RFD16N03L, RFD16N03LSM S E M I C O N D U C T O R 16A, 30V, Avalanche Rated N-Channel Logic Level Enhancement-Mode Power MOSFETs December 1995 Features Packaging • 16A, 30V JEDEC TO-251AA SOURCE DRAIN GATE • rDS(ON) = 0.022Ω • Temperature Compensating PSPICE Model DRAIN (FLANGE) • Can be Driven Directly from CMOS, NMOS, and TTL Circuits • Peak Current vs Pulse Width Curve • UIS Rating Curve oC • +175 JEDEC TO-252AA Operating Temperature DRAIN (FLANGE) Description GATE The RFD16N03L and RFD16N03LSM are N-channel power MOSFETs manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI circuits, gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers and relay drivers. This performance is accomplished through a special gate oxide design which provides full rated conductance at gate bias in the 3V - 5V range, thereby facilitating true on-off power control directly from logic level (5V) integrated circuits. SOURCE Symbol DRAIN GATE PACKAGE AVAILABILITY PART NUMBER PACKAGE BRAND RFD16N03L TO-251AA 16N03L RFD16N03LSM TO-252AA 16N03L SOURCE NOTE: When ordering, use the entire part number. Add the suffix 9A, to obtain the TO-252AA variant in tape and reel, e.g. RFD16N03LSM9A. Formerly developmental type TA49030. Absolute Maximum Ratings TC = +25oC Drain-Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain-Gate Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate-Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current RMS Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .EAS Power Dissipation TC = +25o C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate above +25o C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TSTG, TJ Soldering Temperature of Leads for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL RFD16N03L, RFD16N03LSM 30 30 ±10 16 Refer to Peak Current Curve Refer to UIS Curve A 90 0.606 -55 to +175 260 W W/oC oC oC CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD Handling Procedures. Copyright © Harris Corporation 1995 5-31 UNITS V V V File Number 4013.1 Specifications RFD16N03L, RFD16N03LSM Electrical Specifications TC = +25oC, Unless Otherwise Specified PARAMETERS SYMBOL TEST CONDITIONS MIN TYP MAX UNITS V Drain-Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V 30 - - Gate Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA Zero Gate Voltage Drain Current 1 - 2 V TC = +25oC - - 1 µA TC = +150oC - - 50 µA VGS = ±10V - - 100 nA ID = 16A, VGS = 5V - - 0.022 Ω VDD = 15V, ID = 16A, RL = 0.93Ω, VGS = 5V, RGS = 5Ω - - 120 ns - 15 - ns tR - 95 - ns tD(OFF) - 25 - ns tF - 27 - ns tOFF - - 80 ns - 50 60 nC - 30 36 nC IDSS Gate-Source Leakage Current IGSS On Resistance rDS(ON) Turn-On Time tON Turn-On Delay Time tD(ON) Rise Time Turn-Off Delay Time Fall Time Turn-Off Time VDS = 30V, VGS = 0V Total Gate Charge QG(TOT) VGS = 0V to 10V Gate Charge at 5V QG(5) VGS = 0V to 5V QG(TH) VGS = 0V to 1V - 1.5 1.8 nC VDS = 25V, VGS = 0V, f = 1MHz - 1650 - pF - 575 - pF Threshold Gate Charge VDD = 24V, ID = 16A, RL = 1.5Ω Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS - 200 - pF Thermal Resistance Junction-to-Case RθJC - - 1.65 oC/W Thermal Resistance Junction-to-Ambient RθJA - - 100 oC/W MIN TYP MAX UNITS TO-251 and TO-252 Source-Drain Diode Specifications PARAMETERS SYMBOL TEST CONDITIONS Forward Voltage VSD ISD = 16A - - 1.5 V Reverse Recovery Time tRR ISD = 16A, dISD/dt = 100A/µs - - 75 ns 5-32 RFD16N03L, RFD16N03LSM Typical Performance Curves TC = +25oC 2 500 100 100µs 1ms 10 10ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 100ms DC VDSS MAX = 30V ZθJC, NORMALIZED THERMAL RESPONSE ID, DRAIN CURRENT (A) 1 0.2 PDM 0.1 0.1 .05 t1 t2 .02 .01 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC + TC SINGLE PULSE 1 10 VDS, DRAIN-TO-SOURCE VOLTAGE (V) 1 0.5 0.01 10-5 50 FIGURE 1. SAFE OPERATING AREA CURVE 10-4 10-3 10-2 10-1 100 t, RECTANGULAR PULSE DURATION (s) FIGURE 2. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE TC = +25oC 20 IDM, PEAK CURRENT CAPABILITY (A) ID, DRAIN CURRENT (A) 500 15 10 5 0 25 50 75 100 125 TC, CASE TEMPERATURE (oC) 150 VGS = 10V VGS = 5V TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION ID, DRAIN CURRENT (A) ID(ON), ON-STATE DRAIN CURRENT (A) VGS = 5V 75 VGS = 4.5V VGS = 4V VGS = 3.5V VGS = 3V 0 0 1.0 2.0 3.0 4.0 10-4 10-3 10-2 10-1 t, PULSE WIDTH (s) 100 101 VDD = 15V 100 25 175 - TC 150 FIGURE 4. PEAK CURRENT CAPABILITY PULSE DURATION = 250µs, TC = +25oC 50 = I25 100 10 10-5 175 FOR TEMPERATURES ABOVE +25oC DERATE PEAK CURRENT AS FOLLOWS: I FIGURE 3. MAXIMUM CONTINUOUS DRAIN CURRENT vs TEMPERATURE VGS = 10V 101 5.0 100 75 +25oC 50 25 PULSE TEST PULSE DURATION = 250µs DUTY CYCLE = 0.5% MAX 0 0 VDS, DRAIN-TO-SOURCE VOLTAGE (V) +175oC -55oC 1.5 3.0 4.5 6.0 VGS, GATE-TO-SOURCE VOLTAGE (V) FIGURE 6. TYPICAL TRANSFER CHARACTERISTICS FIGURE 5. TYPICAL SATURATION CHARACTERISTICS 5-33 7.5 RFD16N03L, RFD16N03LSM ID = 250µA VGS = VDS, ID = 250µA 2.0 2.0 VGS(TH), NORMALIZED GATE THRESHOLD VOLTAGE 1.5 1.0 0.5 0.0 -80 -40 0 40 80 120 160 1.5 1.0 0.5 0.0 -80 200 -40 TJ , JUNCTION TEMPERATURE (oC) FIGURE 7. NORMALIZED DRAIN-SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) TJ = 25oC, PULSE DURATION = 250µs rDS(ON), ON-STATE RESISTANCE (mΩ) rDS(ON), NORMALIZED ON RESISTANCE PULSE DURATION = 250µs, VGS = 5V, ID = 16A 1.5 1.0 0.5 0.0 -40 0 40 80 120 160 100 ID = 32A 75 ID = 16A ID = 8A 50 ID = 2A 25 0 2.5 200 3.0 TJ, JUNCTION TEMPERATURE (oC) 30 VDS , DRAIN-SOURCE VOLTAGE (V) tR 200 SWITCHING TIME (ns) 5.0 4.5 FIGURE 10. TYPICAL rDS(ON) FOR VARYING CONDITIONS OF GATE VOLTAGE AND DRAIN CURRENT VDD = 15V, IDD = 16A, RL = 0.93Ω tF 150 tD(ON) 100 tD(OFF) 50 5 10 20 30 40 RGS, GATE-TO-SOURCE RESISTANCE (Ω) 50 FIGURE 11. TYPICAL SWITCHING TIME AS A FUNCTION OF GATE RESISTANCE VDD = BVDSS VDD = BVDSS 24 4 18 3 0.75 BVDSS 0.50 BVDSS 0.25 BVDSS 12 2 RL = 1.875Ω IG(REF) = 0.6mA VGS = 5V 6 0 0 0 4.0 3.5 VGS, GATE-TO-SOURCE VOLTAGE (V) FIGURE 9. NORMALIZED rDS(ON) vs JUNCTION TEMPERATURE 250 200 FIGURE 8. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 2.0 -80 160 20 IG(REF) IG(ACT) t, TIME (s) 1 80 IG(REF) VGS , GATE-SOURCE VOLTAGE (V) BVDSS, NORMALIZED DRAIN-TO-SOURCE BREAKDOWN VOLTAGE Typical Performance Curves (Continued) 0 IG(ACT) FIGURE 12. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT. REFER TO HARRIS APPLICATION NOTES AN7254 AND AN7260 5-34 RFD16N03L, RFD16N03LSM Typical Performance Curves (Continued) 200 VGS = 0V, f = 1MHz IAS, AVALANCHE CURRENT (A) 2000 CISS 1500 1000 COSS 500 100 STARTING TJ = +25oC STARTING TJ = +150oC 10 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV=(L/R)ln[(IAS*R)/(1.3*RATED BVDSS-VDD) +1] CRSS 1 0 0 0.001 25 5 10 15 20 VDS, DRAIN-TO-SOURCE VOLTAGE (V) FIGURE 13. TYPICAL CAPACITANCE vs VOLTAGE 0.01 0.1 1 10 tAV, TIME IN AVALANCHE (ms) 1.0 0.8 0.6 0.4 0.2 0.0 0 25 100 FIGURE 14. UNCLAMPED INDUCTIVE SWITCHING. REFER TO HARRIS APPLICATION NOTES AN9321 AND AN9322 1.2 POWER DISSIPATION MULTIPLIER C, CAPACITANCE (pF) 2500 50 75 100 125 TC , CASE TEMPERATURE (oC) 150 175 FIGURE 15. NORMALIZED POWER DISSIPATION vs TEMPERATURE DERATING CURVE 5-35 RFD16N03L, RFD16N03LSM Test Circuits and Waveforms VDS BVDSS tP VDS L IAS VARY tP TO OBTAIN VDD + RG REQUIRED PEAK IAS VDD - VGS DUT tP 0V IL tAV 0.01Ω FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 17. UNCLAMPED ENERGY WAVEFORMS VDD tON tOFF tD(ON) RL tD(OFF) tF tR VDS 90% VDS 90% VGS 10% 10% 0V RGS 90% DUT VGS 10% FIGURE 18. RESISTIVE SWITCHING TEST CIRCUIT 50% 50% PULSE WIDTH FIGURE 19. RESISTIVE SWITCHING WAVEFORMS 5-36 RFD16N03L, RFD16N03LSM Temperature Compensated PSPICE Model for the RFD16N03L, RFD16N03LSM .SUBCKT RFD16N03L 2 1 3; rev 12/12/94 DPLCAP CA 12 8 2.55e-9 CB 15 14 2.64e-9 CIN 6 8 1.45e-9 RSCL1 RSCL2 + 51 5 51 6 8 ESG IT 8 17 1 9 EBREAK - VTO + 6 RBREAK 17 18 RBKMOD 1 RDRAIN 50 16 RDSMOD 0.14e-3 RGATE 9 20 0.89 RIN 6 8 1e9 RSCL1 5 51 RSCLMOD 1e-6 RSCL2 5 50 1e3 RSOURCE 8 7 RDSMOD 10.31e-3 RVTO 18 19 RVTOMOD 1 S1A S1B S2A S2B DBODY MOS2 MOS1 8 RIN CIN 8 RSOURCE 7 LSOURCE 3 SOURCE S2A S1A 12 + 17 18 - 21 LDRAIN 2 5 1e-9 LGATE 1 9 3.4e-9 LSOURCE 3 7 3.4e-9 MOS1 16 6 8 8 MOSMOD M = 0.99 MOS2 16 21 8 8 MOSMOD M = 0.01 11 16 EVTO 20 + 18 - LGATE RGATE ESCL RDRAIN + GATE 1 DBREAK 50 - EBREAK 11 7 17 18 33.3 1 1 1 8 1 DRAIN 2 LDRAIN DBODY 7 5 DBDMOD DBREAK 5 11 DBKMOD DPLCAP 10 5 DPLCAPMOD EDS 14 8 5 8 EGS 13 8 6 8 ESG 6 10 6 8 EVTO 20 6 18 5 10 13 8 S1B RBREAK 15 14 13 17 18 S2B 13 CA RVTO CB + 6 8 EGS - 14 + 5 8 EDS IT 19 VBAT + - 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 8 19 DC 1 VTO 21 6 0.583 ESCL 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)*1e6/176,6))} .MODEL DBDMOD D (IS = 3.61e-13 RS = 5.06e-3 TRS1 = 3.05e-3 TRS2 = 7.57e-6 CJO = 2.16e-9 TT = 2.18e-8) .MODEL DBKMOD D (RS = 1.66e-1 TRS1 = -2.97e-3 TRS2 = 7.57e-6) .MODEL DPLCAPMOD D (CJO = 0.96e-9 IS = 1e-30 N = 10) .MODEL MOSMOD NMOS (VTO = 2.313 KP = 53.82 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL RBKMOD RES (TC1 = 8.95e-4 TC2 = -1e-7) .MODEL RDSMOD RES (TC1 = 3.92e-3 TC2 = 1.29e-5) .MODEL RSCLMOD RES (TC1 = 2.03e-3 TC2 = 0.45e-5) .MODEL RVTOMOD RES (TC1 = -2.27e-3 TC2 = -5.75e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.82 VOFF= -2.82) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.82 VOFF= -4.82) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.67 VOFF= 2.33) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.33 VOFF= -2.67) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-circuit for the Power MOSFET Featuring Global Temperature Options; written by William J. Hepp and C. Frank Wheatley. 5-37