INTEGRATED CIRCUITS DATA SHEET PCD3311C; PCD3312C DTMF/modem/musical-tone generators Product specification Supersedes data of May 1990 File under Integrated Circuits, IC03 1996 Nov 21 Philips Semiconductors Product specification DTMF/modem/musical-tone generators CONTENTS 1 FEATURES 2 GENERAL DESCRIPTION 3 QUICK REFERENCE DATA 4 ORDERING INFORMATION 5 BLOCK DIAGRAM 6 PINNING INFORMATION 6.1 6.2 6.3 6.4 6.5 6.6 Pinning PCD3311CP Pin description PCD3311CP Pinning PCD3311CT Pin description PCD3311CT Pinning PCD3312C Pin description PCD3312C 7 FUNCTIONAL DESCRIPTION 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 General Clock/oscillator connection Mode selection (PCD3311C) Data inputs (PCD3311C) Strobe input (PCD3311C ) I2C-bus clock and data inputs Address input I2C-bus data configuration Tone output Power-on reset Tables of Input and output 8 I2C-BUS INTERFACE 8.1 8.2 8.3 8.4 8.5 8.5.1 8.5.2 Bit transfer Start and stop conditions System configuration Acknowledge Timing specifications Standard mode Low-speed mode 9 HANDLING 10 LIMITING VALUES 11 CHARACTERISTICS 12 APPLICATION INFORMATION 13 PACKAGE OUTLINES 14 SOLDERING 14.1 14.2 14.2.1 14.2.2 14.3 14.3.1 14.3.2 14.3.3 Introduction DIP Soldering by dipping or by wave Repairing soldered joints SO Reflow soldering Wave soldering Repairing soldered joints 1996 Nov 21 2 PCD3311C; PCD3312C 15 DEFINITIONS 16 LIFE SUPPORT APPLICATIONS 17 PURCHASE OF PHILIPS I2C COMPONENTS Philips Semiconductors Product specification DTMF/modem/musical-tone generators 1 used, and a separate microcontroller is required to control the devices. FEATURES • DTMF, modem and musical tone generation Both the devices can interface to I2C-bus compatible microcontrollers for serial input. The PCD3311C can also interface directly to all standard microcontrollers, accepting a binary coded parallel input. • Stabilized output voltage level • Low output distortion with on-chip filtering conforming to CEPT recommendations • Latched inputs for data bus applications With their on-chip voltage reference the PCD3311C and PCD3312C provide constant output amplitudes which are independent of the operating supply voltage and ambient temperature. • I2C-bus compatible • Selection of parallel or serial (I2C-bus) data input (PCD3311C). 2 An on-chip filtering system assures a very low total harmonic distortion in accordance with CEPT recommendations. GENERAL DESCRIPTION The PCD3311C and PCD3312C are single-chip silicon gate CMOS integrated circuits. They are intended principally for use in telephone sets to provide the dual-tone multi-frequency (DTMF) combinations required for tone dialling systems. The various audio output frequencies are generated from an on-chip 3.58 MHz quartz crystal-controlled oscillator. A separate crystal is 3 PCD3311C; PCD3312C In addition to the standard DTMF frequencies the devices can also provide: • Twelve standard frequencies used in simplex modem applications for data rates from 300 to 1200 bits per second • Two octaves of musical scales in steps of semitones. QUICK REFERENCE DATA SYMBOL PARAMETER MIN. TYP. MAX. VDD operating supply voltage 2.5 − 6.0 UNIT V IDD operating supply current − − 0.9 mA Istb standby current − − 3 µA VHG(RMS) DTMF HIGH group output voltage level (RMS value) 158 192 205 mV VLG(RMS) DTMF LOW group output voltage level (RMS value) 125 150 160 mV Gv pre-emphasis (voltage gain) of group 1.85 2.10 2.35 dB THD total harmonic distortion − −25 − dB Tamb operating ambient temperature −25 − +70 °C 4 ORDERING INFORMATION PACKAGE TYPE NUMBER NAME PCD3311CP DIP14 PCD3311CT PCD3312CP PCD3312CT 1996 Nov 21 DESCRIPTION VERSION plastic dual in-line package; 14 leads (300 mil) SOT27-1 SO16 plastic small outline package; 16 leads; body width 7.5 mm SOT162-1 DIP8 plastic dual in-line package; 8 leads (300 mil) SOT97-1 SO8 plastic small outline package; 8 leads; body width 7.5 mm SOT176-1 3 Philips Semiconductors Product specification DTMF/modem/musical-tone generators 5 PCD3311C; PCD3312C BLOCK DIAGRAM handbook, full pagewidth OSCI 2(4) 1(3) D5 D4 D3 D2 D1/SDA D0/SCL STROBE 3 14(2) HIGH GROUP DIVIDER 4 VSS 13(1) CLOCK GENERATOR OSCILLATOR MODE VDD OSCO DAC HIGH 12 11 10 9(8) INPUT CONTROL LOGIC DIVIDER SELECTION (ROM) SWITCHED CAPACITOR BANDGAP VOLTAGE REFERENCE (5)6 ADDER 8(7) SWITCHED RESISTOR CAPACITOR CAPACITOR DAC LOW LOW GROUP DIVIDER 5 TONE PCD3311C PCD3312C 7(6) MGG543 A0 The un-parenthesised numbers are for the PCD3311CP, those in parenthesis for the PCD3312C. Fig.1 Block diagram. 6 6.1 PINNING INFORMATION 6.2 Pinning PCD3311CP Pin description PCD3311CP SYMBOL PIN TYPE OSCI 1 I oscillator input OSCO 2 O oscillator output MODE 3 I mode select input (selects I2C or parallel data input) D5 4 I parallel data input STROBE 5 I strobe input (for loading data in parallel mode) TONE 6 O frequency output (DTMF, modem, musical tones) A0 7 I slave address input (to be connected to VDD or VSS) D0/SCL 8 I parallel data input or I2C-bus clock line D1/SDA 9 I parallel data input or I2C-bus data line D2 − D4 10 − 12 I parallel data inputs VSS 13 P negative supply VDD 14 P positive supply handbook, halfpage OSCI 1 14 VDD OSCO 2 13 VSS MODE 3 12 D4 D5 4 PCD3311CP 11 D3 STROBE 5 10 D2 TONE 6 9 D1/SDA A0 7 8 D0/SCL DESCRIPTION MGG508 Fig.2 Pin configuration PCD3311CP. 1996 Nov 21 4 Philips Semiconductors Product specification DTMF/modem/musical-tone generators 6.3 Pinning PCD3311CT PCD3311C; PCD3312C 6.4 Pin description PCD3311CT SYMBOL PIN TYPE OSCI 1 I oscillator input OSCO 2 O oscillator output MODE 3 I mode select input (selects I2C or parallel data input) D5 4 I parallel data input n.c. 5 − not connected STROBE 6 I strobe input (for loading data in parallel mode) TONE 7 O frequency output (DTMF, modem, musical tones) A0 8 I slave address input (to be connected to VDD or VSS) D0/SCL 9 I parallel data input or I2C-bus clock line D1/SDA 10 I parallel data input or I2C-bus data line D2, D3 11, 12 I parallel data inputs n.c. 13 − not connected D4 14 I parallel data input VSS 15 P negative supply VDD 16 P positive supply handbook, halfpage OSCI 1 16 VDD OSCO 2 15 VSS MODE 3 14 D4 D5 4 13 n.c. n.c. 5 12 D3 STROBE 6 11 D2 TONE 7 10 D1/SDA A0 8 9 PCD3311CT D0/SCL MGG509 Fig.3 Pin configuration PCD3311CT. 6.5 Pinning PCD3312C 6.6 Pin description PCD3312C SYMBOL handbook, halfpage VSS 1 8 SDA VDD 2 7 SCL OSCI 3 6 A0 OSCO 4 5 TONE PCD3312C MGG510 Fig.4 Pin configuration PCD3312C. 1996 Nov 21 5 DESCRIPTION PIN TYPE DESCRIPTION VSS 1 P negative supply VDD 2 P positive supply OSCI 3 I oscillator input OSCO 4 O oscillator output TONE 5 O frequency output (DTMF, modem, musical tones) A0 6 I slave address input (to be connected to VDD or VSS) SCL 7 I I2C-bus clock line SDA 8 I I2C-bus data line Philips Semiconductors Product specification DTMF/modem/musical-tone generators 7 7.1 FUNCTIONAL DESCRIPTION 7.4 A code representing the required tones is sent to the Divider Selection ROM which selects the correct division ratio in both of the Frequency Dividers (or in one divider, if only a single tone is required). D4 and D5 are used to select between DTMF dual, DTMF single, modem and musical tones (see Table 1). D0, D1, D2 and D3 select the tone combination or single tone within the selected application. They also, in combination with D4, select the standby mode. See Tables 2, 3, 4 and 5. The Oscillator circuit provides a square wave of frequency 3.58 MHz. Each Frequency Divider divides the frequency of the Oscillator to give a serial digital square wave with a frequency simply related to that of the required tone. PCD 3312C has no parallel data pins as data input is via the I2C-bus. The output from each Frequency Divider goes to a DAC, which is also fed by a clock derived from the oscillator. Using these two signals, the DAC produces an approximate sine wave of the required frequency, with an amplitude derived from the Voltage Reference. Table 1 D5 D4 APPLICATION LOW HIGH DTMF dual tones (all 16 combinations) The output from the Adder goes through two stages of Low Pass Filters to give a smoothed tone (single or dual), and finally to the TONE output. HIGH LOW modem tones HIGH HIGH musical tones 7.5 Clock/oscillator connection Strobe input (PCD3311C ) The STROBE input (with internal pull-down) allows the loading of parallel data into D0 to D5 when MODE is HIGH. The timebase for the PCD3311C and PCD3312C is a crystal-controlled oscillator, requiring a 3.58 MHz quartz crystal to be connected between OSCI and OSCO. Alternatively, the OSCI input can be driven from an external clock of 3.58 MHz. The data inputs must be stable preceding the positive-going edge of the strobe pulse (active HIGH). Input data are loaded at the negative-going edge of the strobe pulse and then the corresponding tone (or standby mode) is provided at the TONE output. The output remains unchanged until the negative-going edge of the next STROBE pulse (for new data) is received. Figure 5 is an example of the timing relationship between STROBE and the data inputs. Mode selection (PCD3311C) The MODE input selects the data input mode for the PCD3311C. When MODE is connected to VDD (HIGH), data can be received in the parallel mode. When connected to VSS (LOW) or left open, data can be received via the serial I2C-bus. When MODE is LOW, data is received serially via the I2C-bus. PCD 3312C has no MODE input as data input is via the I2C-bus only. 1996 Nov 21 Use of D5 and D4 to select application LOW LOW DTMF single tones; musical tones; standby The output from the DAC goes to an Adder where, for DTMF, it is combined with the output from the other DAC. 7.3 Data inputs (PCD3311C) Inputs D0, D1, D2, D3, D4 and D5 are used in the parallel data input mode of the PCD3311C. Inputs D0 and D1 are also used in serial input mode when they act as the SCL and SDA inputs respectively. Inputs D0 and D1 have no internal pull-down or pull-up resistors and must not be left open in any application. Inputs D2, D3, D4 and D5 have internal pull-down. General (see Fig.1) The Input Control Logic decodes the input data to determine whether DTMF, modem or musical tones are selected; and which particular tone or combination of tones is required. 7.2 PCD3311C; PCD3312C 6 Philips Semiconductors Product specification DTMF/modem/musical-tone generators PCD3311C; PCD3312C tSPW handbook, full pagewidth 90% 10% STROBE tDS tDH D0 D1 D2 D3 D4 D5 ttone (ON) TONE oscillator OFF MGG511 Fig.5 7.6 oscillator ON output tones Timing of STROBE, parallel data inputs and TONE output (770 Hz + 1477 Hz in example) in the parallel mode (MODE = HIGH). I2C-bus clock and data inputs 7.8 SCL and SDA are the serial clock and serial data inputs according to the I2C-bus specification, see Chapter 8. SCL and SDA must be pulled up externally to VDD. The slave address in the serial mode consists of 7 bits: 6 bits internally fixed, 1 externally set via A0. in the serial mode, the same input data codes are used as in the parallel mode. See Tables 2, 3, 4 and 5. Address input Address input A0 defines the least significant bit of the I2C-bus address of the device (see Fig.6). The first 6 bits of the address are fixed internally. By tying the A0 of each device to VDD (HIGH) and VSS (LOW) respectively, two different PCD3311C or PCD3312C devices can be individually addressed on the bus. 7.9 Tone output The single and dual tones provided at the TONE output are first filtered by an on-chip switched-capacitor filter, followed by an active RC low-pass filter. The filtered tones fulfil the CEPT recommendations for total harmonic distortion of DTMF tones. An on-chip reference voltage provides output tone levels independent of the supply voltage. Tables 3, 4 and 5 give the frequency deviation of the output tones with respect to the standard DTMF, modem and music frequencies. Whether one or two devices are used, A0 must be connected to VDD or VSS. 1996 Nov 21 I2C-bus data configuration (see Fig.6) The PCD3311C and PCD3312C are always slave receivers in the I2C-bus configuration. The R/W bit in is thus always LOW, indicating that the master (microcontroller) is writing. For the PCD3311C, SCL and SDA are combined with parallel inputs D0 and D1 respectively - D0/SCL and D1/SDA operate serially only when MODE is LOW. 7.7 oscillator ON no output tone 7 Philips Semiconductors Product specification DTMF/modem/musical-tone generators PCD3311C; PCD3312C acknowledge from slave handbook, full pagewidth MSB S 0 acknowledge from slave R/W 1 0 0 1 0 A0 0 A X X D5 D4 slave address D3 D2 D1 D0 A P data internal STROBE for data latching MGG512 Fig.6 I2C-bus data format. 7.10 Power-on reset In order to avoid an undefined state when the power is switched ON, the devices have an internal reset circuit which sets the standby mode (oscillator OFF). 7.11 TABLES OF INPUT AND OUTPUT The specified output tones are obtained when a 3.579545 MHz crystal is used. In each table, the logical states for the input data lines are related to voltage levels as follows: 1 = HIGH = VDD 0 = LOW = VSS X = don’t care Table 2 Input data for no output tone, TONE in 3-state D5 D4 D3 D2 D1 D0 HEX(1) OSCILLATOR X 0 0 0 0 0 00 or 20 ON X 0 0 0 0 1 01 or 21 OFF X 0 0 0 1 0 02 or 22 OFF X 0 0 0 1 1 03 or 23 OFF Note 1. The alternative HEX values depend on the value of D5. 1996 Nov 21 8 Philips Semiconductors Product specification DTMF/modem/musical-tone generators Table 3 D5 PCD3311C; PCD3312C Input data and output for DTMF tones D4 D3 D2 D1 D0 HEX TONE STANDARD OUTPUT SYMBOL FREQUENCY FREQ. Hz Hz FREQUENCY DEVIATION % Hz 08 − 697 697.90 +0.13 +0.90 1 09 − 770 770.46 +0.06 +0.46 0 0A − 852 850.45 −0.18 −1.55 1 1 0B − 941 943.23 +0.24 +2.23 1 0 0 0C − 1209 1206.45 −0.21 −2.55 1 0 1 0D − 1336 1341.66 +0.42 +5.66 1 1 1 0 0E − 1477 1482.21 +0.35 +5.21 0 1 1 1 1 0F − 1633 1638.24 +0.32 +5.24 1 0 0 0 0 10 0 941+1336 − − − 1 0 0 0 1 11 1 697+1209 − − − 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 12 2 697+1336 − − − 0 1 0 0 1 1 13 3 697+1477 − − − 0 1 0 1 0 0 14 4 770+1209 − − − 0 1 0 1 0 1 15 5 770+1336 − − − 0 1 0 1 1 0 16 6 770+1477 − − − 0 1 0 1 1 1 17 7 852+1209 − − − 0 1 1 0 0 0 18 8 852+1336 − − − 0 1 1 0 0 1 19 9 852+1477 − − − 0 1 1 0 1 0 1A A 697+1633 − − − 0 1 1 0 1 1 1B B 770+1633 − − − 0 1 1 1 0 0 1C C 852+1633 − − − 0 1 1 1 0 1 1D D 941+1633 − − − 0 1 1 1 1 0 1E * 941+1209 − − − 0 1 1 1 1 1 1F # 941+1477 − − − Table 4 D5 Input data and output for modem tones D4 D3 D2 D1 D0 HEX STANDARD FREQUENCY TONE OUTPUT FREQ. Hz Hz FREQUENCY DEVIATION % Hz 1 0 0 1 0 0 24 1300 1296.94 −0.24 −3.06 1 0 0 1 0 1 25 2100 2103.14 +0.15 +3.14 1 0 0 1 1 0 26 1200 1197.17 −0.24 −2.83 1 0 0 1 1 1 27 2200 2192.01 −0.36 −7.99 1 0 1 0 0 0 28 980 978.82 −0.12 −1.18 1 0 1 0 0 1 29 1180 1179.03 −0.08 −0.97 1996 Nov 21 9 TELECOM. STANDARD V.23 Bell 202 V.21 Philips Semiconductors Product specification DTMF/modem/musical-tone generators D5 D4 D3 D2 D1 D0 HEX PCD3311C; PCD3312C STANDARD FREQUENCY TONE OUTPUT FREQ. Hz Hz FREQUENCY DEVIATION % Hz 1 0 1 0 1 0 2A 1070 1 073.33 +0.31 +3.33 1 0 1 0 1 1 2B 1270 1265.30 −0.37 −4.70 1 0 1 1 0 0 2C 1650 1655.66 +0.34 +5.66 1 0 1 1 0 1 2D 1850 1852.77 +0.15 +2.77 1 0 1 1 1 0 2E 2 025 2021.20 −0.19 −3.80 1 0 1 1 1 1 2F 2225 2223.32 −0.08 −1.68 Table 5 D5 TELECOM. STANDARD Bell 103 V.21 Bell 103 Input/output for musical tones D4 D3 D2 D1 D0 HEX NOTE STD. FREQ. BASED ON A4 = 440 Hz TONE OUTPUT FREQUENCY Hz Hz 1 1 0 0 0 0 30 D#5 622.3 622.5 1 1 0 0 0 1 31 E5 659.3 659.5 1 1 0 0 1 0 32 F5 698.5 697.9 1 1 0 0 1 1 33 F#5 740.0 741.1 1 1 0 1 0 0 34 G5 784.0 782.1 1 1 0 1 0 1 35 G#5 830.6 832.3 1 1 0 1 1 0 36 A5 880.0 879.3 1 1 0 1 1 1 37 A#5 932.3 931.9 1 1 1 0 0 0 38 B5 987.8 985.0 1 1 1 0 0 1 39 C6 1046.5 1044.5 1 1 1 0 1 0 3A C#6 1108.7 1111.7 1 0 1 0 0 1 29 D6 1174.7 1179.0 1 1 1 0 1 1 3B D#6 1244.5 1245.1 1 1 1 1 0 0 3C E6 1318.5 1318.9 1 1 1 1 0 1 3D F6 1396.9 1402.1 0 0 1 1 1 0 0E F#6 1480.0 1482.2 1 1 1 1 1 0 3E G6 1568.0 1572.0 1 0 1 1 0 0 2C G#6 1661.2 1655.7 1 1 1 1 1 1 3F A6 1760.0 1768.5 0 0 0 1 0 0 04 A#6 1864.7 1875.1 0 0 0 1 0 1 05 B6 1975.5 1970.0 1 0 0 1 0 1 25 C7 2093.0 2103.1 1 0 1 1 1 1 2F C#7 2217.5 2223.3 0 0 1 1 1 0 06 D7 2349.3 2358.1 0 0 0 1 1 1 07 D#7 2489.0 2470.4 1996 Nov 21 10 Philips Semiconductors Product specification DTMF/modem/musical-tone generators 8 PCD3311C; PCD3312C I2C-BUS INTERFACE The I2C-bus is for two-way communication between different ICs or modules. It uses only two lines, a serial data line (SDA) and a serial clock line (SCL), both of which are bi-directional. Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy. 8.1 Bit transfer (see Fig.7) One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals. SDA SCL change of data allowed data line stable; data valid MBC621 Fig.7 Bit transfer. 8.2 Start and stop conditions (see Fig.8) Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P). SDA SDA SCL SCL S P START condition STOP condition Fig.8 Start and stop conditions. 1996 Nov 21 11 MBC622 Philips Semiconductors Product specification DTMF/modem/musical-tone generators 8.3 PCD3311C; PCD3312C System configuration (see Fig.9) A device generating a message is a ‘transmitter’, a device receiving a message is the ‘receiver’. The device that controls message transfer is the ‘master’ and the devices that are controlled by the master are the ‘slaves’. SDA SCL MASTER TRANSMITTER / RECEIVER SLAVE TRANSMITTER / RECEIVER SLAVE RECEIVER MASTER TRANSMITTER / RECEIVER MASTER TRANSMITTER MBA605 Fig.9 System configuration. 8.4 Acknowledge The number of data bytes transferred between the start and stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge after the reception of each byte. Also a master must generate an acknowledge after reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge-related clock pulse. Set-up and hold times must be taken into account to ensure that the SDA line is stable LOW during the whole HIGH period of the acknowledge-related clock pulse. A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate the stop condition. DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER acknowledge SCL FROM MASTER 1 2 8 9 S START CONDITION MBC602 Fig.10 Acknowledgment on the I2C-bus. 1996 Nov 21 12 clock pulse for acknowledgement Philips Semiconductors Product specification DTMF/modem/musical-tone generators 8.5 PCD3311C; PCD3312C Timing specifications The PCD3311C and PCD3312C accept data input from a microcontroller and are ‘slave receivers’ when operating via the I2C-bus. They support the ‘standard’ and ‘low-speed’ modes of the I2C-bus, but not the ‘fast’ mode detailed in “The I2C-bus and how to use it” document order no. 9398 393 40011. The timing requirements for the devices are described in Sections 8.5.1 and 8.5.2. 8.5.1 STANDARD MODE Masters generate a bus clock with a maximum frequency of 100 kHz. Detailed timing is shown in Fig.11, where the two signal levels are LOW = VIL and HIGH = VIH, see Chapter 11. Figure 12 shows a complete data transfer in standard mode. The time symbols are explained in Table 6. handbook, full pagewidth SDA t LOW t BUF tf SCL t HD;STA tr t HD;DAT t HIGH t SU;DAT SDA MBC764 t SU;STA Fig.11 Standard mode timing. 1996 Nov 21 13 t SU;STO Philips Semiconductors Product specification DTMF/modem/musical-tone generators PCD3311C; PCD3312C handbook, full pagewidth SDA SCL 1-7 8 START ADDRESS CONDITION R/W 9 ACK 1-7 8 DATA 9 ACK 1-7 START ADDRESS CONDITION 8 9 R/W ACK STOP MBC765 Clock LOW minimum = 4.7 µs; clock HIGH minimum = 4 µs. The dashed line is the acknowledgment of the receiver. Mark-to-space ratio = 1 : 1 (LOW-to-HIGH). Maximum number of bytes is unrestricted. Premature termination of transfer is allowed by generation of STOP condition. Acknowledge clock bit must be provided by master. Fig.12 Complete data transfer in standard mode. Table 6 Explanation of time symbols used in Fig.11 SYMBOL PARAMETER REMARKS MIN. MAX. UNIT fSCL SCL clock frequency tSW tolerable pulse spike width − 100 ns tBUF bus free time The time that the bus is free (SDA is HIGH) before a new transmission is initiated by SDA going LOW. 4.7 − µs tSU;STA set-up time repeated START Only valid for repeated start code. 4.7 − µs tHD;STA hold time START condition The time between SDA going LOW and the first 4.0 valid negative-going transition of SCL. − µs tLOW SCL LOW time The LOW period of the SCL clock. 4.7 − µs tHIGH SCL HIGH time The HIGH period of the SCL clock. 4.0 − µs tr rise time SDA and SCL − 1.0 µs tf fall time SDA and SCL − 0.3 µs tSU;DAT data set-up time 250 − ns tHD;DAT data hold time 0 − ns tSU;STO set-up time STOP condition 4.0 − µs 8.5.2 0 100 kHz LOW-SPEED MODE Masters generate a bus clock with a maximum frequency of 2 kHz; a minimum LOW period of 105 µs and a minimum HIGH period of 365 µs. The mark-to-space ratio is 1 : 3 LOW-to-HIGH. Detailed timing is shown in Fig.13, where the two signal levels are LOW = VIL and HIGH = VIH, see Chapter 11. Figure 14 shows a complete data transfer in low-speed mode.The time symbols are explained in Table 7. 1996 Nov 21 14 Philips Semiconductors Product specification DTMF/modem/musical-tone generators PCD3311C; PCD3312C handbook, full pagewidth SDA tLOW tBUF tf SCL tHD;STA tr tHIGH tSU;DAT tHD;DAT SDA tSU;STA tSU;STO MGG545 Fig.13 Low-speed mode timing. handbook, full pagewidth R/W SDA SCL START CONDITION START BYTE DUMMY REPEATED ACKNOWLEDGE START CONDITION ADDRESS Clock LOW minimum = 130 µs ±25 µs; clock HIGH minimum 390 µs ±25 µs. Mark-to-space ratio = 1 : 3 (LOW-to-HIGH). Start byte 0000 0001. Maximum number of bytes = 6. Premature termination of transfer not allowed. Acknowledge clock bit must be provided by master. Fig.14 Complete data transfer in low speed mode. 1996 Nov 21 15 ACKNOWLEDGE STOP CONDITION MGG546 Philips Semiconductors Product specification DTMF/modem/musical-tone generators Table 7 PCD3311C; PCD3312C Explanation of time symbols used in Fig.13 SYMBOL PARAMETER REMARKS MIN. MAX. UNIT fSCL SCL clock frequency 0 2 kHz tSW tolerable pulse spike width − 100 ns tBUF bus free time The time that the bus is free (SDA is HIGH) before a new transmission is initiated by SDA going LOW. 105 − µs tSU;STA set-up time repeated START Only valid for repeated start code. 105 155 µs tHD;STA hold time START condition The time between SDA going LOW and the first valid negative-going transition of SCL. 365 415 µs tLOW SCL LOW time The LOW period of the SCL clock. 105 155 µs tHIGH SCL HIGH time The HIGH period of the SCL clock. 365 − µs tr rise time SDA and SCL − 1.0 µs tf fall time SDA and SCL − 0.3 µs tSU;DAT data set-up time 250 − ns tHD;DAT data hold time 0 − ns tSU;STO set-up time STOP condition 105 155 µs 9 HANDLING Inputs and outputs are protected against electrostatic discharge in normal handling. However, it is good practice to take normal precautions appropriate to handling MOS devices (see “Handbook IC03, Section: General, Handling MOS devices”). 1996 Nov 21 16 Philips Semiconductors Product specification DTMF/modem/musical-tone generators PCD3311C; PCD3312C 10 LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 134). SYMBOL PARAMETER MIN. MAX. UNIT VDD supply voltage −0.8 +8.0 V VI all input voltages −0.8 VDD + 0.8 V II DC input current −10 +10 mA IO DC output current −10 +10 mA Ptot total power dissipation − 300 mW PO power dissipation per output − 50 mW IDD supply current through pin VDD −50 +50 mA ISS supply current through pin VSS −50 +50 mA Tstg storage temperature −65 +150 °C Tamb operating ambient temperature −25 +70 °C 11 CHARACTERISTICS VDD = 2.5 to 6.0 V; VSS = 0 V; Tamb = −25 to +70 °C; all voltages with respect to VSS; fxtal = 3.58 MHz (gmL); maximum series resistance = 50 Ω; unless otherwise specified. SYMBOL PARAMETER MIN. MAX. UNIT 2.5 − 6.0 V no output tone − 50 100 µA single output tone − 0.5 0.8 mA VDD operating supply voltage IDD operating supply current (note 1) dual output tone Istb TYP static standby current (note 2) − 0.6 0.9 mA − − 3 µA Inputs/outputs (SDA) D0 TO D5; MODE; STROBE VIL LOW level input voltage 0 − 0.3VDD V VIH HIGH level input voltage 0.7VDD − VDD V −30 −150 −300 nA D2 TO D5 MODE; STROBE; A0 IIL pull-down input current; VI = VDD SCL (D0); SDA (D1) IOL LOW level output current (SDA); VOL = 0.4 V 3 − − mA fSCL SCL clock frequency − − 100 kHz Ci input capacitance; VI = VSS − − 7 pF ti allowable input spike pulse width − − 100 ns 1996 Nov 21 17 Philips Semiconductors Product specification DTMF/modem/musical-tone generators SYMBOL PCD3311C; PCD3312C PARAMETER MIN. TYP MAX. UNIT TONE output (see test circuit, Fig.15) VHG(RMS) DTMF output voltage (RMS), HIGH group 158 192 205 mV VLG(RMS) DTMF output voltage (RMS), LOW group 125 150 160 mV − V VDC DC voltage level − 1⁄ Gv voltage gain (pre-emphasis) of group 1.85 2.10 2.35 dB THD Total Harmonic Distortion; Tamb = 25 °C − −25 − dB dual tone (note 3) − −29 − dB output impedance − 0.1 0.5 kΩ maximum allowable amplitude at OSCI − − VDD − VSS V modem tone (note 4) Zo 2 VDD OSCI input VOSC(p-p) Timing (VDD = 3 V) tOSC(ON) oscillator start-up time − 3 − ms tTONE(ON) TONE start-up time (note 5) − 0.5 − ms tSPW STROBE pulse width (note 6) 400 − − ns tDS data set-up time (note 6) 150 − − ns tDH data hold time (note 6) 100 − − ns Notes 1. Oscillator ON; VDD = 3 V; crystal connected between OSCI and OSCO; D0/SCL and D1/SDA connected via resistance of 5.6 kΩ to VDD; all other pins left open. 2. As note 1, but with oscillator OFF. 3. Related to the level of the LOW group frequency component, according to CEPT recommendations. 4. Related to the level of the fundamental frequency. 5. Oscillator must be running. 6. Values are referenced to the 10% and 90% levels of the relevant pulse amplitudes, with a total voltage swing from VSS to VDD. handbook, halfpage 1 µF VDD TONE PCD3311C PCD3312C 50 pF VSS 10 kΩ MGG513 Fig.15 TONE output test circuit. 1996 Nov 21 18 Philips Semiconductors Product specification DTMF/modem/musical-tone generators MGG514 1.6 PCD3311C; PCD3312C MGG515 300 handbook, halfpage handbook, halfpage Istb (µA) Tamb = IDD Tamb = −25 ˚C (µA) −25 ˚C 1.2 +25 ˚C 200 +25 ˚C +70 ˚C +70 ˚C 0.8 100 0.4 0 0 0 2 4 6 VDD (V) 0 8 MGG516 1.5 6 V 8 DD (V) MGG517 6 handbook, halfpage Tamb = −25 ˚C IDD (mA) 4 Fig.17 Operating supply current as a function of supply voltage; oscillator ON, no output at TONE. Fig.16 Standby supply current as a function of supply voltage; oscillator OFF. handbook, halfpage 2 Tamb = −25 ˚C II +25 ˚C +70 ˚C (µA) +25 ˚C 4 1 +70 ˚C 2 0.5 0 0 0 2 4 0 6 V 8 DD (V) Fig.18 Operating supply current as a function of supply voltage; oscillator ON, dual tone at TONE. 1996 Nov 21 1 2 VI (V) 3 Fig.19 Pull-down input current as a function of input voltage; VDD = 3 V. 19 Philips Semiconductors Product specification DTMF/modem/musical-tone generators PCD3311C; PCD3312C MGG518 −11 VTONE handbook, halfpage VTONE Tamb = (dBm) (dB) −25 ˚C −12 MGG519 0.4 handbook, halfpage HIGH GROUP +25 ˚C Tamb = 0 +70 ˚C −25 ˚C +25 ˚C −13 −0.4 −14 +70 ˚C −25 ˚C +25 ˚C LOW GROUP +70 ˚C −15 0 2 4 VDD (V) −0.8 106 6 Fig.20 DTMF output voltage levels as a function of operating supply voltage; RL = 1 MΩ. 105 104 RL (Ω) Fig.21 Dual tone output voltage level as a function of output load resistance. MGG520 handbook, full pagewidth 0 level (dBm) −20 CS203 −40 −60 −80 −100 0 1 2 3 4 handbook, full pagewidth 5 frequency (kHz) MGG521 0 level (dBm) −20 −40 −60 CS203 −80 −100 0 10 20 30 40 frequency (kHz) 50 Fig.22 Typical frequency spectrum of a dual tone signal after flat-band amplification of 6 dB. 1996 Nov 21 103 20 Philips Semiconductors Product specification DTMF/modem/musical-tone generators PCD3311C; PCD3312C 12 APPLICATION INFORMATION VSS handbook, halfpage 1 2 3 A 4 5 6 B 7 8 9 C 0 D VDD mute GENERAL PURPOSE MICROCONTROLLER (4 or 8-BIT) data bus OSCI OSCO STROBE D0 PCD3311C TONE D5 MODE VDD VSS MBH669 Fig.23 PCD3311C driven by microcontroller with parallel data bus. VSS handbook, halfpage 1 2 3 A 4 5 6 B 7 8 9 C 0 D VDD mute TELEPHONY MICROCONTROLLER PCF84C21A OSCI OSCO 3.58 MHz I2C bus 4 pF OSCI OSCO SCL PCD3312C TONE SDA A0 VSS VDD MGG544 Fig.24 PCD3312C driven by microcontroller PCF84C21A. The PCF84C21A is a single-chip 8-bit microcontroller with 2 kbytes ROM and I2C-bus. The same application is possible with the PCD3311C with MODE = VSS. 1996 Nov 21 21 Philips Semiconductors Product specification DTMF/modem/musical-tone generators PCD3311C; PCD3312C 13 PACKAGE OUTLINES DIP14: plastic dual in-line package; 14 leads (300 mil) SOT27-1 ME seating plane D A2 A A1 L c e Z w M b1 (e 1) b MH 8 14 pin 1 index E 1 7 0 5 10 mm scale DIMENSIONS (inch dimensions are derived from the original mm dimensions) UNIT A max. A1 min. A2 max. b b1 c D (1) E (1) e e1 L ME MH w Z (1) max. mm 4.2 0.51 3.2 1.73 1.13 0.53 0.38 0.36 0.23 19.50 18.55 6.48 6.20 2.54 7.62 3.60 3.05 8.25 7.80 10.0 8.3 0.254 2.2 inches 0.17 0.020 0.13 0.068 0.044 0.021 0.015 0.014 0.009 0.77 0.73 0.26 0.24 0.10 0.30 0.14 0.12 0.32 0.31 0.39 0.33 0.01 0.087 Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. REFERENCES OUTLINE VERSION IEC JEDEC SOT27-1 050G04 MO-001AA 1996 Nov 21 EIAJ EUROPEAN PROJECTION ISSUE DATE 92-11-17 95-03-11 22 Philips Semiconductors Product specification DTMF/modem/musical-tone generators PCD3311C; PCD3312C SO16: plastic small outline package; 16 leads; body width 7.5 mm SOT162-1 D E A X c HE y v M A Z 9 16 Q A2 A (A 3) A1 pin 1 index θ Lp L 1 8 e detail X w M bp 0 5 10 mm scale DIMENSIONS (inch dimensions are derived from the original mm dimensions) UNIT A max. A1 A2 A3 bp c D (1) E (1) e HE L Lp Q v w y mm 2.65 0.30 0.10 2.45 2.25 0.25 0.49 0.36 0.32 0.23 10.5 10.1 7.6 7.4 1.27 10.65 10.00 1.4 1.1 0.4 1.1 1.0 0.25 0.25 0.1 0.9 0.4 0.012 0.096 0.004 0.089 0.01 0.019 0.013 0.014 0.009 0.41 0.40 0.30 0.29 0.050 0.42 0.39 0.055 0.043 0.016 0.043 0.039 0.01 0.01 0.004 0.035 0.016 inches 0.10 Z (1) θ Note 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. REFERENCES OUTLINE VERSION IEC JEDEC SOT162-1 075E03 MS-013AA 1996 Nov 21 EIAJ EUROPEAN PROJECTION ISSUE DATE 92-11-17 95-01-24 23 o 8 0o Philips Semiconductors Product specification DTMF/modem/musical-tone generators PCD3311C; PCD3312C DIP8: plastic dual in-line package; 8 leads (300 mil) SOT97-1 ME seating plane D A2 A A1 L c Z w M b1 e (e 1) b MH b2 5 8 pin 1 index E 1 4 0 5 10 mm scale DIMENSIONS (inch dimensions are derived from the original mm dimensions) UNIT A max. A1 min. A2 max. b b1 b2 c D (1) E (1) e e1 L ME MH w Z (1) max. mm 4.2 0.51 3.2 1.73 1.14 0.53 0.38 1.07 0.89 0.36 0.23 9.8 9.2 6.48 6.20 2.54 7.62 3.60 3.05 8.25 7.80 10.0 8.3 0.254 1.15 inches 0.17 0.020 0.13 0.068 0.045 0.021 0.015 0.042 0.035 0.014 0.009 0.39 0.36 0.26 0.24 0.10 0.30 0.14 0.12 0.32 0.31 0.39 0.33 0.01 0.045 Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. REFERENCES OUTLINE VERSION IEC JEDEC SOT97-1 050G01 MO-001AN 1996 Nov 21 EIAJ EUROPEAN PROJECTION ISSUE DATE 92-11-17 95-02-04 24 Philips Semiconductors Product specification DTMF/modem/musical-tone generators PCD3311C; PCD3312C SO8: plastic small outline package; 8 leads; body width 7.5 mm SOT176-1 D E A X c y HE v M A Z 8 5 Q A2 A (A 3) A1 pin 1 index θ Lp L 1 4 e detail X w M bp 0 5 10 mm scale DIMENSIONS (inch dimensions are derived from the original mm dimensions) UNIT A max. A1 A2 A3 bp c D (1) E (1) e HE L Lp Q v w y Z (1) mm 2.65 0.3 0.1 2.45 2.25 0.25 0.49 0.36 0.32 0.23 7.65 7.45 7.6 7.4 1.27 10.65 10.00 1.45 1.1 0.45 1.1 1.0 0.25 0.25 0.1 2.0 1.8 0.012 0.096 0.004 0.089 0.01 0.019 0.013 0.014 0.009 0.30 0.29 0.30 0.29 0.050 0.42 0.39 0.057 0.043 0.018 0.043 0.039 0.01 0.01 0.004 0.079 0.071 inches 0.10 θ Note 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. OUTLINE VERSION REFERENCES IEC JEDEC EIAJ ISSUE DATE 91-08-13 95-02-25 SOT176-1 1996 Nov 21 EUROPEAN PROJECTION 25 o 8 0o Philips Semiconductors Product specification DTMF/modem/musical-tone generators Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C. 14 SOLDERING 14.1 Introduction There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used. Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C. 14.3.2 This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our “IC Package Databook” (order code 9398 652 90011). 14.2 14.2.1 • A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used. DIP SOLDERING BY DIPPING OR BY WAVE • The longitudinal axis of the package footprint must be parallel to the solder flow. • The package footprint must incorporate solder thieves at the downstream end. During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured. The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature (Tstg max). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit. Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C. REPAIRING SOLDERED JOINTS A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications. Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds. 14.3 14.3.1 14.3.3 REPAIRING SOLDERED JOINTS Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C. SO REFLOW SOLDERING Reflow soldering techniques are suitable for all SO packages. Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. 1996 Nov 21 WAVE SOLDERING Wave soldering techniques can be used for all SO packages if the following conditions are observed: The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds. 14.2.2 PCD3311C; PCD3312C 26 Philips Semiconductors Product specification DTMF/modem/musical-tone generators PCD3311C; PCD3312C 15 DEFINITIONS Data sheet status Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications. Limiting values Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. 16 LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. 17 PURCHASE OF PHILIPS I2C COMPONENTS Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the components in the I2C system provided the system conforms to the I2C specification defined by Philips. This specification can be ordered using the code 9398 393 40011. 1996 Nov 21 27 Philips Semiconductors – a worldwide company Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101, Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 32 88 2636, Fax. +45 31 57 1949 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615800, Fax. +358 9 61580/xxx France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 23 53 60, Fax. +49 40 23 536 300 Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS, Tel. +30 1 4894 339/239, Fax. +30 1 4814 240 Hungary: see Austria India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd. Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722 Indonesia: see Singapore Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381 Middle East: see Italy Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341 Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327 Portugal: see Spain Romania: see Italy Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 247 9145, Fax. +7 095 247 9144 Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. +65 350 2538, Fax. +65 251 6500 Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494 South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 829 1849 Spain: Balmes 22, 08007 BARCELONA, Tel. +34 3 301 6312, Fax. +34 3 301 4107 Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 632 2000, Fax. +46 8 632 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2686, Fax. +41 1 481 7730 Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West Road, Sec. 1, P.O. Box 22978, TAIPEI 100, Tel. +886 2 382 4443, Fax. +886 2 382 4444 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793 Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381 Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 625 344, Fax.+381 11 635 777 For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825 Internet: http://www.semiconductors.philips.com © Philips Electronics N.V. 1996 SCA52 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Printed in The Netherlands 417021/1200/02/pp28 Date of release: 1996 Nov 21 Document order number: 9397 750 01155