RFP30N06LE, RF1S30N06LE, RF1S30N06LESM S E M I C O N D U C T O R 30A, 60V, ESD Rated, Avalanche Rated, Logic Level N-Channel Enhancement-Mode Power MOSFETs July 1995 Features Packages JEDEC TO-220AB • 30A, 60V SOURCE DRAIN GATE • rDS(ON) = 0.047Ω • 2kV ESD Protected • Temperature Compensating PSPICE Model DRAIN (FLANGE) • Peak Current vs Pulse Width Curve • UIS Rating Curve JEDEC TO-262AA SOURCE DRAIN GATE Description A The RFP30N06LE, RF1S30N06LE and RF1S30N06LESM are N-Channel power MOSFETs manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI integrated circuits gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers and relay drivers. These transistors can be operated directly from integrated circuits. DRAIN (FLANGE) JEDEC TO-263AB M A DRAIN (FLANGE) GATE SOURCE These transistors incorporate ESD protection and are designed to withstand 2kV (Human Body Model) of ESD. PACKAGE AVAILABILITY PART NUMBER RFP30N06LE PACKAGE TO-220AB A Symbol BRAND D F30N06LE RF1S30N06LE TO-262AA 1S30N06L RF1S30N06LESM TO-263AB 1S30N06L G NOTE: When ordering use the entire part number. Add suffix, 9A, to obtain the TO-263 variant in tape and reel i.e. RF1S30N06LESM9A. Formerly developmental type TA49027. S Absolute Maximum Ratings TC = +25oC RFP30N06LE, RF1S30N06LE, RF1S30N06LESM UNITS Drain Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS 60 V Drain Gate Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDGR 60 V Gate Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VGS +10, -8 V Drain Current RMS Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM 30 Refer to Peak Current Curve A Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Refer to UIS Curve Power Dissipation TC = +25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate above +25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 0.645 Electrostatic Discharge Rating, MIL-STD-883, Category B(2) . . . . . . . . . . . . . . . ESD 2 kV Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TSTG, TJ -55 to +175 oC Soldering Temperature of Leads for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL 260 oC Copyright © Harris Corporation 1995 W W/oC File Number 5-45 3629.1 Specifications RFP30N06LE, RF1S30N06LE, RF1S30N06LESM Electrical Specifications TC = +25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Drain-Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V 60 - - V Gate Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA 1 - 2 V TC = +25oC - - 1 µA TC = +150oC - - 50 µA VGS = +10, -8V - - 10 µA ID = 30A, VGS = 5V - - 0.047 Ω VDD = 30V, ID = 30A, RL = 1Ω, VGS = 5V, RGS = 2.5Ω - - 140 ns - 11 - ns tR - 88 - ns tD(OFF) - 30 - ns tF - 40 - ns tOFF - - 100 ns - 51 62 nC - 28 34 nC Zero Gate Voltage Drain Current IDSS Gate-Source Leakage Current IGSS On Resistance rDS(ON) Turn-On Time tON Turn-On Delay Time tD(ON) Rise Time Turn-Off Delay Time Fall Time Turn-Off Time VDS = 60V, VGS = 0V Total Gate Charge QG(TOT) VGS = 0V to 10V Gate Charge at 5V QG(5) VGS = 0V to 5V QG(TH) VGS = 0V to 1V - 1.8 2.6 nC VDS = 25V, VGS = 0V, f = 1MHz - 1350 - pF Threshold Gate Charge VDD = 48V, ID = 30A, RL = 1.6Ω Input Capacitance CISS Output Capacitance COSS - 290 - pF Reverse Transfer Capacitance CRSS - 85 - pF Thermal Resistance Junction to Case RθJC - - 1.55 oC/W Thermal Resistance Junction to Ambient RθJA - - 80 oC/W MIN TYP MAX UNITS Source-Drain Diode Specifications PARAMETER SYMBOL TEST CONDITIONS Forward Voltage VSD ISD = 30A - - 1.5 V Reverse Recovery Time tRR ISD = 30A, dISD/dt = 100A/µs - - 125 ns 5-46 RFP30N06LE, RF1S30N06LE, RF1S30N06LESM Typical Performance Curves TC = +25oC 10 200 DUTY CYCLE 0.5 0.2 0.1 0.05 0.02 0.01 ZθJC , NORMALIZED THERMAL RESPONSE ID , DRAIN CURRENT (A) 100 100µs 10 1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 10ms VDSS MAX = 60V 1 100ms DC PDM 0.1 t1 SINGLE PULSE 0.01 10-5 10-4 10-3 100 10 VDS , DRAIN-TO-SOURCE VOLTAGE (V) 1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC + TC 10-2 10-1 FIGURE 1. SAFE OPERATING AREA CURVE TC = +25oC IDM , PEAK CURRENT CAPABILITY (A) ID , DRAIN CURRENT (A) 30 20 10 0 25 50 75 100 125 TC , CASE TEMPERATURE 150 500 VGS = 10V VGS = 5V TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 20 10-6 175 (oC) ID(ON) , ON STATE DRAIN CURRENT (A) VGS = 5V VGS = 4.5V 60 VGS = 4V 40 VGS = 3V 20 0 1.5 4.5 3.0 6.0 VDS , DRAIN-TO-SOURCE VOLTAGE (V) 10-4 10-3 10-2 10-1 t, PULSE WIDTH (s) 100 101 VDD = 15V VGS = 10V 80 10-5 FIGURE 4. PEAK CURRENT CAPABILITY PULSE DURATION = 250µs, TC = +25oC 100 FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 175 – T c I = I ----------------------- 25 150 100 FIGURE 3. MAXIMUM CONTINUOUS DRAIN CURRENT vs TEMPERATURE ID , DRAIN CURRENT (A) 101 FIGURE 2. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 40 0 100 t, RECTANGULAR PULSE DURATION (s) 7.5 FIGURE 5. TYPICAL SATURATION CHARACTERISTICS 100 80 PULSE TEST PULSE DURATION = 250µs DUTY CYCLE = 0.5% MAX -55oC 60 +25oC +175oC 40 20 0 0.0 6.0 3.0 4.5 VGS , GATE-TO-SOURCE VOLTAGE (V) 1.5 FIGURE 6. TYPICAL TRANSFER CHARACTERISTICS 5-47 7.5 RFP30N06LE, RF1S30N06LE, RF1S30N06LESM Typical Performance Curves (Continued) VGS = VDS, ID = 250µA PULSE DURATION = 250µs, VGS = 5V, ID = 30A 2.0 VGS(TH) , NORMALIZED GATE THRESHOLD VOLTAGE 3.0 2.0 1.5 1.0 0.5 0.0 -80 -40 0 40 80 120 160 1.5 1.0 0.5 0.0 -80 200 -40 TJ , JUNCTION TEMPERATURE (oC) FIGURE 7. NORMALIZED rDS(ON) vs JUNCTION TEMPERATURE 1.2 BVDSS , NORMALIZED DRAIN-TO-SOURCE BREAKDOWN VOLTAGE ID = 250µA POWER DISSIPATION MULTIPLIER 1.5 1.0 0.5 -40 0 40 80 120 160 1.0 0.8 0.6 0.4 0.2 0.0 200 0 25 TJ , JUNCTION TEMPERATURE (oC) FIGURE 9. NORMALIZED DRAIN SOURCE BREAKDOWN VOLTAGE vs TEMPERATURE 1000 COSS 500 CRSS VDD = BVDSS 0 10 15 20 5 VDS , DRAIN-TO-SOURCE VOLTAGE (V) 175 VDD = BVDSS 3.75 45 2.50 30 0.75 BVDSS 0.50 BVDSS 0.25 BVDSS 15 0.75 BVDSS 0.50 BVDSS 0.25 BVDSS 1.25 RL = 2.0Ω IG(REF) = 0.62mA VGS = 5V 0.00 0 0 150 5.00 60 VDS , DRAIN SOURCE VOLTAGE (V) C, CAPACITANCE (pF) CISS 1500 125 50 75 100 TC , CASE TEMPERATURE (oC) FIGURE 10. NORMALIZED POWER DISSIPATION vs TEMPERATURE DERATING CURVE VGS = 0V, f = 1MHz 2000 200 FIGURE 8. NORMALIZED GATE THRESHOLD VOLTAGE vs TEMPERATURE 2.0 0.0 -80 160 120 0 40 80 TJ , JUNCTION TEMPERATURE (oC) 25 FIGURE 11. TYPICAL CAPACITANCE vs DRAIN-TO-SOURCE VOLTAGE VGS , GATE SOURCE VOLTAGE (V) rDS(ON) , NORMALIZED 2.5 20 IG(REF) IG(ACT) t, TIME (s) 80 IG(REF) IG(ACT) FIGURE 12. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT. REFER TO HARRIS APPLICATION NOTES AN7254 AND AN7260 5-48 RFP30N06LE, RF1S30N06LE, RF1S30N06LESM Typical Performance Curves (Continued) IAS , AVALANCHE CURRENT (A) 100 STARTING TJ = +25oC STARTING TJ = +150oC 10 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 1 0.01 1 0.1 10 tAV , TIME IN AVALANCHE (ms) FIGURE 13. UNCLAMPED INDUCTIVE SWITCHING Test Circuits and Waveforms VDS BVDSS tP VDS L IAS VARY tP TO OBTAIN RG REQUIRED PEAK IAS VDD - VGS 0V VDD + DUT tP IL 0.01Ω tAV FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS VDD tON tOFF tD(ON) RL tD(OFF) tF tR VDS 90% VDS 90% VGS 10% 10% 0V 90% RGS VGS DUT 50% 10% FIGURE 16. RESISTIVE SWITCHING TEST CIRCUIT 50% PULSE WIDTH FIGURE 17. RESISTIVE SWITCHING WAVEFORMS 5-49 RFP30N06LE, RF1S30N06LE, RF1S30N06LESM Temperature Compensated PSPICE Model for the RFP30N06LE, RF1S30N06LE, RF1S30N06LESM SUBCKT RFP30N06LE 2 1 3; CA 12 8 1 3.34e-9 CB 15 14 3.44e-9 CIN 6 8 0 1.343e-9 rev 6/2/93 DPLCAP RSCL2 5 51 - DBREAK EVTO 20 + 18 9 8 LGATE RGATE VTO + + 17 18 DBODY - 16 21 6 MOS2 MOS1 RIN DESD1 91 11 EBREAK RDRAIN + 1 ESCL 50 6 8 ESG GATE LDRAIN 2 5 1e-9 LGATE 1 9 7.22e-9 LSOURCE 3 7 6.31e-9 RSCL1 + 51 EBREAK 11 7 17 18 75.39 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTO 20 6 18 8 1 IT 8 17 1 DRAIN 2 LDRAIN 5 10 DBODY 7 5 DBDMOD DBREAK 5 11 DBKMOD DESD1 91 9 DESD1MOD DESD2 91 7 DESD2MOD DPLCAP 10 5 DPLCAPMOD CIN 8 DESD2 LSOURCE RSOURCE 3 7 MOS1 16 6 8 8 MOSMOD M = 0.99 MOS2 16 21 8 8 MOSMOD M = 0.01 RBREAK 17 18 RBKMOD 1 RDRAIN 50 16 RDSMOD 11.86e-3 RGATE 9 20 2.52 RIN 6 8 1e9 RSCL1 5 51 RSLVCMOD 1e-6 RSCL2 5 50 1e3 RSOURCE 8 7 RDSMOD 26.6e-3 RVTO 18 19 RVTOMOD 1 S2A S1A 12 SOURCE 13 8 S1B RBREAK 15 14 13 17 18 S2B 13 CA RVTO CB + EGS - 14 + 6 8 EDS - 5 8 IT 19 VBAT + S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD VBAT 8 19 DC 1 VTO 21 6 0.5 ESCL 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)*1e6/89,7)) .MODEL DBDMOD D (IS = 3.80e-13 RS = 1.12e-2 TRS1 = 1.61e-3 TRS2 = 6.08e-6 CJO = 1.05e-9 TT = 3.84e-8) .MODEL DBKMOD D (RS = 1.82e-1 TRS1 = 7.50e-3 TRS2 = -4.0e-5) .MODEL DESD1MOD D (BV = 13.54 TBV1 = 0 TBV2 = 0 RS = 45.5 TRS1 = 0 TRS2 = 0) .MODEL DESD2MOD D (BV = 11.46 TBV1 = -7.576e-4 TBV2 = -3.0e-6 RS = 0 TRS1 = 0 TRS2 = 0) .MODEL DPLCAPMOD D (CJO = 0.591e-9 IS = 1e-30 N = 10) .MODEL MOSMOD NMOS (VTO = 1.94 KP = 139.2 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL RBKMOD RES (TC1 = 1.07e-3 TC2 = -3.03e-7) .MODEL RDSMOD RES (TC1 = 5.38e-3 TC2 = 1.64e-5) .MODEL RSLVCMOD RES (TC1 = 1.75e-3 TC2 = 3.90e-6) .MODEL RVTOMOD RES (TC1 = -2.15e-3 TC2 = -5.43e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.05 VOFF = -1.5) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.5 VOFF = -4.05) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.2 VOFF = 2.8) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.8 VOFF = -2.2) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records 1991. 5-50