGBT
Continuous Collector Current, each IGBT
Pulsed Collector Current
Clamped Inductive Load Current
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Isolation Voltage, any terminal to case, 1 minute
Maximum Power Dissipation, each IGBT
Maximum Power Dissipation, each IGBT
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting torque, 6-32 or M3 screw.
Max.
Units
600
27
15
80
80
9.3
80
±20
2500
63
25
-40 to +150
V
A
V
VRMS
W
°C
300 (0.063 in. (1.6mm) from case)
5-7 lbf•in (0.55-0.8 N•m)
Thermal Resistance
Parameter
RθJC (IGBT)
RθJC (DIODE)
RθCS (MODULE)
Wt
Junction-to-Case, each IGBT, one IGBT in conduction
Junction-to-Case, each diode, one diode in conduction
Case-to-Sink, flat, greased surface
Weight of module
Typ.
Max.
—
—
0.1
20 (0.7)
2.0
3.0
—
—
Units
°C/W
g (oz)
Revision 1
C-157
To Order
Previous Datasheet
Index
Next Data Sheet
CPV364MF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
VCE(on)
Parameter
Collector-to-Emitter Breakdown Voltage
Temp. Coeff. of Breakdown Voltage
Collector-to-Emitter Saturation Voltage
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
Gate Threshold Voltage
Temp. Coeff. of Threshold Voltage
Forward Transconductance
Zero Gate Voltage Collector Current
VFM
Diode Forward Voltage Drop
IGES
Gate-to-Emitter Leakage Current
V(BR)CES
∆V(BR)CES/∆TJ
Min. Typ. Max. Units
600
—
—
V
— 0.69 — V/°C
—
1.4 1.6
—
1.8
—
V
—
1.5
—
3.0
—
5.5
—
-12
— mV/°C
9.2
12
—
S
—
— 250
µA
—
— 3500
—
1.3 1.7
V
—
1.2 1.6
—
— ±500 nA
Conditions
VGE = 0V, IC = 250µA
VGE = 0V, IC = 1.0mA
IC = 15A
VGE = 15V
IC = 27A
See Fig. 2, 5
IC = 15A, TJ = 150°C
VCE = VGE, IC = 250µA
VCE = VGE, IC = 250µA
VCE = 100V, IC = 27A
VGE = 0V, VCE = 600V
VGE = 0V, VCE = 600V, TJ = 150°C
IC = 15A
See Fig. 13
IC = 15A, TJ = 150°C
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
Cies
Coes
Cres
trr
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Irr
Diode Peak Reverse Recovery Current
Qrr
Diode Reverse Recovery Charge
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During tb
Min.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ.
59
8.6
25
26
37
240
230
0.53
1.3
1.8
28
37
380
460
3.4
1500
190
20
42
74
4.0
6.5
80
220
188
160
Max. Units
Conditions
80
IC = 27A
10
nC VCC = 400V
42
See Fig. 8
—
TJ = 25°C
—
ns
IC = 27A, VCC = 480V
410
VGE = 15V, RG = 10Ω
420
Energy losses include "tail" and
—
diode reverse recovery
—
mJ See Fig. 9, 10, 11, 18
2.8
—
TJ = 150°C,
See Fig. 9, 10, 11, 18
—
ns
IC = 27A, VCC = 480V
—
VGE = 15V, RG = 10Ω
—
Energy losses include "tail" and
—
mJ diode reverse recovery
—
VGE = 0V
—
pF
VCC = 30V
See Fig. 7
—
ƒ = 1.0MHz
60
ns
TJ = 25°C See Fig.
120
TJ = 125°C
14
IF = 15A
6.0
A
TJ = 25°C See Fig.
10
TJ = 125°C
15
V R = 200V
180
nC TJ = 25°C See Fig.
600
TJ = 125°C
16
di/dt = 200A/µs
—
A/µs TJ = 25°C See Fig.
—
TJ = 125°C
17
Notes:
Repetitive rating; V GE=20V, pulse width
limited by max. junction temperature.
( See fig. 20 )
VCC=80%(VCES), VGE=20V, L=10µH,
RG= 10Ω, ( See fig. 19 )
Pulse width ≤ 80µs; duty factor ≤ 0.1%.
C-158
To Order
Pulse width 5.0µs,
single shot.
Previous Datasheet
Index
Next Data Sheet
20
6.2
16
5.0
12
3.7
8
2.5
TC = 90°C
TJ = 125°C
Power Factor = 0.8
Modulation Depth = 0.8
VC C = 60% of Rated Voltage
4
Total O utpu t P ow e r (kW )
Lo ad C urrent (A )
CPV364MF
1.2
0
0
0.1
1
10
100
f, F re quenc y (kH z)
Fig. 1 - RMS Current and Output Power, Synthesized Sine Wave
1000
IC , C olle ctor-to -E m itte r C u rren t (A )
I C , Collector-to-E m itter C urrent (A)
1000
TJ = 25 °C
100
TJ = 15 0 °C
10
V G E = 1 5V
2 0µ s P U LS E W IDTH
1
0.1
1
100
T J = 1 50 °C
10
T J = 25 °C
1
0.1
V C C = 1 00 V
5µ s P U LS E W IDTH
0.01
10
5
V C E , C ollector-to-E m itter V oltage (V )
10
15
V G E , G ate -to-E m itter V olta ge (V )
Fig. 3 - Typical Transfer Characteristics
Fig. 2 - Typical Output Characteristics
C-159
To Order
20
S
Previous Datasheet
Index
Next Data Sheet
CPV364MF
3.0
V G E = 15 V
V C E , C ollector-to-E m itter V oltage (V)
M axim um DC Collector C urrent (A )
50
40
30
20
10
0
VG E = 1 5 V
80 µs P UL S E W ID TH
2.5
I C = 54 A
2.0
I C = 27 A
1.5
I C = 1 4A
1.0
25
50
75
100
125
150
-60
T C , C ase Tem perature (°C )
-40
-20
0
20
40
60
80
1 00 120 140 160
TC , C ase Tem perature (°C )
Fig. 5 - Collector-to-Emitter Voltage vs.
Case Temperature
Fig. 4 - Maximum Collector Current vs.
Case Temperature
T h e rm a l R e sp o n s e (Z thJC )
10
1
D = 0 .5 0
0 .2 0
0 .1 0
PD M
0 .0 5
0.1
t
0 .0 2
0 .0 1
0.01
0.00001
1
t
S IN G L E P U L S E
(T H E R M A L R E S P O N S E )
N o te s:
1 . D u ty fa c to r D = t
1
/ t
2
2
2 . P e a k TJ = P D M x Z thJ C + T C
0.0001
0.001
0.01
0.1
1
t 1 , R e c ta n gu la r P u ls e D ura tio n (s e c )
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
C-160
To Order
10
Previous Datasheet
Index
Next Data Sheet
CPV364MF
3000
V G E , G ate-to-E m itter V oltag e (V )
2500
C , C apacitance (pF)
20
V GE = 0V,
f = 1MHz
C ies = C ge + C gc , Cce SHORTED
C res = C gc
C oes = C ce + C gc
16
Cies
2000
V C E = 40 0V
I C = 2 7A
12
Coes
1500
1000
Cres
500
0
8
4
0
1
10
0
1 00
10
V C E , C ollector-to-E m itter V oltage (V)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
VC C
VG E
TC
IC
4 .7
30
40
50
60
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
100
= 4 80 V
= 15 V
= 25°C
= 2 7A
To ta l S w itc hing Lo ss es (m J)
Total S w itching Losses (m J)
4 .8
20
Q g , T o tal G a te C h a rg e (n C )
4 .6
4 .5
4 .4
R G = 10 Ω
V GE = 1 5V
V CC = 48 0V
I C = 5 4A
10
4 .3
I C = 2 7A
I C = 14 A
1
0
10
20
30
40
50
60
-60
R G , G ate R es istance (Ω )
-40
-20
0
20
40
60
80
100 120 140 160
TC , C ase Tem perature (°C )
W
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
Fig. 10 - Typical Switching Losses vs.
Case Temperature
C-161
To Order
Previous Datasheet
Index
Next Data Sheet
CPV364MF
16
1000
= 10 Ω
= 150 °C
= 4 80 V
= 15 V
I C , C o lle c to r-to -E m itte r C u rre n t (A )
RG
TC
V CC
VGE
12
8
4
VGGE E= 20 V
T J = 12 5°C
100
S A FE O P E RA TIN G A RE A
10
1
0
0
20
40
1
60
10
100
V C E , C o lle cto r-to -E m itte r V o lta g e (V )
I C , C o llector-to -E m itte r Current (A )
Fig. 12 - Turn-Off SOA
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
100
Instantaneous Forward Current - I F (A)
Total S w itching Losses (m J)
20
10
TJ = 150°C
TJ = 125°C
TJ = 25°C
1
0.8
1.2
1.6
2.0
2.4
Forward Voltage Drop - V FM (V)
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
C-162
To Order
1000
Previous Datasheet
Index
Next Data Sheet
CPV364MF
100
100
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
80
I IRRM - (A)
t rr - (ns)
I F = 30A
I F = 30A
60
I F = 15A
IF = 15A
10
I F = 5.0A
40
I F = 5.0A
20
100
1
100
1000
di f /dt - (A/µs)
di f /dt - (A/µs)
1000
Fig. 15 - Typical Recovery Current vs. dif/dt
Fig. 14 - Typical Reverse Recovery vs. dif/dt
800
1000
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
di(rec)M/dt - (A/µs)
600
Q RR - (nC)
IF = 30A
400
I F = 15A
IF = 5.0A
I F = 5.0A
I F = 15A
I F = 30A
200
0
100
1000
di f /dt - (A/µs)
Fig. 16 - Typical Stored Charge vs. dif/dt
100
100
di f /dt - (A/µs)
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
C-163
To Order
1000
Previous Datasheet
Index
Next Data Sheet
CPV364MF
90% Vge
+Vge
Vce
Same type
device as
D.U.T.
90% Ic
10% Vce
Ic
Ic
5% Ic
430µF
80%
of Vce
td(off)
D.U.T.
tf
Eoff =
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
∫
t1+5µS
Vce ic dt
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
trr
GATE VOLTAGE D.U.T.
10% +Vg
Qrr =
Ic
∫
trr
id dt
tx
+Vg
tx
10% Vcc
10% Irr
Vcc
DUT VOLTAGE
AND CURRENT
Vce
Vpk
Irr
Vcc
10% Ic
Ipk
90% Ic
Ic
DIODE RECOVERY
WAVEFORMS
tr
td(on)
t1
5% Vce
∫
t2
Eon = Vce ie dt
t1
DIODE REVERSE
RECOVERY ENERGY
t2
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
∫
t4
Erec = Vd id dt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Defining Erec, trr, Qrr, Irr
Refer to Section D for the following:
Appendix D: Section D - page D-6
Fig. 18e - Macro Waveforms for Test Circuit Fig. 18a
Fig. 19 - Clamped Inductive Load Test Circuit
Fig. 20 - Pulsed Collector Current Test Circuit
Package Outline 5 - IMS-2 Package (13 pins) Section D - page D-14
C-164
To Order