FAIRCHILD RLD03N06CLE

S E M I C O N D U C T O R
RLD03N06CLE,
RLD03N06CLESM, RLP03N06CLE
0.3A, 60V, ESD Rated, Current Limited, Voltage Clamped
Logic Level N-Channel Enhancement-Mode Power MOSFETs
July 1996
Features
•
•
•
•
•
•
•
Packages
JEDEC TO-220AB
0.30A, 60V
rDS(ON) = 6.0Ω
Built in Current Limit ILIMIT 0.140 to 0.210A at 150oC
Built in Voltage Clamp
Temperature Compensating PSPICE Model
2kV ESD Protected
Controlled Switching Limits EMI and RFI
SOURCE
DRAIN
GATE
DRAIN
(FLANGE)
JEDEC TO-251AA
Description
SOURCE
DRAIN
GATE
The RLD03N06CLE, RLD03N06CLESM and RLP03N06CLE
are intelligent monolithic power circuits which incorporate a lateral bipolar transistor, resistors, zener diodes and a power MOS
transistor. The current limiting of these devices allow it to be used
safely in circuits where a shorted load condition may be encountered. The drain-source voltage clamping offers precision control
of the circuit voltage when switching inductive loads. The “Logic
Level” gate allows this device to be fully biased on with only 5.0V
from gate to source, thereby facilitating true on-off power control
directly from logic level (5V) integrated circuits.
DRAIN
(FLANGE)
JEDEC TO-252AA
DRAIN
(FLANGE)
GATE
SOURCE
The RLD03N06CLE, RLD03N06CLESM and RLP03N06CLE
incorporate ESD protection and are designed to withstand 2kV
(Human Body Model) of ESD.
Symbol
D
PACKAGING AVAILABILITY
PART NUMBER
PACKAGE
BRAND
RLD03N06CLE
TO-251AA
03N06C
RLD03N06CLESM
TO-252AA
03N06C
RLP03N06CLE
TO-220AB
03N06CLE
G
NOTE: When ordering, use the entire part number. Add the suffix 9A
to obtain the TO-252AA variant in tape and reel, i.e.
RLD03N06CLESM9A.
S
Formerly developmental type TA49026.
Absolute Maximum Ratings
TC = +25oC
Drain Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDSS
Drain Gate Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
Gate Source Voltage (Note) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
Reverse Voltage Gate Bias Not Allowed
Drain Current
RMS Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Power Dissipation
TC = +25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate above +25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PT
Electrostatic Discharge Rating MIL-STD-883, Category B(2) . . . . . . . . . . . . . . . . . . . . . . ESD
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TSTG, TJ
RLD03N06CLE,
RLD03N06CLESM,
RLP03N06CLE
60
60
+5.5
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD Handling Procedures.
Copyright
© Harris Corporation 1996
1
UNITS
V
V
V
Self Limited
30
0.2
2
-55 to +175
W
W/oC
KV
oC
File Number
3948.3
Specifications RLD03N06CLE, RLD03N06CLESM, RLP03N06CLE
Electrical Specifications TC = +25oC, Unless Otherwise Specified
PARAMETERS
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
Drain-Source Breakdown Voltage
BVDSS
ID = 250µA, VGS = 0V
60
-
85
V
Gate Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA
1
-
2.5
V
TJ = +25oC
-
-
50
µA
TJ = +150oC
-
-
200
µA
TJ = +25oC
-
-
5
µA
TJ = +150oC
-
-
20
µA
TJ = +25oC
-
-
6.0
Ω
TJ = +150oC
-
-
12.0
Ω
TJ = +25oC
280
-
420
mA
TJ = +150oC
140
-
210
mA
-
-
7.5
µs
-
-
2.5
µs
tR
-
-
5.0
µs
tD(OFF)
-
-
7.5
µs
tF
-
-
5.0
µs
Turn-Off Time
tOFF
-
-
12.5
µs
Input Capacitance
CISS
-
100
-
pF
Output Capacitance
COSS
-
65
-
pF
Reverse Transfer Capacitance
CRSS
-
3.0
-
pF
Thermal Resistance Junction to Case
RθJC
-
-
5.0
oC/W
Thermal Resistance Junction to Ambient
RθJA
TO-220 Package
-
-
80
oC/W
TO-251 and TO-252 Packages
-
-
100
oC/W
MIN
TYP
MAX
UNITS
Zero Gate Voltage Drain Current
Gate-Source Leakage Current
On Resistance
Limiting Current
Turn-On Time
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
IDSS
IGSS
rDS(ON)
IDS(LIMIT)
tON
tD(ON)
VDS = 45V,
VGS = 0V
VGS = 5V
ID = 0.100A,
VGS = 5V
VDS = 15V,
VGS = 5V
VDD = 30V, ID = 0.10A,
RL = 300Ω, VGS = 5V,
RGS = 25Ω
VDS = 25V, VGS = 0V,
f = 1MHz
Source-Drain Diode Ratings and Specifications
PARAMETERS
SYMBOL
TEST CONDITIONS
Forward Voltage
VSD
ISD = 0.1A
-
-
1.5
V
Reverse Recovery Time
tRR
ISD = 0.1A, dISD/dt = 100A/µs
-
-
1.0
ms
2
RLD03N06CLE, RLD03N06CLESM, RLP03N06CLE
Typical Performance Curves
TC = +25oC
1
10
ZθJC , NORMALIZED
THERMAL RESPONSE
ID , DRAIN CURRENT (A)
OPERATION IN THIS
AREA IS LIMITED BY
JUNCTION TEMPERATURE
25oC
DC
175oC
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
0.1
1
10
VDS , DRAIN-TO-SOURCE VOLTAGE (V)
0.5
PDM
0.2
0.1
0.05
0.02
0.01
SINGLE PULSE
0.1
0.01
10-5
100
10-4
POWER DISSIPATION MULTIPLIER
1.0
0.5
0
-80
-40
0
40
80
120
160
100
101
0.8
0.6
0.4
0.2
0.0
200
0
25
50
ID(ON) , ON STATE DRAIN CURRENT (A)
VGS = 4V
0.30
VGS = 3V
0.20
0.10
2.0
3.0
125
150
175
4.0
VDD = 15V
0.60
VGS = 7.5V
1.0
100
FIGURE 4. NORMALIZED POWER DISSIPATION vs
TEMPERATURE DERATING CURVE
PULSE DURATION = 250µs, TC = +25oC
VGS = 5V
75
TC , CASE TEMPERATURE (oC)
FIGURE 3. TYPICAL NORMALIZED DRAIN CURRENT vs
JUNCTION TEMPERATURE
ID , DRAIN CURRENT (A)
10-1
1.0
TJ , JUNCTION TEMPERATURE (oC)
0
10-2
1.2
1.5
0
10-3
FIGURE 2. NORMALIZED MAXIMUM TRANSIENT THERMAL
IMPEDANCE
2.0
0.40
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC + TC
t, RECTANGULAR PULSE DURATION (s)
FIGURE 1. SAFE OPERATING AREA CURVE
ID , NORMALIZED DRAIN CURRENT
1
-55oC
0.50
0.40
VDS , DRAIN-TO-SOURCE VOLTAGE (V)
+25oC
0.30
0.20
+175oC
0.10
0
0.0
5.0
PULSE TEST
PULSE DURATION = 250µs
DUTY CYCLE = 0.5% MAX
1.0
2.0
3.0
4.0
VGS , GATE-TO-SOURCE VOLTAGE (V)
FIGURE 5. TYPICAL SATURATION CHARACTERISTICS
FIGURE 6. TYPICAL TRANSFER CHARACTERISTICS
3
5.0
RLD03N06CLE, RLD03N06CLESM, RLP03N06CLE
PULSE DURATION = 250µs,
2.5
VGS = 5V, ID = 0.30A
VGS = VDS,
2.0
VGS(TH) , NORMALIZED GATE
THRESHOLD VOLTAGE
2.0
1.5
1.0
1.5
1.0
0.5
0.5
0.0
-80
-40
0
40
80
120
160
0.0
-80
200
TJ , JUNCTION TEMPERATURE (oC)
I(CLAMP) , CLAMPED DRAIN CURRENT (A)
BVDSS , NORMALIZED DRAIN-TOSOURCE BREAKDOWN VOLTAGE
1.5
1.0
0.5
0.0
-80
-40
0
40
80
0
120
160
200
FIGURE 9. NORMALIZED DRAIN SOURCE BREAKDOWN
VOLTAGE vs TEMPERATURE
FREQUENCY (f) = 1MHz
CISS
100
COSS
CRSS
0
5
10
15
160
200
TC = +25oC
TEMPERATURES LISTED ARE STARTING
JUNCTION TEMPERATURES
+25oC
+50oC
+75oC
+100oC
+150oC
0.1
0.001
0.01
+125oC
0.1
tAV , TIME IN CLAMP (s)
1
45
3.75
VDD = BVDSS
2.50
30
0.75 BVDSS
0.50 BVDSS
0.25 BVDSS
15
RL = 600Ω
IG(REF) = 0.1mA
VGS = 5V
0
20
10
5.00
60
200
0
120
FIGURE 10. SELF-CLAMPED INDUCTIVE SWITCHING
VDS , DRAIN SOURCE VOLTAGE (V)
VGS = 0V,
80
1
TJ , JUNCTION TEMPERATURE (oC)
300
40
FIGURE 8. NORMALIZED GATE THRESHOLD VOLTAGE vs
TEMPERATURE
ID = 20mA
2.0
-40
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 7. NORMALIZED rDS(ON) vs JUNCTION TEMPERATURE
C, CAPACITANCE (pF)
ID = 250µA
0.00
I G ( REF )
10 ---------------------I G ( AC T )
25
VDS , DRAIN-TO-SOURCE VOLTAGE (V)
FIGURE 11. TYPICAL CAPACITANCE vs DRAIN-TO-SOURCE
VOLTAGE
1.25
VGS , GATE SOURCE VOLTAGE (V)
rDS(ON) , NORMALIZED ON RESISTANCE
Typical Performance Curves (Continued)
t, TIME (µs)
I G ( REF )
40 I---------------------G ( AC T )
FIGURE 12. NORMALIZED SWITCHING WAVEFORMS FOR
CONSTANT GATE CURRENT. REFER TO HARRIS
APPLICATION NOTES AN7254 AND AN7260
4
RLD03N06CLE, RLD03N06CLESM, RLP03N06CLE
Test Circuit and Waveform
VDD
tON
tD(ON)
tOFF
tD(OFF)
tR
RL
VDS
VDS
tF
90%
90%
VGS
10%
10%
DUT
90%
0V
50%
VGS
RGS
50%
PULSE WIDTH
10%
FIGURE 13. RESISTIVE SWITCHING TEST CIRCUIT
FIGURE 14. RESISTIVE SWITCHING WAVEFORMS
Detailed Description
Duty Cycle Operation
Temperature Dependence of Current Limiting and
Switching Speed Performance
In many applications either the drain to source voltage or the
gate drive is not available 100% of the time. The copper
header on which the RLD03N06CLE, RLD03N06CLESM
and RLP03N06CLE is mounted has a very large thermal
storage capability, so for pulse widths of less then 1ms, the
temperature of the header can be considered a constant,
thereby the junction temperature can be calculated simply as
shown in Equation 2:
The RLD03N06CLE, RLD03N06CLESM and RLP03N06CLE
are a monolithic power device which incorporates a Logic Level
power MOSFET transistor with a current sensing scheme and
control circuitry to enable the device to self limit the drain
source current flow. The current sensing scheme supplies current to a resistor that is connected across the base to emitter of
a bipolar transistor in the control section. The collector of this
bipolar transistor is connected to the gate of the power MOSFET transistor. When the ratiometric current from the current
sensing reaches the value required to forward bias the base
emitter junction of this bipolar transistor, the bipolar “turns on”.
A resistor is incorporated in series with the gate of the power
MOSFET transistor allowing the bipolar transistor to adjust the
drive on the gate of the power MOSFET transistor to a voltage
which then maintains a constant current in the power MOSFET
transistor. Since both the ratiometric current sensing scheme
and the base emitter unction voltage of the bipolar transistor
vary with temperature, the current at which the device limits is a
function of temperature. This dependence is shown in Figure 3.
T C = ( V DS • I D • D • R θCA ) + TA MBIENT
Generally the heat storage capability of the silicon chip in a
power transistor is ignored for duty cycle calculations. Making this assumption, limiting junction temperature to 175oC
and using the TC calculated in Equation 2, the expression for
maximum VDS under duty cycle operation is shown in Equation 3:
o
150 C – T C
V DS = -----------------------------------------I LM • D • R θJC
Limited Time Operations
Protection for a limited period of time is sufficient for many
applications. As stated above the heat storage in the silicon
chip can usually be ignored for computations of over 10 ms,
thereby the thermal equivalent circuit reduces to a simple
enough circuit to allow easy computation on the limiting conditions. The variation in limiting current with temperature
complicates the calculation of junction temperature, but a
simple straight line approximation of the variation is accurate
enough to allow meaningful computations. The curves
shown as Figures 22 through 25 (RLP03N06CLE) and Figure 26 through 29 (RLD03N06CLE and RLD03N06CLESM)
give an accurate indication of how long the specified voltage
can be applied to the device in the current limiting mode
without exceeding the maximum specified 175oC junction
temperature. In practice this tells you how long you have to
alleviate the condition causing the current limiting to occur.
DC Operation
The limit on the drain to source voltage for operation in current limiting on a steady state (DC) basis is shown in the
equation below. The dissipation in the device is simply the
applied drain to source voltage multiplied by the limiting current. This device, like most power MOSFET devices today, is
limited to 175oC. The maximum voltage allowable can,
therefore, be expressed as shown in Equation 1:
θJC
θJA
(EQ. 3)
These values are plotted as Figures 16 through 21 for various heatsink thermal resistances.
The resistor in series with the gate of the power MOSFET
transistor also results in much slower switching performance
than in standard power MOSFET transistors. This is an
advantage where fast switching can cause EMI or RFI. The
switching speed is very predictable.
( 150°C – TA MBIENT )
V DS = ------------------------------------------------------I LM • ( R
+R
)
(EQ. 2)
(EQ. 1)
The results of this equation are plotted in Figure 15 for various heatsinks.
5
RLD03N06CLE, RLD03N06CLESM, RLP03N06CLE
Performance Curves
HEAT SINK THERMAL RESISTANCE = HSTR
DUTY CYCLE = DC
HSTR = 0oC/W
HSTR = 1oC/W
HSTR = 2oC/W
75
HSTR = 5oC/W
TJ = 175oC
ILIM = 0.210A
RθJC = 5.0oC/W
60
HSTR = 10oC/W
45
30
HSTR = 25oC/W
15
0
HSTR = 80oC/W
25
50
75
100
125
150
TA , AMBIENT TEMPERATURE (oC)
VDS , DRAIN TO SOURCE VOLTAGE (V)
MAX PULSE WIDTH = 100ms
DC = 2%
DC = 50%
60
DC = 5%
DC = 10%
45
30
15
TJ = 175oC
ILIM = 0.210A
RθJC = 5.0oC/W
0
100
125
150
TA , AMBIENT TEMPERATURE (oC)
60
DC = 10%
45
30
15
TJ = 175oC
ILIM = 0.210A
RθJC = 5.0oC/W
125
150
TA , AMBIENT TEMPERATURE (oC)
DUTY CYCLE = DC
175
MAX PULSE WIDTH = 100ms
DC = 20%
DC = 2%
75
DC = 5%
60
DC = 10%
DC = 50%
45
30
15
TJ = 175oC
ILIM = 0.210A
RθJC = 5.0oC/W
0
75
175
FIGURE 17. MAXIMUM VDS vs AMBIENT TEMPERATURE IN
CURRENT LIMITING. (HSTR = 2oC/W)
DUTY CYCLE = DC
DC = 5%
90
75
DC = 20%
DC = 2%
FIGURE 16. MAXIMUM VDS vs AMBIENT TEMPERATURE IN
CURRENT LIMITING. (HEATSINK THERMAL
RESISTANCE = 1oC/W)
VDS , DRAIN TO SOURCE VOLTAGE (V)
DUTY CYCLE = DC
90
DC = 20%
DC = 50%
75
0
100
175
FIGURE 15. DC OPERATION IN CURRENT LIMITING
100
125
150
TA , AMBIENT TEMPERATURE (oC)
175
FIGURE 18. MAXIMUM VDS vs AMBIENT TEMPERATURE IN
CURRENT LIMITING. (HSTR = 5oC/W)
MAX PULSE WIDTH = 100ms
DUTY CYCLE = DC
90
MAX PULSE WIDTH = 100ms
90
DC = 20%
VDS , DRAIN TO SOURCE VOLTAGE (V)
VDS , DRAIN TO SOURCE VOLTAGE (V)
MAX PULSE WIDTH = 100ms
90
VDS , DRAIN TO SOURCE VOLTAGE (V)
VDS , APPLIED VOLTAGE (V)
90
DC = 2%
75
DC = 50%
60
DC = 5%
DC = 10%
45
30
TJ = 175oC
ILIM = 0.210A
RθJC = 5.0oC/W
15
0
25
50
75
100
125
150
TA , AMBIENT TEMPERATURE (oC)
DC = 20%
FIGURE 19. MAXIMUM VDS vs AMBIENT TEMPERATURE IN
CURRENT LIMITING. (HSTR = 10oC/W)
DC = 2%
DC = 5%
60
45
DC = 50%
30
TJ = 175oC
ILIM = 0.210A
RθJC = 5.0oC/W
15
0
175
DC = 10%
75
25
50
75
100
125
150
TA , AMBIENT TEMPERATURE (oC)
175
FIGURE 20. MAXIMUM VDS vs AMBIENT TEMPERATURE IN
CURRENT LIMITING. (HSTR = 25oC/W)
6
RLD03N06CLE, RLD03N06CLESM, RLP03N06CLE
Performance Curves
DUTY CYCLE = DC
90
DC = 10%
75
MAX PULSE WIDTH = 100ms
DC = 2%
DC = 5%
10
DC = 1%
60
DC = 20%
45
30
DC = 50%
25
50
6
4
2
15
0
STARTING TJ = 75oC
STARTING TJ = 100oC
STARTING TJ = 125oC
STARTING TJ = 150oC
8
TJ = 175oC
ILIM = 0.210A
RθJC = 5.0oC/W
TIME TO 175oC (s)
VDS , DRAIN TO SOURCE VOLTAGE (V)
(Continued)
75
100
125
150
TA , AMBIENT TEMPERATURE (oC)
0
175
10
30
50
70
VDS , DRAIN TO SOURCE VOLTAGE (V)
90
FIGURE 22. TIME TO 175oC IN CURRENT LIMITING
(HEATSINK THERMAL RESISTANCE = 25oC/W)
(HEATSINK THERMAL CAPACITANCE = 0.5J/oC)
FIGURE 21. MAXIMUM VDS vs AMBIENT TEMPERATURE IN
CURRENT LIMITING. (HSTR = 80oC/W)
10
10
75oC
STARTING TJ =
STARTING TJ = 100oC
STARTING TJ = 125oC
STARTING TJ = 150oC
8
TIME TO 175oC (s)
TIME TO 175oC (s)
8
6
4
2
STARTING TJ = 75oC
6
STARTING TJ = 100oC
4
STARTING TJ = 125oC
2
STARTING TJ = 150oC
0
0
10
30
50
70
VDS , DRAIN TO SOURCE VOLTAGE (V)
90
FIGURE 23. TIME TO 175oC IN CURRENT LIMITING
(HEATSINK THERMAL RESISTANCE = 10oC/W)
(HEATSINK THERMAL CAPACITANCE = 1.0J/oC)
10
90
10
STARTING TJ = 75oC
8
TIME TO 175oC (s)
TIME TO 175oC (s)
50
70
30
VDS , DRAIN TO SOURCE VOLTAGE (V)
FIGURE 24. TIME TO 175oC IN CURRENT LIMITING
(HEATSINK THERMAL RESISTANCE = 5oC/W)
(HEATSINK THERMAL CAPACITANCE = 2.0J/oC)
8
STARTING TJ = 100oC
6
4
STARTING TJ =
125oC
2
STARTING TJ = 75oC
STARTING TJ = 100oC
STARTING TJ = 125oC
6
STARTING TJ = 150oC
4
2
STARTING TJ =
0
10
10
150oC
30
50
70
VDS , DRAIN TO SOURCE VOLTAGE (V)
0
90
FIGURE 25. TIME TO 175oC IN CURRENT LIMITING
(HEATSINK THERMAL RESISTANCE = 2oC/W)
(HEATSINK THERMAL CAPACITANCE = 4J/oC)
10
30
50
70
VDS , DRAIN TO SOURCE VOLTAGE (V)
90
FIGURE 26. TIME TO 175oC IN CURRENT LIMITING
(HEATSINK THERMAL RESISTANCE = 25oC/W)
(HEATSINK THERMAL CAPACITANCE = 0.5J/oC)
7
RLD03N06CLE, RLD03N06CLESM, RLP03N06CLE
Performance Curves
(Continued)
10
10
8
8
STARTING TJ = 75oC
STARTING TJ = 100 C
TIME TO 175oC (s)
TIME TO 175oC (s)
o
STARTING TJ = 125oC
6
STARTING TJ = 150oC
4
STARTING TJ = 75oC
6
STARTING TJ = 100oC
4
STARTING TJ = 125oC
2
2
STARTING TJ = 150oC
0
0
10
30
50
70
10
90
50
30
VDS , DRAIN TO SOURCE VOLTAGE (V)
70
FIGURE 27. TIME TO 175oC IN CURRENT LIMITING
(HEATSINK THERMAL RESISTANCE = 10oC/W)
(HEATSINK THERMAL CAPACITANCE = 1.0J/oC)
FIGURE 28. TIME TO 175oC IN CURRENT LIMITING
(HEATSINK THERMAL RESISTANCE = 5oC/W)
(HEATSINK THERMAL CAPACITANCE = 2.0J/oC)
10
STARTING TJ = 75oC
TIME TO 175oC (s)
8
6
STARTING TJ = 100oC
4
STARTING TJ = 125oC
2
STARTING TJ = 150oC
0
10
90
VDS , DRAIN TO SOURCE VOLTAGE (V)
50
30
70
90
VDS , DRAIN TO SOURCE VOLTAGE (V)
FIGURE 29. TIME TO 175oC IN CURRENT LIMITING (HEATSINK THERMAL RESISTANCE = 2oC/W)
(HEATSINK THERMAL CAPACITANCE = 4J/oC)
8
RLD03N06CLE, RLD03N06CLESM, RLP03N06CLE
Temperature Compensated PSPICE Model for the RLD03N06CLE, RLD03N06CLESM,
RLP03N06CLE
SUBCKT RLD03N06CLE 2 1 3;
CA 12 8 0.547e-9
CB 15 14 0.547e-9
CIN 6 8 0.301e-9
rev 4/18/94
DBREAK
DPLCAP
10
11
+
EBREAK
ESG
6
8
+
17
18
GATE
1
RGATE
LGATE
DESD1
LDRAIN 2 5 1e-9
LGATE 1 9 2.96e-9
LSOURCE 3 7 2.96e-9
DESD2
9
VTO
+
EVTO
+ 18
8
21
MOS2
CIN
RIN
91
DBODY
MOS1
6
8
12
LSOURCE
RSOURCE1 RSOURCE2
3
SOURCE
7
70
S1A
MOS1 16 6 8 8 MOSMOD M = 0.99
MOS2 16 21 8 8 MOSMOD M = 0.01
RBREAK 17 18 RBKMOD 1
RDRAIN 5 16 RDSMOD 1.123
RGATE 9 20 3200
RIN 6 8 1e9
RSOURCE1 8 70 RDSMOD 1.12
RSOURCE2 70 7 RSMOD 2.16
RVTO 18 19 RVTOMOD 1
RDRAIN
16
-
IT 8 17 1
QCONTROL 20 70 7 QMOD 1
DRAIN
LDRAIN 2
DBODY 7 5 DBDMOD
DBREAK 5 11 DBKMOD
DESD1 91 9 DESD1MOD
DESD2 91 7 DESD2MOD
DPLCAP 10 5 DPLCAPMOD
EBREAK 11 20 17 18 66.5
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTO 20 6 18 8 1
5
S2A
14
13
13
8
S1B
RVTO
CB
+
+
6
8
EGS
18
17
S2B
13
CA
RBREAK
15
EDS
14
IT
5
8
19
VBAT
+
S1A 6 12 13 8 S1AMOD
S1B 13 12 13 8 S1BMOD
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S2BMOD
VBAT 8 19 DC 1
VTO 21 6 0.22
.MODEL DBDMOD D (IS = 7.97e-17 RS = 1.82 TRS1 = 3.91e-3 TRS2 = 1.24e-5 CJO = 3.00e-10 TT = 1.83e-7)
.MODEL DBKMOD D (RS = 3150 TRS1 =0 TRS2 = 0)
.MODEL DESD1MOD D (BV = 13.54 TBV1 = 0 TBV2 = 0 RS = 45.5 TRS1 = 0 TRS2 = 0)
.MODEL DESD2MOD D (BV = 11.46 TBV1 = -7.576e-4 TBV2 = -3.0e-6 RS = 0 TRS1 = 0 TRS2 = 0)
.MODEL DPLCAPMOD D (CJO = 74.2e-12 IS = 1e-30 N = 10)
.MODEL MOSMOD NMOS (VTO = 1.67 KP = 3.40 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL QMOD NPN (BF =5)
.MODEL RBKMOD RES (TC1 = 4e-4 TC2 = 1.13e-8)
.MODEL RDSMOD RES (TC1 = 6.80e-3 TC2 = 6.5e-6)
.MODEL RSMOD RES (TC1 = 2.95e-3 TC2 = -1e-6)
.MODEL RVTOMOD RES (TC1 = -2.22e-3 TC2 = -1.95e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3 VOFF = -1)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1 VOFF = -3)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.85 VOFF = 2.15)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.15 VOFF = -2.85)
.ENDS
NOTE:
1. For further discussion of the PSPICE model consult A New PSPICE Sub-circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records 1991.
9
RLD03N06CLE, RLD03N06CLESM, RLP03N06CLE
TO-220AB
3 LEAD JEDEC TO-220AB PLASTIC PACKAGE
A
INCHES
E
ØP
A1
Q
H1
TERM. 4
D
45o
E1
D1
L1
b1
L
b
c
MIN
MAX
MIN
MAX
NOTES
A
0.170
0.180
4.32
4.57
-
A1
0.048
0.052
1.22
1.32
-
b
0.030
0.034
0.77
0.86
3, 4
b1
0.045
0.055
1.15
1.39
2, 3
c
0.014
0.019
0.36
0.48
2, 3, 4
D
0.590
0.610
14.99
15.49
-
D1
-
0.160
E
0.395
0.410
E1
-
0.030
e
60o
1
2
e1
3
e
J1
e1
LEAD NO. 1
- GATE
LEAD NO. 2
- DRAIN
LEAD NO. 3
- SOURCE
TERM. 4
- DRAIN
MILLIMETERS
SYMBOL
0.100 TYP
0.200 BSC
H1
0.235
0.255
J1
0.100
0.110
L
0.530
0.550
10.04
-
4.06
-
10.41
-
0.76
-
2.54 TYP
5
5.08 BSC
5
5.97
6.47
-
2.54
2.79
6
13.47
13.97
-
L1
0.130
0.150
3.31
3.81
2
ØP
0.149
0.153
3.79
3.88
-
Q
0.102
0.112
2.60
2.84
-
NOTES:
1. These dimensions are within allowable dimensions of Rev. J of
JEDEC TO-220AB outline dated 3-24-87.
2. Lead dimension and finish uncontrolled in L1.
3. Lead dimension (without solder).
4. Add typically 0.002 inches (0.05mm) for solder coating.
5. Position of lead to be measured 0.250 inches (6.35mm) from bottom of dimension D.
6. Position of lead to be measured 0.100 inches (2.54mm) from bottom of dimension D.
7. Controlling dimension: Inch.
8. Revision 1 dated 1-93.
10
RLD03N06CLE, RLD03N06CLESM, RLP03N06CLE
TO-251AA
3 LEAD JEDEC TO-251AA PLASTIC PACKAGE
E
b2
H1
INCHES
A
MIN
MAX
MIN
MAX
TERM. 4
A
0.086
0.094
2.19
2.38
-
SEATING
PLANE
A1
0.018
0.022
0.46
0.55
3, 4
A1
D
b1
L1
L
c
b
1
2
3
J1
e
e1
LEAD NO. 1
- GATE
LEAD NO. 2
- DRAIN
LEAD NO. 3
- SOURCE
TERM. 4
- DRAIN
MILLIMETERS
SYMBOL
NOTES
b
0.028
0.032
0.72
0.81
3, 4
b1
0.033
0.040
0.84
1.01
3
b2
0.205
0.215
5.21
5.46
3, 4
c
0.018
0.022
0.46
0.55
3, 4
D
0.270
0.290
6.86
7.36
-
E
0.250
0.265
6.35
6.73
-
e
0.090 TYP
2.28 TYP
5
e1
0.180 BSC
4.57 BSC
5
H1
0.035
0.045
0.89
1.14
-
J1
0.040
0.045
1.02
1.14
6
L
0.355
0.375
9.02
9.52
-
L1
0.075
0.090
1.91
2.28
2
NOTES:
1. These dimensions are within allowable dimensions of Rev. C of
JEDEC TO-251AA outline dated 9-88.
2. Solder finish uncontrolled in this area.
3. Dimension (without solder).
4. Add typically 0.002 inches (0.05mm) for solder plating.
5. Position of lead to be measured 0.250 inches (6.35mm) from bottom of dimension D.
6. Position of lead to be measured 0.100 inches (2.54mm) from bottom of dimension D.
7. Controlling dimension: Inch.
8. Revision 2 dated 10-95.
11
RLD03N06CLE, RLD03N06CLESM, RLP03N06CLE
TO-252AA
SURFACE MOUNT JEDEC TO-252AA PLASTIC PACKAGE
INCHES
A
E
A1
b2
H1
SEATING
PLANE
D
L2
1
L
3
b1
b
e
e1
b3
L3
0.094
2.19
2.38
-
0.018
0.022
0.46
0.55
4, 5
b
0.028
0.032
0.72
0.81
4, 5
b1
0.033
0.040
0.84
1.01
4
b2
0.205
0.215
5.21
5.46
4, 5
b3
0.190
-
4.83
-
2
0.46
0.55
4, 5
6.86
7.36
-
c
E
0.250
0.265
6.35
6.73
J1
e
e1
0.090 TYP
0.180 BSC
-
2.28 TYP
7
4.57 BSC
7
H1
0.035
0.045
0.89
1.14
-
J1
0.040
0.045
1.02
1.14
-
L
0.100
0.115
2.54
2.92
-
L1
0.020
-
0.51
-
4, 6
L2
0.025
0.040
0.64
1.01
3
L3
0.170
-
4.32
-
2
NOTES:
1. These dimensions are within allowable dimensions of Rev. B of
JEDEC TO-252AA outline dated 9-88.
2. L3 and b3 dimensions establish a minimum mounting surface for
terminal 4.
3. Solder finish uncontrolled in this area.
4. Dimension (without solder).
5. Add typically 0.002 inches (0.05mm) for solder plating.
6. L1 is the terminal length for soldering.
7. Position of lead to be measured 0.090 inches (2.28mm) from bottom
of dimension D.
8. Controlling dimension: Inch.
9. Revision 5 dated 10-95.
0.090 (2.3)
MINIMUM PAD SIZE RECOMMENDED FOR
SURFACE-MOUNTED APPLICATIONS
- DRAIN
0.086
0.022
0.063 (1.6)
TERM. 4
A
A1
0.290
0.090 (2.3)
- SOURCE
NOTES
0.018
0.118 (3.0)
- GATE
MAX
0.270
BACK VIEW
LEAD NO. 3
MIN
c
0.070 (1.8)
LEAD NO. 1
MAX
D
0.265 (6.7)
0.063 (1.6)
MIN
L1
0.265
(6.7)
TERM. 4
MILLIMETERS
SYMBOL
12
RLD03N06CLE, RLD03N06CLESM, RLP03N06CLE
TO-252AA
16mm TAPE AND REEL
22.4mm
4.0mm
1.5mm
DIA. HOLE
2.0mm
13mm
1.75mm
C
L
16mm
330mm
50mm
8.0mm
16.4mm
USER DIRECTION OF FEED
COVER TAPE
GENERAL INFORMATION
1. USE "9A" SUFFIX ON PART NUMBER.
2. 2500 PIECES PER REEL.
3. ORDER IN MULTIPLES OF FULL REELS ONLY.
4. MEETS EIA-481 REVISION "A" SPECIFICATIONS.
Revision 5 dated 10-95
Harris Semiconductor products are sold by description only. Harris Semiconductor reserves the right to make changes in circuit design and/or specifications at
any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Harris is
believed to be accurate and reliable. However, no responsibility is assumed by Harris or its subsidiaries for its use; nor for any infringements of patents or other
rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Harris or its subsidiaries.
Sales Office Headquarters
For general information regarding Harris Semiconductor and its products, call 1-800-4-HARRIS
UNITED STATES
Harris Semiconductor
P. O. Box 883, Mail Stop 53-210
Melbourne, FL 32902
TEL: 1-800-442-7747
(407) 729-4984
FAX: (407) 729-5321
EUROPE
Harris Semiconductor
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2-724-2111
SOUTH ASIA
Harris Semiconductor H.K. Ltd.
13/F Fourseas Building
208-212 Nathan Road
Tsimshatsui, Kowloon
Hong Kong
TEL: (852) 723-6339
S E M I C O N D U C TO R
13
NORTH ASIA
Harris K.K.
Kojimachi-Nakata Bldg. 4F
5-3-5 Kojimachi
Chiyoda-ku, Tokyo 102 Japan
TEL: (81) 3-3265-7571
TEL: (81) 3-3265-7572 (Sales)