HARRIS RF1S30N06LESM

RFP30N06LE, RF1S30N06LE,
RF1S30N06LESM
S E M I C O N D U C T O R
30A, 60V, ESD Rated, Avalanche Rated, Logic Level
N-Channel Enhancement-Mode Power MOSFETs
July 1995
Features
Packages
JEDEC TO-220AB
• 30A, 60V
SOURCE
DRAIN
GATE
• rDS(ON) = 0.047Ω
• 2kV ESD Protected
• Temperature Compensating PSPICE Model
DRAIN
(FLANGE)
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
JEDEC TO-262AA
SOURCE
DRAIN
GATE
Description
A
The RFP30N06LE, RF1S30N06LE and RF1S30N06LESM
are N-Channel power MOSFETs manufactured using the
MegaFET process. This process, which uses feature sizes
approaching those of LSI integrated circuits gives optimum
utilization of silicon, resulting in outstanding performance.
They were designed for use in applications such as switching regulators, switching converters, motor drivers and relay
drivers. These transistors can be operated directly from integrated circuits.
DRAIN
(FLANGE)
JEDEC TO-263AB
M
A
DRAIN
(FLANGE)
GATE
SOURCE
These transistors incorporate ESD protection and are
designed to withstand 2kV (Human Body Model) of ESD.
PACKAGE AVAILABILITY
PART NUMBER
RFP30N06LE
PACKAGE
TO-220AB
A
Symbol
BRAND
D
F30N06LE
RF1S30N06LE
TO-262AA
1S30N06L
RF1S30N06LESM
TO-263AB
1S30N06L
G
NOTE: When ordering use the entire part number. Add suffix, 9A, to
obtain the TO-263 variant in tape and reel i.e. RF1S30N06LESM9A.
Formerly developmental type TA49027.
S
Absolute Maximum Ratings
TC = +25oC
RFP30N06LE, RF1S30N06LE,
RF1S30N06LESM
UNITS
Drain Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS
60
V
Drain Gate Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDGR
60
V
Gate Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VGS
+10, -8
V
Drain Current
RMS Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM
30
Refer to Peak Current Curve
A
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS
Refer to UIS Curve
Power Dissipation
TC = +25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate above +25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
96
0.645
Electrostatic Discharge Rating, MIL-STD-883, Category B(2) . . . . . . . . . . . . . . . ESD
2
kV
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TSTG, TJ
-55 to +175
oC
Soldering Temperature of Leads for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
260
oC
Copyright
© Harris Corporation 1995
W
W/oC
File Number
5-45
3629.1
Specifications RFP30N06LE, RF1S30N06LE, RF1S30N06LESM
Electrical Specifications
TC = +25oC, Unless Otherwise Specified
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
Drain-Source Breakdown Voltage
BVDSS
ID = 250µA, VGS = 0V
60
-
-
V
Gate Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA
1
-
2
V
TC = +25oC
-
-
1
µA
TC = +150oC
-
-
50
µA
VGS = +10, -8V
-
-
10
µA
ID = 30A, VGS = 5V
-
-
0.047
Ω
VDD = 30V, ID = 30A,
RL = 1Ω, VGS = 5V,
RGS = 2.5Ω
-
-
140
ns
-
11
-
ns
tR
-
88
-
ns
tD(OFF)
-
30
-
ns
tF
-
40
-
ns
tOFF
-
-
100
ns
-
51
62
nC
-
28
34
nC
Zero Gate Voltage Drain Current
IDSS
Gate-Source Leakage Current
IGSS
On Resistance
rDS(ON)
Turn-On Time
tON
Turn-On Delay Time
tD(ON)
Rise Time
Turn-Off Delay Time
Fall Time
Turn-Off Time
VDS = 60V,
VGS = 0V
Total Gate Charge
QG(TOT)
VGS = 0V to 10V
Gate Charge at 5V
QG(5)
VGS = 0V to 5V
QG(TH)
VGS = 0V to 1V
-
1.8
2.6
nC
VDS = 25V, VGS = 0V,
f = 1MHz
-
1350
-
pF
Threshold Gate Charge
VDD = 48V,
ID = 30A,
RL = 1.6Ω
Input Capacitance
CISS
Output Capacitance
COSS
-
290
-
pF
Reverse Transfer Capacitance
CRSS
-
85
-
pF
Thermal Resistance Junction to Case
RθJC
-
-
1.55
oC/W
Thermal Resistance Junction to Ambient
RθJA
-
-
80
oC/W
MIN
TYP
MAX
UNITS
Source-Drain Diode Specifications
PARAMETER
SYMBOL
TEST CONDITIONS
Forward Voltage
VSD
ISD = 30A
-
-
1.5
V
Reverse Recovery Time
tRR
ISD = 30A, dISD/dt = 100A/µs
-
-
125
ns
5-46
RFP30N06LE, RF1S30N06LE, RF1S30N06LESM
Typical Performance Curves
TC = +25oC
10
200
DUTY CYCLE
0.5
0.2
0.1
0.05
0.02
0.01
ZθJC , NORMALIZED
THERMAL RESPONSE
ID , DRAIN CURRENT (A)
100
100µs
10
1ms
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
1
10ms
VDSS MAX = 60V
1
100ms
DC
PDM
0.1
t1
SINGLE PULSE
0.01
10-5
10-4
10-3
100
10
VDS , DRAIN-TO-SOURCE VOLTAGE (V)
1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC + TC
10-2
10-1
FIGURE 1. SAFE OPERATING AREA CURVE
TC = +25oC
IDM , PEAK CURRENT CAPABILITY (A)
ID , DRAIN CURRENT (A)
30
20
10
0
25
50
75
100
125
TC , CASE TEMPERATURE
150
500
VGS = 10V
VGS = 5V
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
20
10-6
175
(oC)
ID(ON) , ON STATE DRAIN CURRENT (A)
VGS = 5V
VGS = 4.5V
60
VGS = 4V
40
VGS = 3V
20
0
1.5
4.5
3.0
6.0
VDS , DRAIN-TO-SOURCE VOLTAGE (V)
10-4
10-3
10-2
10-1
t, PULSE WIDTH (s)
100
101
VDD = 15V
VGS = 10V
80
10-5
FIGURE 4. PEAK CURRENT CAPABILITY
PULSE DURATION = 250µs, TC = +25oC
100
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
 175 – T 
c
I = I  ----------------------- 
25 
150 
100
FIGURE 3. MAXIMUM CONTINUOUS DRAIN CURRENT vs
TEMPERATURE
ID , DRAIN CURRENT (A)
101
FIGURE 2. NORMALIZED MAXIMUM TRANSIENT THERMAL
IMPEDANCE
40
0
100
t, RECTANGULAR PULSE DURATION (s)
7.5
FIGURE 5. TYPICAL SATURATION CHARACTERISTICS
100
80
PULSE TEST
PULSE DURATION = 250µs
DUTY CYCLE = 0.5% MAX
-55oC
60
+25oC
+175oC
40
20
0
0.0
6.0
3.0
4.5
VGS , GATE-TO-SOURCE VOLTAGE (V)
1.5
FIGURE 6. TYPICAL TRANSFER CHARACTERISTICS
5-47
7.5
RFP30N06LE, RF1S30N06LE, RF1S30N06LESM
Typical Performance Curves
(Continued)
VGS = VDS, ID = 250µA
PULSE DURATION = 250µs, VGS = 5V, ID = 30A
2.0
VGS(TH) , NORMALIZED GATE
THRESHOLD VOLTAGE
3.0
2.0
1.5
1.0
0.5
0.0
-80
-40
0
40
80
120
160
1.5
1.0
0.5
0.0
-80
200
-40
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 7. NORMALIZED rDS(ON) vs JUNCTION TEMPERATURE
1.2
BVDSS , NORMALIZED
DRAIN-TO-SOURCE BREAKDOWN VOLTAGE
ID = 250µA
POWER DISSIPATION MULTIPLIER
1.5
1.0
0.5
-40
0
40
80
120
160
1.0
0.8
0.6
0.4
0.2
0.0
200
0
25
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 9. NORMALIZED DRAIN SOURCE BREAKDOWN
VOLTAGE vs TEMPERATURE
1000
COSS
500
CRSS
VDD = BVDSS
0
10
15
20
5
VDS , DRAIN-TO-SOURCE VOLTAGE (V)
175
VDD = BVDSS
3.75
45
2.50
30
0.75 BVDSS
0.50 BVDSS
0.25 BVDSS
15
0.75 BVDSS
0.50 BVDSS
0.25 BVDSS
1.25
RL = 2.0Ω
IG(REF) = 0.62mA
VGS = 5V
0.00
0
0
150
5.00
60
VDS , DRAIN SOURCE VOLTAGE (V)
C, CAPACITANCE (pF)
CISS
1500
125
50
75
100
TC , CASE TEMPERATURE (oC)
FIGURE 10. NORMALIZED POWER DISSIPATION vs
TEMPERATURE DERATING CURVE
VGS = 0V, f = 1MHz
2000
200
FIGURE 8. NORMALIZED GATE THRESHOLD VOLTAGE vs
TEMPERATURE
2.0
0.0
-80
160
120
0
40
80
TJ , JUNCTION TEMPERATURE (oC)
25
FIGURE 11. TYPICAL CAPACITANCE vs DRAIN-TO-SOURCE
VOLTAGE
VGS , GATE SOURCE VOLTAGE (V)
rDS(ON) , NORMALIZED
2.5
20
IG(REF)
IG(ACT)
t, TIME (s)
80
IG(REF)
IG(ACT)
FIGURE 12. NORMALIZED SWITCHING WAVEFORMS FOR
CONSTANT GATE CURRENT. REFER TO HARRIS
APPLICATION NOTES AN7254 AND AN7260
5-48
RFP30N06LE, RF1S30N06LE, RF1S30N06LESM
Typical Performance Curves
(Continued)
IAS , AVALANCHE CURRENT (A)
100
STARTING TJ = +25oC
STARTING TJ = +150oC
10
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
1
0.01
1
0.1
10
tAV , TIME IN AVALANCHE (ms)
FIGURE 13. UNCLAMPED INDUCTIVE SWITCHING
Test Circuits and Waveforms
VDS
BVDSS
tP
VDS
L
IAS
VARY tP TO OBTAIN
RG
REQUIRED PEAK IAS
VDD
-
VGS
0V
VDD
+
DUT
tP
IL
0.01Ω
tAV
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
VDD
tON
tOFF
tD(ON)
RL
tD(OFF)
tF
tR
VDS
90%
VDS
90%
VGS
10%
10%
0V
90%
RGS
VGS
DUT
50%
10%
FIGURE 16. RESISTIVE SWITCHING TEST CIRCUIT
50%
PULSE WIDTH
FIGURE 17. RESISTIVE SWITCHING WAVEFORMS
5-49
RFP30N06LE, RF1S30N06LE, RF1S30N06LESM
Temperature Compensated PSPICE Model for the RFP30N06LE, RF1S30N06LE,
RF1S30N06LESM
SUBCKT RFP30N06LE 2 1 3;
CA 12 8 1 3.34e-9
CB 15 14 3.44e-9
CIN 6 8 0 1.343e-9
rev 6/2/93
DPLCAP
RSCL2
5
51
-
DBREAK
EVTO
20 + 18 9
8
LGATE RGATE
VTO +
+
17
18
DBODY
-
16
21
6
MOS2
MOS1
RIN
DESD1
91
11
EBREAK
RDRAIN
+
1
ESCL
50
6
8
ESG
GATE
LDRAIN 2 5 1e-9
LGATE 1 9 7.22e-9
LSOURCE 3 7 6.31e-9
RSCL1
+ 51
EBREAK 11 7 17 18 75.39
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTO 20 6 18 8 1
IT 8 17 1
DRAIN
2
LDRAIN
5
10
DBODY 7 5 DBDMOD
DBREAK 5 11 DBKMOD
DESD1 91 9 DESD1MOD
DESD2 91 7 DESD2MOD
DPLCAP 10 5 DPLCAPMOD
CIN
8
DESD2
LSOURCE
RSOURCE
3
7
MOS1 16 6 8 8 MOSMOD M = 0.99
MOS2 16 21 8 8 MOSMOD M = 0.01
RBREAK 17 18 RBKMOD 1
RDRAIN 50 16 RDSMOD 11.86e-3
RGATE 9 20 2.52
RIN 6 8 1e9
RSCL1 5 51 RSLVCMOD 1e-6
RSCL2 5 50 1e3
RSOURCE 8 7 RDSMOD 26.6e-3
RVTO 18 19 RVTOMOD 1
S2A
S1A
12
SOURCE
13
8
S1B
RBREAK
15
14
13
17
18
S2B
13
CA
RVTO
CB
+
EGS
-
14
+
6
8
EDS
-
5
8
IT
19
VBAT
+
S1A 6 12 13 8 S1AMOD
S1B 13 12 13 8 S1BMOD
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S2BMOD
VBAT 8 19 DC 1
VTO 21 6 0.5
ESCL 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)*1e6/89,7))
.MODEL DBDMOD D (IS = 3.80e-13 RS = 1.12e-2 TRS1 = 1.61e-3 TRS2 = 6.08e-6 CJO = 1.05e-9 TT = 3.84e-8)
.MODEL DBKMOD D (RS = 1.82e-1 TRS1 = 7.50e-3 TRS2 = -4.0e-5)
.MODEL DESD1MOD D (BV = 13.54 TBV1 = 0 TBV2 = 0 RS = 45.5 TRS1 = 0 TRS2 = 0)
.MODEL DESD2MOD D (BV = 11.46 TBV1 = -7.576e-4 TBV2 = -3.0e-6 RS = 0 TRS1 = 0 TRS2 = 0)
.MODEL DPLCAPMOD D (CJO = 0.591e-9 IS = 1e-30 N = 10)
.MODEL MOSMOD NMOS (VTO = 1.94 KP = 139.2 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL RBKMOD RES (TC1 = 1.07e-3 TC2 = -3.03e-7)
.MODEL RDSMOD RES (TC1 = 5.38e-3 TC2 = 1.64e-5)
.MODEL RSLVCMOD RES (TC1 = 1.75e-3 TC2 = 3.90e-6)
.MODEL RVTOMOD RES (TC1 = -2.15e-3 TC2 = -5.43e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.05 VOFF = -1.5)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.5 VOFF = -4.05)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.2 VOFF = 2.8)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.8 VOFF = -2.2)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records 1991.
5-50