STMICROELECTRONICS STV2001

STV2001
I2C SINGLE FREQUENCY DEFLECTION PROCESSOR
AND 120 MHz RGB PREAMPLIFIER
TARGET SPECIFICATION
FEATURES
■
Horizontal deflection
■
■
■
■
■
■
■
■
■
■
■
Single Frequency, Self Adaptive Oscillator.
TTL compatible positive going sync.
Chip does not accept sync on RGB or any video
signal.
I2C controlled: H-position, pin cushion,
keystone, parallelogram, side pin balance.
I2C controlled EW corner : top and bottom
corrections.
I2C controlled corner: top and bottom phase
corrections.
EW output
I2C controlled H-amplitude
DC controlled H-width breathing compensation
with I2C controlled gain (0.5x to 2x).
Xray shut-down on ABL, H output latch, reset by
power OFF/ON.
Soft start on H-duty.
Vertical deflection
■
■
■
■
■
■
■
Vertical ramp generator.
Wide range AGC loop.
TTL compatible positive going sync, no extra
pulses.
I2C controlled vertical position.
I2C controlled S linearity correction.
DC controlled height breathing compensation
with I2C controlled gain (0.5X TO 2X).
Vertical dynamic focus output with fixed
amplitude (1Vpp).
Video preamplifier
■
■
■
■
■
3-Channel 120MHz bandwidth video amplifier.
3.5ns typical rise and fall time at 2.5VPP.
I2C controlled individual RGB contrast
(8bit)>8db
I2C controlled overall brightness.
Activation of ABL results in contrast gain
decrease.
■
■
Gain window (1.5X) controlled by input pulse
and I2C. Pulse height controls the gain variation
from 1x to 1.5x.
0.514V typical video input signal for normal
display.
I2C controlled contrast (7bits) update during
vertical retrace time.
I2C main features
■
■
■
I2C interface (slave) 100kHz max.
All I2C controlled DAC are 7 bits, except RGB
gain.
Power on reset on 5 V (VDD).
Supply voltage & power
■
■
5 V/10.5 V dual supply.
Max power consumption: 1.2W
DESCRIPTION
The STV2001 is an I2C-controlled monolithic
integrated circuit assembled in a TQFP44 plastic
package. It combines both a deflection block
(horizontal and vertical, single frequency with very
powerful geometry correction) and a 120MHz
RGB pre-amplifier.
TQFP44/SLUG DOWN
ORDER CODE :
Version 1.2
May 2000
This is preliminary information on a new product now in development. Details are subject to change without notice.
1/46
1
TABLE OF CONTENTS
1 - PIN CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 - PIN DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 - BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 - ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5 - THERMAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6 - SYNC INPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7 - I2C READ/WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
8 - HORIZONTAL SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
9 - VERTICAL SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
10 - VIDEO PRE-AMP SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
11 - LOGIC SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
12 - I2C BUS ADDRESS TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
13 - TYPICAL OUTPUT WAVEFORMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
14 - OPERATING DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
14.1 -GENERAL CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
14.1.1 -Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
14.1.2 -I2C Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
14.1.3 -Write Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
14.1.4 -Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
14.1.5 -Sync Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
14.1.6 -IC Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
14.1.7 -Sync Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
14.1.8 -Sync Processor Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
14.2 -HORIZONTAL PART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
14.2.1 -Internal Input Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
14.2.2 -PLL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
14.2.3 -PLL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
14.2.4 -Output Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
14.2.5 -X-RAY Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
14.3 -VERTICAL PART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
14.3.1 -Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
14.3.2 -I2C Control Adjustments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
14.3.3 -Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
14.3.4 -Geometric Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
14.3.5 -E/W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
14.3.6 -Dynamic Horizontal Phase Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
14.3.7 -Vertical Dynamic Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
14.3.8 -Corner Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
14.3.9 -Horizontal Breathing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
14.3.10 -Vertical Breathing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
14.4 -GENERAL CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
14.4.1 -Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
14.4.2 -Contrast Adjustment (7 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
14.4.3 -ABL Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
14.4.4 -Brightness Adjustment (6 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
14.4.5 -Drive Adjustment (3 x 8 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
. . . . 33
14.4.6 -Output Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
14.4.7 -Bright Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2/3
2
14.4.8 -Blanking Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.5 -GENERAL CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.5.1 -POR (Power On Reset) - Subad. 11-D8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.5.2 -Supply Voltage Threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.5.3 -Video Off (I2C control) - Subad. 00-D8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.5.4 -Vertical Output Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.5.5 -X-Ray, Set Operation - Subad. 09-D8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15 - INTERNAL SCHEMATICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16 - PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35
36
36
36
36
36
36
37
45
3/3
STV2001
4/46
3
VBCAP
PLL2C
HGND
Hfly
Href
Hout
PVCC
GAINWIN
IN1
VBDC
IN2
ABLin
IN3
VFLYin
44 43 42 41 40 39 38 37 36 35 34
33
1
32
2
31
3
30
4
29
5
28
6
27
7
26
8
25
9
10
24
11
23
12 13 14 15 16 17 18 19 20 21 22
OUT2
PGND
OUT3
Hin
Vin
Vref
VAGCCAP
VGND
VCAP
Vout
VRB
VAVcc
OUT1
AGND
Co
Ro
PLL1F
FILTER
FC1
1 - PIN CONNECTIONS
HDGND
LGND
SAVcc
SCL
SDA
VDD(5V)
EWout
FCAP
HBRTHin
VBRTHin
VFOCUS
STV2001
2 - PIN DESCRIPTION
Pin
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
Name
Hin
Vin
Vref
VAGCCAP
VGND
VCAP
Vout
VRB
VAVcc
OUT1
AGND
OUT2
PGND
OUT3
PVcc
GAINWIN
IN1
VBDC
IN2
ABLin
IN3
VFLYin
VFOCUS
VBRTHin
HBRTHin
FCAP
EWout
VDD
SDA
SCL
SAVcc
LGND
HDGND
Hout
Href
Hfly
HGND
PLL2C
VBCAP
PLL1F
Ro
Co
FC1
FILTER
Function
Horizontal Sync Input
Vertical Sync Input
Vertical Section Reference Voltage
Vertical AGC Loop Capacitor
Vertical Section Ground
Vertical Sawtooth Generator Capacitor
Vertical Output
Vertical Ramp Filter
Video Section Analog Supply (10.5V typ)
Video Output 1
Video Analog Ground
Video Output 2
Video Section Power Ground
Video Output 3
Video Section Power Supply (10.5V typ)
Gain Window Input
Video Input 1
Vertical Blanking Output with DC Level adjusted by DAC
Video Input 2
Video Automatic Beam Current Compensation Input
Video Input 3
Vertical Fly Back Pulse Input
Vertical Dynamic Focus Output
Vertical Breathing DC Input
Horizontal Breathing Compensation DC Input
Filter Capacitor
EW Output
Bus, Scanning Logic and Video Logic Supply (5V typ)
I2C Data Input
I2C Clock Input
Scanning Section Analog Supply (10.5Vtyp)
Bus and Scanning Power Ground
H Driver Output Ground
Horizontal Driver Output, open collector
Horizontal Section Reference Voltage
Horizontal Flyback Input, Positive
Horizontal Section Ground
PLL2 Loop Filter
PLL2 Top Comparator Filter
PLL1 Loop Filter
Horizontal Oscillator Resistor
Horizontal Oscillator Capacitor
PLL1 Filter Capacitor
Horizontal Filter Capacitor (HPOS)
5/46
SAVCC 31
43
Phase
Freq
Comp
Vref
3
Hin 1
Vin 2
Vpos
HGND 37
VGND 5
VOSC
RAMP
Generator
42
36
VCO
Vamp
Scorr
38
Hout
VBCAP
HDGND
34
39
33
Corner
Phase
SPB
Tracking
VAGCCAP 4
VRB 8
Safety
EW OUTPUT
EWPCC
X2
+
Geometry
HOUT
Buffer
Phase
Shifter
Phase
Comp
X2
VCAP 6
KeyBal
H Breathing
+
KEYST
VFBack
EW
Corner
VFOCUS 23
VDF
SDA 29
SCL 30
I2C BUS
DECODER
Hsync
IN1 17
Blanking
22 VFLYin
18 VBDC
LATCHES & DACs
Contrast
Clamp
HFly
Hsync
Vsync
27 EWout
26 FCAP
X
Vout 7
VDD 28
LGND 32
41
PLL2C
Href
Href 35
Vref
44
Co HFly
Brightness
Drive
BPCP
EHTcomp
AMP
25 HBRTHin
24 VBRTHin
9 VAVCC
10 OUT 1
11 AGND
Output
Stage
15 PVCC
IN2 19
GAINWIN 16 Gain
WIndow
12 OUT 2
ABL
IN3 21
STV2001
20 ABLin
13 PGND
14 OUT 3
STV2001
40
FILTER FC1 Ro
3 - BLOCK DIAGRAM
6/46
PLL1F
STV2001
4 - ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
SAVcc
Scanning Section Analog Supply Voltage
13.5
V
VAVcc
Video Section Analog Supply Voltage
13.5
V
PVcc
Supply Voltage for Video Pre-Amp Section
13.5
V
Vdd
Logic Section Supply Voltage
5.5
V
ESD susceptibility HBM model 100pF & 1.5kΩ
2
300
kV
V
oC
VESD
EIAJ Norm 200pF & 0Ω
Tstg
Storage Temperature
-40 to 150
Tj
Junction Temperature
150
o
0 to 70
o
Toper
Operating Temperature (Device ambient)
C
C
5 - THERMAL DATA
Symbol
RTH(j-a)
Parameter
Junction to Ambient Thermal Resistance (MAX)
Value
46
Unit
oC/W
6 - SYNC INPUT
Operating Conditions (V DD = 5V, Tamb = 25°C)
Symbol
Parameter
Test Conditions
Min
HSVR
Voltage on Hin
MinD
Min Hin pulse duration
Mduty
Max Hin Duty Cycle
VSVR
Voltage on Vin
0
VSW
Min Vin pulse duration
5
VSD
Max Vin Duty Cycle
Typ
0
Max
Unit
5
V
0.7
us
25
%
5
V
us
15
%
0.8
V
V
Electrical Characteristics (V DD = 5V, Tamb = 25°C)
VINTH
RIN
Horizontal & Vertical Input Logic Level
Horizontal & Vertical Pull-Up Resistor
Low Level
High Level
2.2
200
kΩ
7/46
STV2001
7 - I2C READ/WRITE
Electrical Characteristics (V DD = 5V, Tamb = 25°C)
Symbol
Parameter
Test Conditions
Min
Typ
Max
Unit
100
kHz
FSCL
Maximum Clock Frequency
TLOW
Low Period of the SCL Clock
1.3
us
THIGH
High Period of SCL Clock
0.6
us
VINL
SDA & SCL Input Low Level Voltage
VINH
SDA & SCL Input High Level Voltage
VACK
Acknowledge Output Voltage on SDA
input with 3mA
1.5
3
V
V
0.4
V
Max
Unit
8 - HORIZONTAL SECTION
Operating Conditions
Symbol
Parameter
Test Conditions
Min
Typ
VCO
Ro(min)
Minimum Oscillator Resistor
Co(min)
Minimum Oscillator Capacitor
Fmax
6
kΩ
390
pF
Maximum Oscillator Frequency
150
kHz
Horizontal FlyBack Input Maximum
Current
5
mA
Horizontal Drive Output Maximum Sink
Current
15
mA
OUTPUT SECTION
IHFB
IHOUT
Electrical Characteristics (V DD = 5V, Tamb = 25°C)
Symbol
Parameter
Test Conditions
Min
Typ
Max
Unit
SUPPLY AND REFERENCE VOLTAGES
Vcc
Supply Voltage
9.5
10.5
11.5
V
Vdd
Supply Voltage
4.5
5
5.5
V
Icc
Supply Current
30
mA
Idd
Supply Current
5
mA
VHREF
Horizontal Reference Voltage
I=-2mA
7.4
8
8.6
V
VVREF
Vertical Reference Voltage
I=-2mA
7.4
8
8.6
V
8/46
IHREF
Horizontal Reference Maximum Source
Current
5
mA
IVREF
Vertical Reference Maximum Source
Current
5
mA
STV2001
Operating Conditions
Symbol
Parameter
Test Conditions
Min
Typ
Max
Unit
3.8
V
1st PLL SECTION
Vclamp
VCO clamp Voltage range
VHREF =8V
VVCO
VCO clamp Voltage, at POR
VHREF =8V
3.8
V
AVCO
VCO Gain
Ro=4868Ω, Co=820pF,
dF/dV=1/11RoCo
23
kHz/V
HPHASE
Horizontal Phase Adjustment Range
% of Horizontal Period
+/-10
%
VPMIN
VPTYP
VPMAX
Horizontal Phase Setting
Minimum
Typical
Maximum
SubAdd 07
X1111111
X1000000
X0000000
2.8
3.4
4.0
V
V
V
IPLL1-UL
IPLL1-L1
IPLL1-L2
PLL1 Charge Pump Current
Unlocked
Locked
Locked
Sub-Address 11
+/-40
+/-1
±300
µA
mA
µA
86
kHz
fO
dfo/dT
Free Running Frequency, no input
at POR, lower clamp voltage at max.
3.0
x1xx xxxx
x0xx xxxx
Ro=4868Ω, Co=820pF
Free Running Frequency Thermal Drift
-150
ppm/oC
2nd PLL SECTION & HORIZONTAL OUTPUT SECTION
VTHFB
Flyback Input Threshold Voltage
JitterH
Horizontal Jitter
HDC
Vphi2
0.65
At 80KHz
Horizontal Drive Output Duty Cycle
(Ratio of Power Transistor OFF time to
Period)
Internal Clamp Level on PLL2 Filter
VSCinh
Threshold Voltage to Stop H-Out, V-Out,
Reset ABL when Vcc<VSCinh
VsatHD
Horizontal Drive Output Saturation
Voltage
Low Level
High Level
Iout=15mA
0.75
V
70
ppm
55
%
1.6
4.0
V
V
6.9
V
0.4
V
9/46
STV2001
9 - VERTICAL SECTION
Symbol
Parameter
Test Conditions
Min
Typ
Max
Unit
Electrical Characteristics (V DD = 5V, Tamb = 25°C)
VERTICAL RAMP SECTION
VRBOT
Voltage at Ramp Bottom Point
VVREF=8V
2
V
VRTOP
Voltage at Ramp Top Point with Sync
VVREF=8V
5
V
VRTOPF
Voltage at Ramp Top Point without Sync VVREF=8V
VRTOP0.1
V
TVDIS
Vertical Sawtooth Discharge Time
COSC=150nF
70
µs
FFRV
Vertical Free Running Frequency
(S correction inhibited)
COSC=150nF
100
Hz
ASFR
Auto-Sync Frequency Range
COSC=150nF
RAFD
Ramp Amplitude Drift Versus Frequency
at Maximum Vertical Amplitude
COSC=150nF 50Hz 165Hz
200
ppm/Hz
RLIN
Ramp Linearity at Vcap pin
with S Correction inhibited
2.5V < VOSC < 4.5V
0.5
%
VPOS
Vertical Position Adjustment Voltage
with VOUT mean value
Sub-Add=09
X0000000
X1000000
X1111111
3.3
3.65
3.2
3.5
3.8
V
V
V
2.5
3.5
2.25
3
3.75
V
V
V
VOR
Vertical Output Peak to Peak Voltage
IVOUT
Vertical Output Maximum Current
VVRB
Vertical Ramp Filter Voltage
dVS
Max Vertical S-Correction Amplitude
S-Correction inhibited, DV/Vpp at TV/4
S-correction Maximum,
DV/Vpp at 3TV/4
10/46
Sub-Add=08
10000000
11000000
11111111
50
165
Hz
+/-5
mA
2
V
Sub-Add 0A
0XXXXXXX
-4
%
11111111
+4
%
STV2001
Symbol
Parameter
Test Conditions
Min
Typ
Max
Unit
EAST/WEST FUNCTION (available without feedback connection)
DC Output Voltage with:
-Typical VPOS and Keystone inhibited
-External driver connected as unity gain
buffer
2.0
V
TDEWDC
DC Output Voltage Thermal Drift
(Non-test Parameter)
100
ppm/oC
EWPARA
Parabola Amplitude with:
-Max VAMP
-Typ VPOS
-Keystone inhibited
Sub-add 0C
11111111
11000000
10000000
1.0
0.5
0
V
V
V
Sub-address 08
EWtrack
Parabola Amplitude Function of VAMP
Control (tracking between VAMP & EW)
with:
-Typ VPOS=typ.
-Keystone=typ.
-EW Amplitude=typ.
0.18
0.35
0.57
V
V
V
Sub-address 0B
KeyAdj
Keystone Adjustment Capability with:
-VPOS=typ.
-EW= inhibited
-Vertical Amplitude= Max.
0.2
0.2
Vpp
Vpp
Sub-address 09
KeyTrack
Intrinsic Keystone Function of VPOS
Control (tracking between VPOS and
EW) with :
-EW Amplitude= Max
-Vertical Amplitude=Max
A/B Ratio
B/A Ratio
Sub-address 04
EW Corner
Top
Corner Adjustment capability with :
-VPS=typ,
-EW = inhibited
-VAMP = max
-HSize = Min
-HBreath>VREF
-Keystone = inhibited
Sub-address 15
EW Corner
Bottom
Corner Adjustment capability with :
-VPS=Typ,
-EW = inhibited
-VAMP = Max
-HSize = Min
-HBreath>VREF
-Keystone = inhibited
EWDC
10000000
11000000
11111111
10000000
11111111
X0000000
X1111111
1111 1111
1100 0000
1000 0000
1111 1111
1100 0000
1000 0000
0.52
0.52
+1.25
0
-1.25
Vpp
Vpp
Vpp
+1.25
0
-1.25
Vpp
Vpp
Vpp
11/46
STV2001
Symbol
Parameter
Test Conditions
Min
Typ
Max
Unit
INTERNAL DYNAMIC HORIZONTAL PHASE CONTROL
SBPpara
SPBtrack
ParAdj
Partrack
Side Pin Balance Parabola Amplitude
with:
-VAMP=Max,
-VPOS=typ.
-Parallelogram inhibited
Sub-add 0E
Side Pin Balance Parabola Amplitude
function of VAMP Control (tracking between VAMP & SPB) with
-SPB=Max
-VPO=typ.
-Parallelogram= inhibited
Sub-add 08
Parallelogram Adjustment Capability
with:
-VAMP=Max
-POS =Typ
-SPB=Max
Sub-add 0F
Intrinsic Parallelogram Function of
VPOS Control (tracking between VPOS
and DHPC) with
-VAMP=Max
-SPB=Max
-Parallelogram= inhibited
A/B Ratio
B/A Ratio
Sub-add 09
11111111
10000000
10000000
11000000
11111111
11111111
10000000
X0000000
X1111111
+1.4
-1.4
%TH
%TH
0.5
0.9
1.4
%TH
%TH
%TH
+1.4
-1.4
%TH
%TH
0.52
0.52
VERTICAL BREATHING COMPENSATION
VBRrng
Input DC Breathing Control Range
Vertical Size Compensation
Variation of V output vs full range of
VBRrng
1
Sub-address 14
XX00 0000
X100 0000
XX11 1111
10.5
-20
%
%
%
DC Output Level RL=10kΩ
4
V
VDFamp
VDF Parabola Amplitude with:
Vamp = typ
VPOS = typ.
1
Vpp
VFOCPOL
Parabola Polarity at Output =
Inverted “U”
1
V
VSC
-5
V
VERTICAL DYNAMIC FOCUS OUTPUT
VDFDC
VERTICAL FLYBACK INPUT
VFLYTH
Vertical Flyback Threshold
VFLYINH
Inhibition of Vertical Flyback input
(id pulse in action instead of VFlyback)
6.5
V
HORIZONTAL SIZE CONTROL
Hsize
12/46
Hsize output DC voltage
sitting on top of EWDC=2.0V
sub-add 0D
X0000000
X1111111
0
2.4
V
V
STV2001
Symbol
Parameter
Test Conditions
Min
Typ
Max
Unit
10.5
V
HORIZONTAL BREATHING COMPENSATION
HBRrng
HSC
Breathing input DC Control Range
Horizontal size compensation, EW DC
voltage variation under full range of
HBRrng
1
Sub-address 12
X000 0000
X100 0000
X111 1111
0.2
V
0.8
V
-2.8
+2.8
%
%
-2.8
+2.8
%
%
CORNER PHASE CORRECTION
Corner
Phase Top
Corner
Phase
Bottom
Corner Phase Top Adjustment with:
Vamp = max
Vpos = Typ.
SPB = OFF
Parrallelogram = OFF
Sub-address 05
Corner Phase Bottom Adjustment with:
Vamp = max
Vpos = Typ.
SPB = OFF
Parrallelogram = OFF
Sub-address 06
1000 0000
1111 1111
0000 0000
0111 1111
10 - VIDEO PRE-AMP SECTION
Symbol
Parameter
Test Conditions
Min
Typ
Max
Unit
9.5
10.5
11.5
V
9.5
10.5
11.5
V
DC Electrical Characteristics (VAVCC = PVCC = 10.5V, Tamb = 25oC)
VAVcc
Video Section Analog Supply Voltage
PVcc
Power Section Supply Voltage
IS
Supply Current of VAVcc & PVcc
63
VIN
Video Input Voltage Amplitude
0.7
VOUT
Typical Output Voltage Range
VBlack
Output (Black level)
0.5
mA
1
Vpp
7
V
1.5
V
o
AC Electrical Characteristics (VAVCC = PVCC = 10.5V, CL = 5pF, RL = 1KΩ, Tamb = 25 C)
Symbol
AV
Parameter
Maximum Gain
Condition
Max Contrast and Drive
I2C Gainwin = 1
VIN = 0.7Vpp
Contrast and Drive at
POR
Min
Typ
Max
Unit
18
dB
30
dB
30
dB
CAR
Contrast Attenuation Range
DAR
Drive Attenuation Range
GM
Gain Match
VIN = 0.7Vpp,
VOUT = 4Vpp, Contrast
and Drive= 0.87Max
+-0.1
dB
Large Signal Bandwidth
VIN=0.7Vpp,
VOUT = 2.5Vpp, Contrast
and Drive = 0.87Max
At -3dB
120
MHz
BW
13/46
STV2001
Symbol
Parameter
DIS
Video Output Distortion
tR, tF
Video Output Rise and Fall Time
dVo
Overshoot of output with respect to
actual output amplitude
BRT
Brightness max DC level
Brightness min DC level
RL
Tsample
Thold
CT
Equivalent Load on Video Output
Test Conditions
f=1MHz, VIN=1Vpp,
VOUT = 1Vpp
CLOAD=5pF
Tj<TjMAX
Sample time
VIN = 0.7Vpp,
VOUT = 2.5Vpp,
Contrast and
Drive=0.7Max
f=1MHz
Typ
Max
0.3
VIN = 0.7Vpp,
VOUT =2.5Vpp,Contrast
and Drive=0.87Max
Hold time
Crosstalk Between Video Channels
Min
Unit
%
3.5
4
ns
5
7
%
2.5
0
V
V
1
kΩ
100
ms
1
µs
44
dB
ABL COMPENSATION
RABL
ABL Input resistor
GABL
ABL minimum Attenuation
ABL maximum Attenuation
THABL
ABL latch function activation threshold
(High beam current detection)
VABL=5.3V
VABL=2.8V
10
kΩ
0
12
dB
dB
0
1
V
0.7
V
GAIN WINDOW
VINL
Input Low Level Voltage
VINH
Input High Level Voltage
Gain
Contrast Gain Increase during High
Input
VIN = 1.5V
VIN = 5.0V
TD
14/46
Total Delay Time
1.5
V
1
1.5
V/V
V/V
100
ns
STV2001
11 - LOGIC SECTION
DC Electrical Characteristics (VAVCC = PVCC = 10.5V, Tamb = 25oC)
Symbol
Parameter
Condition
Min
Typ
Max
Unit
VBDC OUTPUT SECTION
Blanking output high voltage
VBDC
Blanking output low voltage
I2C adjustable
IBLK
Output sink current
TBLK
Vertical blanking time
(start by VSync 2 and by VFly)
7
sub-add10
1X000000
1X111111
V
1
4.5
V
V
0.3
mA
SUPPLY VOLTAGE THRESHOLD
VTHPD1
Supply first threshold voltage
8.5
V
VTHPD2
Supply second threshold voltage
6.9
V
15/46
STV2001
12 - I2C BUS ADDRESS TABLE
[0] denotes POR value, X denotes unused data bit and must be set to 0.
D8
D7
D6
WRITE MODE (SLAVE ADDRESS= 8C)
Video
00
1, on
[1]
[0]
[0], off
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
16/46
D5
[1]
[0]
[1]
[1]
[1]
[0]
[1]
[1]
[1]
EWCorner
Top/Bottom
0 off
[1], on
Corner phase
Top/Bottom
1, on
[0],off
Ipump2
1, high
[0], low
Hout
0, off
[1], on
Vramp
0, off
[1], on
Xray
1, reset
[0]
S Select
1, on
[0], off
EW Key
0, off
[1], on
EW Select
0, off
[1], on
[0]
[1]
[1]
[1]
[0]
[0]
SPB Sel
0, off
[1], on
Parallelog
0, off
[1], on
VBDC
1, on
[0], off
D3
D2
D1
[0]
[1]
[0]
[1]
[0]
[0]
[1]
[0]
[0]
[1]
[0]
[0]
[0]
[0]
[0]
[0]
[0]
[0]
[0]
[0]
[0]
[0]
[0]
[0]
[0]
[0]
[0]
[0]
[0]
[0]
[0]
[0]
[0]
[0]
[0]
[0]
[0]
Horizontal Amplitude
[0]
[0]
Side Pin Balance
[0]
[0]
[0]
[0]
[0]
[0]
[0]
[0]
[1]
[1]
Contrast
[1]
x
D4
[1]
Drive 1
[0]
Drive 2
[0]
Drive 3
[0]
EW Corner Top
[0]
Corner Phase Top
[1]
[0]
[0]
[0]
Corner Phase Bottom
[1]
[0]
[0]
[0]
Horizontal Phase Adjustment
[1]
[0]
[0]
[0]
[0]
Vertical Ramp Amplitude Adjustment
[1]
[0]
[0]
[0]
[0]
Vertical Position Adjustment
[1]
[0]
[0]
[0]
S Correction
[1]
[0]
[0]
[0]
Keystone
[1]
[0]
[0]
[0]
EW Amplitude
[1]
[0]
[0]
[1]
[0]
[0]
[1]
[0]
[0]
[0]
[0]
Parallelogram
[1]
Gainwin
[0], 1X
1, 1.5X
[0]
[0]
[0]
Vertical Blanking DC level
[1]
[1]
[1]
[1]
STV2001
11
D8
POR
[0], off
1, reset
12
13
14
15
x
D7
Ipump
1, 1mA
[0], 0.3mA
D6
D5
D4
D3
Brightness
D2
D1
[1]
[0]
[1]
[0]
[1]
[1]
[0]
[0]
x
x
x
[1]
[0]
[1]
HEHT Comp Gain
[0]
[0]
[0]
PLL1 filter voltage clamp (FVC)
[0]
[0]
[0]
VEHT Comp Gain
[0]
[0]
[0]
EWCorner Bottom
[0]
[0]
[0]
[1]
[0]
[0]
READ MODE (SLAVE ADDRESS = 8D)
Xray
Hlock
1, on
0, lock
[0], off
[1], unlock
Note: Both EW Corner Top and EW Corner Bottom are switched ON/OFF by reg (sub-address 04/D8).
[0]
[0]
[0]
[0]
17/46
STV2001
Figure 1. EW Output Referred Voltage
B
EWPARA
A
EWDC
Figure 2. Dynamic Horizontal Phase Control Output
EWPARA
B
A
DHPC DC
SPBPARA
Figure 3. Keystone Effect on EW Output (PCC Inhibited)
Keyadj
Figure 4. Vertical Dynamic FOcus Output
4Vdc
18/46
STV2001
13 - TYPICAL OUTPUT WAVEFORMS
Function
Sub
Address
Pin
Byte
Specification
1000 0000
Effect on Screen
2.25V
Vertical Size
3.75V
1111 1111
Vertical
Position
Vertical
S
Linearity
x000 0000
x100 0000
x111 1111
VOUTDC = 3.2 V
VOUTDC = 3.5 V
VOUTDC = 3.8 V
0000 0000
Inhibited
∆V
1111 1111
Vpp
Keystone,
EW Inhibited
2V
EW Corner
Top
(Symmetrical)
1000 0000
1.25Vpp
1111 1111
1.25Vpp
2V
19/46
STV2001
Function
Sub
Address
Pin
Byte
Specification
Effect on Screen
Keystone,
EW Inhibited
2V
EW Corner
Bottom
(Symmetrical)
1000 0000
1.25Vpp
1111 1111
1.25Vpp
2V
Keystone,
EW Inhibited
2V
Corner
Phase
Bottom
(Asymmetrical)
2.8%TH
1000 0000
1111 1111
2V
2.8%TH
Keystone,
EW Inhibited
2V
Corner
Phase
Top
(Asymmetrical)
1000 0000
2.8%TH
1111 1111
2.8%TH
EW
Inhibited
1000 0000
2V
2.0V
0.2Vpp
2.0V
0.2Vpp
Keystone
1111 1111
20/46
STV2001
Function
EW
Pin Cushion
Sub
Address
Pin
Byte
EW
Inhibited
Specification
Effect on Screen
2.0 V
1000 0000
1.0 V
2.0 V
1111 1111
1000 0000
H Amplitude
1111 1111
0000 0000
2.5V
H Phase
0111 1111
2.5V
Parallelogram
Inhibited
Side Pin
Ballance
Control
3.7 V
1.4%
1000 0000
1.4%
1111 1111
3.7 V
SPB
Inhibited
Parallelogram
Control
1000 0000
3.7 V
1.4%
1111 1111
3.7 V
1.4%
21/46
STV2001
Contrast Register (Video IN = 0.5VPP, Drive at maximum, I 2C Gainwin=1)
Hex
b7
b6
b5
b4
b3
b2
b1
b0
Vpp
G(dB)
0
0
0
0
0
0
0
0
0
-
0
0
0
0
0
0
0
1
0.015
-30
0
0
0
0
0
0
1
0
0.031
-24
0
0
0
0
0
1
0
0
0.062
-18
0
0
0
0
1
0
0
0
0.125
-12
0
0
0
1
0
0
0
0
0.25
-6
0
0
1
0
0
0
0
0
0.5
0
0
0
1
1
0
0
0
1
0
1
0
0
0
1
0
0
2
2.812
12
15
0
1
1
1
1
1
1
1
4
18
POR
X
Brightness Register (Drive at maximum)
Hex
b5
b4
b3
b2
b1
b0
Vpp
0
0
0
0
0
0
0
POR
0
0
0
0
0
1
0.010
0
0
0
0
0
0
0
1
1
0
0
0
0.020
0.040
0
0
1
0
0
0
0.08
0
1
1
0
0
0
0
0
0
0
0
0
0.16
0.32
0
0
0
0
0
0
0.64
0
1
0
0
0
1
0
1
0
0
0
1
1.28
1.8
1
1
1
1
1
1
2.56
X
Drive1, Drive2, Drive3 Registers (Video IN = 0.5VPP, Contrast at maximum, I2C Gainwin=1)
Hex
00
b7
0
b6
0
b5
0
b4
0
b3
0
b2
0
b1
0
b0
0
Vpp
0
G(dB)
-
01
0
0
0
0
0
0
0
1
0.015
-30
02
0
0
0
0
0
0
1
0
0.031
-24
04
08
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0.062
0.125
-18
-12
10
0
0
0
1
0
0
0
0
0.25
-6
20
40
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0.5
1
0
6
80
1
0
0
0
0
0
0
0
2
12
B4
FF
1
1
0
1
1
1
1
1
0
1
1
1
0
1
0
1
2.812
4
15
18
22/46
4
POR
X
STV2001
Vertical Blanking Output DC voltage
Hex
b5
b4
b3
b2
b1
b0
Output dc
0
0
0
0
0
0
1.0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
0
1
1
1
1
1
1
4.5
POR
X
23/46
STV2001
14 - OPERATING DESCRIPTION
SCANNING PART
14.1 - GENERAL CONSIDERATIONS
14.1.1 - Power Supply
Typical power supply voltages are 10.5 V for the
Deflection and Preamplifier sections (SAV CC,
VAV CC and PVCC) and 5.0 V for the logic section
(Vdd). Optimum operation is obtained between 9.5
and 11.5 for VCC, and between 4.5 and 5.5 V for
VDD.
VCC is monitored during the transient phase when
switched either on or off, to avoid erratic operation
of the circuit. If V CC is inferior to 5.0 V typ., the circuit outputs are inhibited. Similarly, before VDD
reaches 4 V, all the I2C registers are reset to their
default value (see I2C Control Table).
The circuit is internally supplied by several voltage
references (typ. value: 8 V) to ensure a good power supply rejection. Two of these voltage references are externally accessible respectively for the
vertical and horizontal parts. They can be used to
bias external circuitry if ILOAD is inferior to 5 mA.
To minimize the noise and consequently the "jitter"
on vertical and horizontal output signals, the reference voltages must be filtered by external capacitors connected to the ground.
To further improve the jitter on both vertical and
horizontal sections, FCAP and FILTER pins are
used to filter the internal 5V regulator with external
decoupling capacitors.
14.1.2 - I2C Control
STV2001 belongs to the I 2C-controlled device
family. Each adjustment can be made via the I2C
Interface, instead of being controlled by DC voltages on dedicated control pins. The I 2C bus is a serial bus with a clock and a data input. General
function and bus protocol are specified in the
Philips-bus data sheets. The interface (Data and
Clock) is TTL-compatible. Spikes up to 50 ns are
filtered by an integrator and the maximum clock
speed is limited to 100 kHz.
The data line (SDA) can be used bidirectionally. In
read mode, the IC sends reply information (1 byte)
to the micro-processor.
The bus protocol prescribes a full-byte transmission in all cases. The first byte after the start condition is used to transmit the IC address (hexa 8C
for write, 8D for read).
24/46
5
All bytes are sent MSB bit first and the write data
transfer is closed by a stop.
14.1.3 - Write Mode
In write mode, the second byte contains the subaddress of the selected function to adjust (or controls to effect) and the third byte the corresponding
data byte. More than one data byte can be sent to
the IC. If after the third byte no stop or start condition is detected, the circuit automatically increments the momentary subaddress in the subaddress counter (auto-increment mode) by one.
Thus it is possible to immediately transmit the following data bytes without sending the IC address
or subaddress. This can be useful for reinitializing
all the controls very quickly (flash manner). This
procedure is ended with a stop condition.
There are 22 adjustment capabilities for the circuit:
3 for the horizontal part, 3 for the vertical, 3 for the
E/W correction, 2 for the dynamic horizontal phase
control, 5 for the preamplifier, 4 for the corners, 2
for EHT compensation and 1 for the blanking DC.
14 bits are also dedicated to several controls (ON/
OFF).
14.1.4 - Read Mode
In the read mode the second byte transmits the reply information. The reply byte contains the horizontal and vertical lock/unlock status, the XRAY
activation status. A stop condition always stops all
the activities of the bus decoder and switches both
the data and clock line (SDA and SCL) to high impedance. See I2C subaddress and control tables.
14.1.5 - Sync Processor
The internal sync processor allows the device to
receive separate horizontal & vertical TTL-compatible sync signals.
14.1.6 - IC Status
The IC informs the MCU about both the 1st horizontal PLL (locked or not) and the XRAY protection (activated or not). The XRAY internal latch is
reset either directly via the I2C interface or by decreasing the VCC supply.
14.1.7 - Sync Inputs
Both HIN and VIN inputs are TTL compatible triggers with hysterisis to avoid erratic detection. Both
inputs include a pull-up resistor connected to VDD.
Synchro pulses must be positive.
STV2001
14.1.8 - Sync Processor Output
The sync processor indicates whether 1st PLL is
locked to an incoming horizontal sync or not. This
is indicated on the D8 bit of the status register .
PLL1 level is low when locked.
14.2 - HORIZONTAL PART
14.2.1 - Internal Input Conditions
A digital signal (horizontal sync pulse) is sent by
the sync processor to the horizontal input. It must
be positive (see Figure 5).
Synchronization occurs on the leading edge of the
internal sync signal.
The minimum value of Z is 0.7 µs.
Vertical synchro extraction is not allowed.
(VCO). The phase comparator is a "phase frequency" type designed in CMOS technology. This
kind of phase detector avoids locking on wrong
frequencies. It is followed by a "charge pump",
composed of two current sources: sunk and
sourced (typically I =1 mA when locked and
I = 40 µA when unlocked). This difference between lock/unlock allows smooth catching of the
horizontal frequency by PLL1. This effect is reinforced by an internal original slow down system
when PLL1 is locked, preventing the horizontal frequency from changing too quickly. The dynamic
behaviour of PLL1 is fixed by an external filter
which integrates the current of the charge pump. A
"CRC" filter is generally used (see Figure 6). One
bit I2C Ipump is used to set the pump current to
1mA or 0.3mA in locked condition.
Figure 5.
Figure 6.
PLL1F
40
Z
T
1.8kΩ
10nF
4.7µF
14.2.2 - PLL1
The PLL1 consists of a phase comparator, an external filter and a voltage-controlled oscillator
Figure 7. Block Diagram ²&
Lock/Unlock
Status
I2C
Ipump
PLL1F
40
R0
41
C0
42
FC1
43
LOCKDET
High
1
CHARGE
PUMP
COMP1
VCO
Low
OSC
44 FILTER
2
PHASE
ADJUST
I C
HPOS
Adj.
25/46
STV2001
Figure 8. Details of VCO
I0
I0
2
6.4V
PLL1F
40
(Loop Filter)
RS
FLIP FLOP
1.6V
4 I0
41
(1.4V<V7<6.4V)
42
R0
6.4V
C0
1.6V
0 0.875TH TH
The VCO uses an external RC network. It delivers
a linear sawtooth resulting from the capacitor
charge and discharge . The current is proportional
to the one in the resistor. Typical thresholds for the
sawtooth are 1.6 V and 6.4 V.
The VCO control voltage varies between 3.0 V
and 3.8 V (see Figure 8). This VCO frequency
range is very small. The small effective frequency
is due to clamp intervention on the lowest filter value. The PLL1F filter voltage is set by a 4-bit DAC
with a voltage range of 3.0 to 3.8 V.
The sync frequency must always be higher than
the free running frequency. For example, when using a 60 kHz synchro range, the suggested free
running frequency is 56 kHz.
PLL1 ensures the coincidence between the leading edge of the sync signal and a phase reference
resulting from the comparison of:
– the VCO sawtooth
– an internal DC voltage I2C adjustable within the
range of 2.9V to 4.2V (corresponding to ±10%)
(see Figure 9).
A Lock/Unlock identification block, also included,
detects in real time whether PLL1 is locked on the
incoming horizontal sync signal or not.
The lock/unlock information is available through
the I2C read.
The FC1 Pin (Pin 43) is used for decoupling the internal 6.4 V reference by a capacitor.
Figure 9. PLL1 Timing Diagram
H O SC
Sawtooth
7/8 TH
1/8 TH
6.4V
3.4V (Reference for H Position)
Vb
(2.8V<Vb<4.2V)
1.6V
Phase REF1
HSynchro
Phase REF1 is obtained by comparison between the sawtooth and a DC voltage adjustable between 2.9 V and 4.2 V.
The PLL1 ensures the exact coincidence between the signal phase REF and HSYNC.
A ±10% TH phase adjustment is possible around the 3.5V point.
26/46
STV2001
14.2.3 - PLL2
PLL2 ensures a constant position of the shaped
flyback signal in comparison with the sawtooth of
the VCO, taking into account the saturation time
Ts (see Figure 10).
Figure 10. PLL2 Timing Diagram
H Osc
Sawtooth
1/8TH
7/8TH
6.4V
4.0V
1.6V
Flyback
Internally
Shaped Flyback
H Drive
set) is 85% in order to avoid having too long a conduction period of the horizontal scanning transistor.
The maximum storage time (Ts Max.) is :
0.44TH- TFLY/2).
Typically, TFLY/TH corresponds to around 20 %
which means that Ts max represents approxim
tively 34 % of TH.
14.2.4 - Output Section
The H-drive signal is sent to the output through a
shaping stage which also controls the fixed Hdrive duty cycle (see Figure 10). In order to secure
the scanning power part operation, the output is inhibited in the following cases :
-when VCC is too low,
-when the ABL protection is activated,
-during the Horizontal flyback,
-when the HDrive I2C bit control is off.
The output stage consists of a NPN bipolar transistor. Only the collector is accessible
(see Figure 12). Emitter is connected directly to a
separate ground pin.
Figure 12.
V CC
Ts
Duty Cycle
The phase comparator of PLL2 (phase type comparator) is followed by a charge pump (typical output current: 0.5 mA).
VBCAP pin is used to filter noise on PLL2 top comparator via an external capacitor.
The flyback input consists of an NPN transistor.
This input must be current driven. The maximum
recommended
input
current
is
5 mA
(see Figure 11).
Figure 11. Flyback Input Electrical Diagram
400Ω
HFLY
Q1
36
20kΩ
GND 0V
The duty cycle is fixed at 55%. For a safe start-up
operation, the initial duty cycle (after power-on re-
34 Hout
33 HDGND
This output stage is intended for "reverse" base
control, where setting the output NPN in off-state
will control the power scanning transistor in offstate.
The maximum output current is 15 mA, and the
corresponding voltage drop of the output VCEsat is
0.4 V Max.
Obviously, the power scanning transistor cannot
be directly driven by the integrated circuit. An interface either bipolar or MOS type has to be added
between the circuit and the power transistor.
27/46
STV2001
14.2.5 - X-RAY Protection
X-Ray protection is activated when the ABL input (1 V on Pin 20) is at a low level. It inhibits both H-Drive,
and Vout while Video goes into off-mode.
This activation is internally delayed by 2 lines to avoid erratic detection (short parasitics).
This protection is latched; it may be reset either by switching V CC off or by I2C (see Figure 13).
Figure 13. Safety Functions Block Diagram
VCC Checking
HORIZONTA L
OUTPUT
INHIBITION
VCC
VSCinh
+1V
XRAY Protection
+
ABL 20
I2C Drive on/off
VCC off or I2C Reset
S
R
Q
I2C Ramp on/off
VERTICAL
OUTPUT
INHIBITION
Horizontal Flyback
0.7V
Video-off
14.3 - VERTICAL PART
14.3.1 - Function
When the synchronization pulse is not present, an
internal current source sets the free running frequency. For an external capacitor, COSC = 150nF,
the typical free running frequency is 100Hz.
The typical free running frequency can be calculated according to:
1
fo(Hz) = 1.5 . 10-5 .
COSC
A positive TTL level pulse applied on Pin 2 (Vin) is
used to synchronize the ramp in the range [fmin,
fmax] (see Figure 14). This frequency range depends on the external capacitor connected on
Pin 6 (VCAP). A 150nF (± 5%) capacitor is recommended for 50 Hz to 165 Hz applications.
The typical maximum and minimum frequency, at
25oC and without any correction (S correction),
can be calculated as follows:
f(Max.) = 3.5 x fo and f(Min.) = 0.33 x fo
When an S correction is applied, these values are
slightly modified.
With a synchronization pulse, the internal oscillator is synchonized immediately but its amplitude
28/46
changes. An internal correction then adjusts it in
less than half a second. The ramp top value (Pin 6)
is sampled on the AGC capacitor (Pin 4) at each
clock pulse. A transconductance amplifier modifies the charge current of the capacitor so as to
make the amplitude constant again. We recommend using an AGC capacitor with a low leakage
current. A value lower than 100nA is mandatory.
A good level of stability for the internal closed loop
is obtained by a 470nF ± 5% capacitor value on
Pin 4 (VAGC).
VRB (Pin 8) is used for decoupling the internal 2V
reference voltage by a capacitor.
14.3.2 - I2C Control Adjustments
S correction shapes can then be added to this
ramp. This frequency-independent S correction is
generated internally. Its amplitudes is adjustable
via the I2C. S correction can be inhibited by applying the selected bits.
Finally, the amplitude of the S corrected ramp is
adjustable via the vertical ramp amplitude control
register.The adjusted ramp is available on Pin 7
(VOUT) to drive an external power stage.
STV2001
The gain of this stage can be adjusted ( ± 25%) depending on its register value.
The mean value of this ramp is driven by its own
I2C register (vertical position) with :
VPOS = 7/16 x VREF-V = ± 300 mV.
Usually VOUT is sent through a resistive divider to
the inverting input of the booster. Since VPOS derives from VREF-V, the bias voltage sent to the noninverting input of the booster should also derive
from VREF-V to optimize the accuracy
(see Figure 14).
Figure 14. AGC Loop Block Diagram
CHARGE CURRENT
TRANSCONDUCTANCE
AMPLIFIER
REF
6
4
DISCH.
VSYNCIN
2
SYNCHRO
OSC
CAP
SAMPLING
SAMPLING
CAPACITANCE
OSCILLATOR
S CORRECTION
VS AMP
SUB0A/7bits
Vlow
24 BREATH
Sawth
Disch.
VERT AMP
SUB08/7bits
VPOSITION
SUB09/7bits
I2C
sub14
/6bits
7
VOUT
14.3.3 - Basic Equations
As a first approximation, the amplitude of the ramp
on Pin 7 (VOUT) is calculated as follows:
VOUT - VPOS = (VOSC - VDCMID) x (1 + 0.25 (VAMP))
where :
VDCMID = 7/16 x VREF (middle value of the ramp on
Pin 5, typically 3.6V)
VOSC = V5 (ramp with fixed amplitude)
VAMP = -1 as minimum vertical amplitude register
value and +1 as maximum value.
VPOS is calculated according to:
VPOS = VDCMID + (0.4x V P )
where VP = -1 and +1 as respectively minimum
and maximum vertical position register value.
The current available on Pin 6 is:
3
x VREF x C OSC x f
IOSC =
8
where
COSC = capacitor connected on Pin 6
f = synchronization frequency.
14.3.4 - Geometric Corrections
The principle is represented in Figure 15.
Starting from the vertical ramp, a parabola-shaped
current is generated for E/W correction (also
known as Pin Cushion correction), dynamic horizontal phase control correction.
The parabola generator consists of an analog multiplier, the output current of which is equal to :
∆I = k x (VOUT - VDCMID )2
where VOUT is the vertical output ramp (typically
between 2 and 5 V) and VDCMID is 3.6 V
(for VREF-V = 8.2V). The VOUT sawtooth is typically centered on 3.6 V. By changing the vertical position, the sawtooth shifts by ±0.4 V.
The "geometry tracking" feature ensures a correct
screen geometry for any end user adjustment. It
generates non-symmetric parabola dependent on
the vertical position. To avoid Vertical EHT compensation (VBreathing) from affecting the geometry correction, an additional Buffer Amplifier is
used for VBreathing.
29/46
STV2001
Due to the large output stage voltage range (E/W
Pin Cushion, Keystone), the combination of the
tracking function, maximum vertical amplitude,
maximum or minimum vertical position and maximum gain on the DAC control may lead to output
stage saturation. This must be avoided by limiting
the output voltage with appropriate I 2C register
values. For the E/W part and the dynamic horizontal phase control part, a sawtooth-shaped differential current in the following form is generated:
∆I’ = k’ . (VOUT - VDCMID).
Then ∆I and ∆I’ are added and converted into voltage for the E/W part.
30/46
Each of the two E/W components or the two dynamic horizontal phase control components may
be inhibited by their own I2C select bit.
EW output voltage is available at EWout pin directly. External buffer circuit is required to drive Darlington pair transistor, which is sinking the DIODE
MODULATOR current in order to achieve EW correction. Additionally, an I2C controlled DC shift is
used for H-width.
The dynamic horizontal phase control drives the
H-position internally, moving the HFLY position on
the horizontal sawtooth in the range of ± 2.8 %TH
both for side pin balance and parallelogram.
STV2001
Figure 15. Geometric Corrections Principle
VPOS VAMP
From VBreath
VOSC
VOUT
VOUT
7
3.5V
VDCMID
VDFocus
I-V
23
EWAMP
2
3.5V
1
R
X
Keystone
3.5V
EWOUT
EWDC
3.5V
1
R
+
I-V
27
Corner Top
X2
Corner Bot.
Corner Top
3.5V
1
R
X2
Corner Bot.
S.P.B.
+
To Horizontal Phase
Parallelog.
3.5V
31/46
STV2001
14.3.5 - E/W
EWOUT = EW DC + K1 (VOUT - VDCMID) +K2 (VOUT - VDCMID)2
K1 is adjustable via the keystone I2C register. K2 is adjustable via the E/W amplitude I2C register.
14.3.6 - Dynamic Horizontal Phase Control
IOUT= K4 (VOUT - VDCMID) + K5 (VOUT - VDCMID)2
K4 is adjustable via the parallelogram I 2C register.
K5 is adjustable via the side pin balance I2C register.
Corner Phase Top and Corner Phase Bottom cor14.3.7 - Vertical Dynamic Focus
rections add a half parabola current to the HoriVertical Dynamic Focus waveform is available on
zontal Phase. Top and Bottom Corrections can be
Pin 23. It is the parabolic waveform with downadjusted separately by I2C with 7 Bits DAC.
wards concavity, at vertical frequency. Its amplitude is fixed at 1 Vpp.
14.3.9 - Horizontal Breathing
14.3.8 - Corner Correction
Horizontal breathing is performed through the EW
stage with V-I Converter and an I2C controlled varThere are 4 types of corner correction in the deiable gain stage. This DC controlled input provides
vice: EW Corner Top, EW Corner Bottom, Corner
the Horizontal Width correction required to offset
Phase Top and Corner Phase Bottom. EW Corner
width changes due to EHT variation. Gain attenuTop and EW Corner Bottom are used to modulate
ation is set by a 7 bits DAC with I2C.
the EW amplitude. Corner Phase Top and Corner
Phase Bottom are used to modulate the Horizontal
14.3.10 - Vertical Breathing
Phase. These 4 types of correction are used to
Vertical breathing compensation is performed
compensate the distortion appearing at the corthrough gain modulation of the vertical ramp. This
ners of the CRT.
DC-controlled input allows the vertical height corEW Corner Top and EW Corner Bottom correcrections needed to offset height changes due to
tions add a half parabola current to the EW voltEHT variations. Input is received at the output of
age. Since the E/W output voltage range is limited,
the EHT compensation Amplifier. Gain attenuation
it was necessary to add EW Corner Correction to
is set by 6 Bits DAC via I2C.
decrease both EW amplitude and Keystone by
I2C.
PRE-AMPLIFIER PART
14.4 - GENERAL CONSIDERATIONS
14.4.1 - Input Stage
The R, G and B signals must be supplied to the
three inputs through coupling capacitors (100nF).
The maximum input peak-to-peak video amplitude
is 1 V.
The input stage includes a clamping function. This
clamp uses the input serial capacitor as "memory
capacitor" and is gated by an internally generated
"Back-Porch-Clamping-Pulse (BPCP)".
The BPCP is synchronized on the second edge of
the horizontal pulse HIN inputs on Pin 1.
Figure 16. .
HSYNC
BPCP
Internal pulse width is fixed at 1µs
In both cases, BPCP width is fixed.
32/46
STV2001
14.4.2 - Contrast Adjustment (7 bits)
The contrast adjustment is made by simultaneously controlling the gain of three internal variable
gain amplifiers through the I2C bus interface. The
contrast adjustment allows covering a range higher than 40 dB. This adjustment is refreshed during
the vertical retrace time.
14.4.3 - ABL Control
The STV2001 has an ABL input (automatic beam
limitation) to attenuate RGB video signals according to beam intensity.
The operating range is typically 2.5 V, from 5.3 V
to 2.8 V. A typical 12 dB Max. attenuation is applied to the signal whatever the current gain. Refer
to Figure 16 for ABL input attenuation range.
In the case of software control, the ABL input must
be pulled to AVCC through a resistor to limit power
consumption.
ABL input voltage must not exceed VAVCC. Input
resistor is 10kΩ.
Figure 17.
2
Attenuation (dB)
0
-2
-4
-6
-8
-10
-12
-14
VIN(V)
1
2
3
4
5
6
7
8
9
14.4.4 - Brightness Adjustment (6 bits)
As with contrast adjustment, brightness is controlled by I 2C.
The brightness function consists of adding the
same DC offset to the three R, G, B signals after
contrast amplification. This DC-Offset is present
only outside the blanking pulse (see Figure 19).
The DC output level is forced to "INFRA-BLACK"
level (VDC) during the blanking pulse.
14.4.5 - Drive Adjustment (3 x 8 bits)
To adjust the white balance, the device offers the
possibility of separately adjusting the overall gain
of each complete video channel. Each channel
gain is controlled by I2C (8 bits each). The very
large drive adjustment range (48dB) allows different standard or custom color temperatures.
The drive adjustment is also used to adjust the
output voltages at the optimum amplitude to drive
the C.R.T drivers, keeping the whole contrast control for end-users only. The drive adjustment is
made after the contrast and brightness so that the
white balance remains correct when BRT is adjusted.
14.4.6 - Output Stage
The three output stages (see Figure 18) incorporate three functions:
• The blanking stage: when the internal
generated blanking pulse is high, the three
outputs are switched to a voltage which is
400 mV lower than the BLACK level. The
black level is the output voltage with minimum
brightness when the input signal video
amplitude is equal to "0".
• The output stage itself: a large bandwidth
output amplifier which can deliver up to 5VPP
on the three outputs (for 0.7 V video signal on
the inputs).
• The output CLAMP: the IC also incorporates
three internal output clamps (sample and hold
system) to fix the "INFRA-BLACK" level
(VDC) at 1.1V during blanking.
The overall waveforms of the output signal according to the different adjustments are shown in
Figure 19. and Figure 20.
33/46
STV2001
Figure 18.
10
Vout
CRT Driver
S/H
1.5V
STV2001
Figure 19. Waveforms VOUT, BRT, CONT
HSYNC
BPCP
BLK
Video IN
VOUT1, VOUT2, VOUT3
VCONT (4)
CONT
VBRT (3)
VBLACK (2)
VDC (1)
BRT
0.4V fixed
Note : 1. VDC = 1.5V
2. VBLACK = VDC + 0.4V
3. VBRT = VBLACK + BRT (with BRT = 0 to 2.5V)
4. VCONT = VBRT + CONT with CONT = k x video (CONT = 5VPP max. for VIN = 0.7VPP)
34/46
STV2001
Figure 20. Waveforms (DRIVE adjustment)
HSYNC
BPCP
HFly
Video IN
VOUT1 , V OUT2 , VOUT3
VCONT
VBRT
VBLACK
two examples of
drive adjustment (1)
Note : 1. Drive adjustment modifies the following voltages : VCONT, VBRT
. .
Drive adjustment does not modify the following voltages : VDC and VBLACK.
VDC
14.4.7 - Bright Window
Contrast Gain can be increased by 1.5X when the
I2C command “GainWin” is issued or GWIN (Pin
16) pulse value reaches its Turn-ON threshold.
Bright Window gain can be controlled separately
by I2C command or pulse voltage at “GAINWIN”
pin. Although both controls are independent, max
gain is still limited to 1.5x, not 1.5x + 1.5x.
14.4.8 - Blanking Generator
A vertical blanking pulse is generated
(see Figure 21). The output level is a positive going pulse of 9.5V. The vertical blanking is started
by the vertical sync pulse and by the falling edge of
VFly pulse. If there is no VFly pulse (VFly>6.5V),
the vertical blanking the vertical blanking start coincides with the beginning of the vertical capacitor
discharge time.
The blanking output generates a superimposed
variable DC voltage. The 6-bit adjustment range is
1 V to 4.5 V. This is used to allow brightness control through G1. Additionally, this pin is used for
spot killer suppression. The 0.8 V of Vcc threshold
will trigger the output into a high level state resulting from the Vcc decay.
Figure 21. VBDC (Pin 18) Output Voltage Waveform
DC level controlled by
6-bit DAC
9.5V
4.5 V
1.0 V
35/46
STV2001
Table 1:
Logic Table
Conditions
Vcc at 0 to 6.9 V (PD2 mode)
Vcc at 6.9 V to 8.5 V (PD1 mode)
Hlock/unlock detection = unlock
Video ABL input pin < 1 V
5 V POR or I2C POR=1, (default=0)
I2C Hout on/off, (default=1=on)
I2C Vout on/off, (default=1=on)
I2C Video on/off, (default=0=video-off)
Vcc at >8.5 V
Vcc at >8.5 V, I2C video=1=on
Hout
no
yes
yes
no
yes
on/off
yes
yes
yes
yes
Vout
no
yes
yes
no
yes
yes
on/off
yes
yes
yes
Video-off
video-off
video-off
video-off
video-off
video-off
on/off
on/off
on/off
video-on (2)
video-on (2)
Low Power
NA (1)
NA(1)
no
no
no
no
no
no
NA (1)
no
Note 1 NA= Not applicable.
Note 2 I2C video=on will be reset by Low Vcc.
STAND-BY MODE AND PROTECTIONS
14.5 - GENERAL CONSIDERATIONS
14.5.1 - POR (Power On Reset) - Subad. 11-D8
POR is activated on 5 V with default values for
each adjustment and in addition video off (see
1.3). It can be activated via the I 2C command.
14.5.2 - Supply Voltage Threshold.
Two built-in thresholds (see figure 21) are used to
enter the following modes:
• PDI mode:
– Activated for Vcc < 8.5V
– Video off (see 1.13)
• PD2 mode:
– Activated for Vcc < 5.0V
– Video off (see 1.13)
– HOUT and VOUT disabled
36/46
14.5.3 - Video Off (I2C control) - Subad. 00-D8
Activates blanking of the 3 video output stages.
During this time the outputs are switched to VDC
level, regardless of the presence of Hsync or Hflyback. Activation time is inferior to 1µs.
This also activates the blanking output at pin 18
into a high level state close to 9.5V as long as
“video off” is activated. When the device enters the
“Video-off” mode, voltage on pin 8 is 8V.
14.5.4 - Vertical Output Off
This command will switch off output VAMP. The
vertical output swing is reduced to 0V.
14.5.5 - X-Ray, Set Operation - Subad. 09-D8
When ABL voltage is below 1 V threshold, Xray
latch will be activated. This I2C command will reset
the Xray latch. Activation time below 100ms.
STV2001
15 - INTERNAL SCHEMATICS
Figure 22.
Figure 25.
VDD
200kΩ
SAVCC
200Ω
Vgnd
1,2
Figure 23.
5
Figure 26.
SAVCC
SAVCC
VCAP 6
Vref 3
22kΩ
Figure 24.
Figure 27.
SAVCC
VAGCCAP
4
SAVCC
VOUT 7
37/46
6
STV2001
INTERNAL SCHEMATICS (continued)
Figure 28.
Figure 31.
SAVCC
Vref
VAVCC
R1
VRB
8
AGND 11
R2
Figure 29.
Figure 32.
VAVCC
9
12V
BIPSWITCH
PGND 13
AGND
Figure 30.
Figure 33.
VAVCC
PVCC
VAVCC
Pins 10, 12, 14
Agnd
Pgnd
38/46
PVCC
15
STV2001
INTERNAL SCHEMATICS (continued)
Figure 34.
Figure 37.
VAVCC
VAVCC
Internal
5V
10kΩ
GainWin 16
ABLin 20
Agnd
Agnd
Figure 35.
Figure 38.
VAVCC
Pins
17
19
21
10k
VCC 8V
SAVCC
IN
VFLYIN 22
Agnd
AGND
Agnd
Figure 36.
Figure 39.
8V
SAVCC
VAVCC
VFOCUS
VBDC 18
23
20 k
LGND
39/46
STV2001
INTERNAL SCHEMATICS (continued)
Figure 40.
Figure 43.
SAVCC
SAVCC
Vref
1.5k
V BREATH
24
EWout 27
10k
Figure 41.
Figure 44.
SAVCC
60KΩ
VDD 28
HBreath 25
5V
BIPSWITCH
Vref
Figure 42.
Figure 45.
SAVCC
VDD
5V
FCAP
10K
26
SDA 29
Internal 5V
LGND
40/46
STV2001
INTERNAL SCHEMATICS (continued)
Figure 46.
Figure 49.
SAVCC
VDD
5V
HOUT 34
10k
SCL 30
HDGND 33
Figure 47.
Figure 50.
SAVCC
SAVCC 31
12V
Bipswitch
Figure 48.
Href
35
22kΩ
Figure 51.
Href
35
SAVCC
Lgnd 32
HFLY 36
41/46
STV2001
INTERNAL SCHEMATICS (continued)
Figure 52.
Figure 55.
SAVCC
Href
PLL1F 40
Hgnd 37
Figure 53.
Figure 56.
SAVCC
Href
SAVCC
Href
35
PLL2C 38
42
Figure 54.
Figure 57.
Href
Href
35
SAVCC
SAVCC
41
VBCAP 39
Lgnd
42/46
STV2001
INTERNAL SCHEMATICS (continued)
Figure 58.
Figure 59.
SAVCC
SAVCC
Href
1K
_
3
FILTER
FC1 43
44
4K
_
3
43/46
Vcc
OUT3
OUT2
OUT1
C18
100u
L3 10uH
VOUT R5 12K
C19
100n
C14 100n
R0
PVCC
C0
Out3
STV2001
VFOCUS 23
IN3 VFLYIN
VBRTHin 24
HBRTHin 25
FCAP 26
EWout 27
VDD 28
SDA 29
SCL 30
SAVCC 31
LGND 32
Hout
HDGND33
Vcc
L1
10uH
C20 100n
C21 100u
12 13 14 15 16 17 18 19 20 21 22
Out2
11 Agnd
10 Out1
9 VAVCC
8 VRB
7 Vout
6 VCAP
5 Vgnd
R13 75
C13 150n
820p
C1
100n
C2
FC1
PGND
4 VAGCCAP
3 Vref
VBCAP
In1
2 Vin
PLL1F
GANWIN
FILTER
ABLin
1 Hin
R20 25K
R16
75
IN3
IN2
IN1
R19
47
R15
75
R18
47
R14
75
R17
47
C22
100n
470n
6490
R2 1K8
R1
C5 4u7
10n C6
Hfly
1n*
44 43 42 41 40 39 38 37 36 35 34
1u
Hgnd
In2
C12
R11 1K
C7
22n
PLL2C
VBDC
C11 47u
R10 1K
100n C8
C23
100n
C10 100n
R12 1K
47u C9
Href
C24
100n
VIN
Vcc
C25 1u
C26
100n
C28
100n
HFLY
Vcc
Hout
Vcc
R30 10K
Vfly in
R32 10K
R31 10K
VFOCUS
EW
+5V
Vcc (10.5V)
R34 560 D1 1N4148
C31 10u
R33 1K
C27
100u
C29
100u
R22 1K
R23 10K
HREF
R24 1K
R25 10K
C4
R26 10K
C3
R29 10K
HIN
R21 10K
C30 33p
R28 1K
R27 10K
44/46
R35 10K
Vcc
C36 33p
R38 10K
C35
47p
R41 4K7
C37
22p
R43 100
R42 100
22p
C38
+5V
Width
C34
100n
R39 47K
C33
10u
R40 4K7
QB 10
NQB 9
6 QA
7 NQA
1B 12
N1B 11
5 N1A
8 GND
TB2 14
CDB 13
4 1A
TB1 15
VCC 16
3 CDA
MC14528
C32
1 TA1
47p
2 TA2
Vcc
R37 10K
Delay
R36 47K
GND
SCL
SDA
5V
Vcc
STV2001
Figure 60. Demonstration board schematic
STV2001
16 - PACKAGE MECHANICAL DATA
A
A2
TQFP 44 L SLUG DOWN BODY
A1
B
C
Slug down
K
L
L1
D
D1
D3
33
23
22
E3
E1
E
H
S1
34
44
12
Pin 1
Identification
1
e 11
S
Dimensions
A
A1
A2
B
c
D
D1
D3
e
E
E1
E3
H
L
L1
S
S1
K
Min.
1.420
0.065
1.360
0.325
11.900
9.975
7.950
0.750
11.900
9.975
7.950
5.840
0.450
0.938
6.000
6.000
1.5d
Millimeters
Typ.
0.100
1.400
0.350
12.000
10.000
8.000
0.800
12.000
10.000
8.000
5.890
1.000
3.5d
Max.
1.540
0.135
1.440
0.375
0.165
12.100
10.025
8.050
0.850
12.100
10.025
8.050
5.940
1.063
6.100
6.100
5.5d
Min.
0.056
0.003
0.054
0.013
0.469
0.393
0.313
0.030
0.469
0.393
0.313
0.230
0.018
0.037
0.236
0.236
1.5d
Inches
Typ.
0.004
0.055
0.014
0.472
0.394
0.315
0.031
0.472
0.394
0.315
0.232
0.039
3.5d
Max.
0.061
0.005
0.057
0.015
0.006
0.476
0.395
0.317
0.033
0.476
0.395
0.317
0.234
0.042
0.240
0.240
5.5d
45/46
7
STV2001
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by implication or otherwise under any patent
or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics
products are not authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
2000 STMicroelectronics - All Rights Reserved.
Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I 2C Standard Specification as defined by Philips.
STMicroelectronics Group of Companies
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain
Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
46/46
8