FAIRCHILD RF1S70N06

RFG70N06, RFP70N06,
RF1S70N06, RF1S70N06SM
S E M I C O N D U C T O R
70A, 60V, Avalanche Rated, N-Channel
Enhancement-Mode Power MOSFETs
December 1995
Features
Packages
JEDEC STYLE TO-247
• 70A, 60V
SOURCE
DRAIN
GATE
• rDS(on) = 0.014Ω
DRAIN
(BOTTOM
SIDE METAL)
• Temperature Compensated PSPICE Model
• Peak Current vs Pulse Width Curve
• UIS Rating Curve (Single Pulse)
• +175oC Operating Temperature
Description
The RFG70N06, RFP70N06, RF1S70N06 and RF1S70N06SM
are N-channel power MOSFETs manufactured using the MegaFET
process. This process, which uses feature sizes approaching
those of LSI circuits, gives optimum utilization of silicon, resulting
in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor
drivers and relay drivers. These transistors can be operated
directly from integrated circuits.
JEDEC TO-220AB
SOURCE
DRAIN
GATE
DRAIN
(FLANGE)
PACKAGE AVAILABILITY
PART NUMBER
PACKAGE
BRAND
TO-247
RFG70N06
RFP70N06
TO-220AB
RFP70N06
RF1S70N06
TO-262AA
F1S70N06
RF1S70N06SM
TO-263AB
F1S70N06
JEDEC TO-262AA
SOURCE
DRAIN
GATE
DRAIN
(FLANGE)
A
RFG70N06
NOTE: When ordering use the entire part number. Add the suffix, 9A, to
obtain the TO-263AB variant in tape and reel, e.g. RF1S70N06SM9A.
Formerly developmental type TA49007.
Symbol
D
JEDEC TO-263AB
M
A
A
DRAIN
(FLANGE)
G
GATE
SOURCE
S
Absolute Maximum Ratings TC = +25oC, Unless Otherwise Specified
Drain Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS
Drain Gate Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
Gate Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
Drain Current
RMS Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM
Single Pulse Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS
Power Dissipation
TC = +25oC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate above +25oC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TSTG, TJ
RFG70N06, RFP70N06
RF1S70N06, RF1S70N06SM
UNITS
60
60
±20
V
V
V
70
Refer to Peak Current Curve
Refer to UIS Curve
A
150
1.0
-55 to +175
W
W/oC
oC
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD handling procedures.
Copyright
© Harris Corporation 1995
3-51
File Number
3206.3
Specifications RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM
Electrical Specifications
TC = +25oC, Unless Otherwise Specified
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
Drain-Source Breakdown Voltage
BVDSS
ID = 250µA, VGS = 0V
60
-
-
V
Gate Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA
2
-
4
V
TC = +25oC
-
-
1
µA
TC = +150oC
-
-
50
µA
VGS = ±20V
-
-
100
nA
ID = 70A, VGS = 10V
-
-
0.014
Ω
VDD = 30V, ID = 70A
RL = 0.43Ω, VGS = +10V
RGS = 2.5Ω
-
-
125
ns
-
12
-
ns
tR
-
50
-
ns
tD(OFF)
-
40
-
ns
tF
-
15
-
ns
tOFF
-
-
125
ns
-
185
215
nC
-
100
115
nC
Zero Gate Voltage Drain Current
Gate-Source Leakage Current
IDSS
IGSS
On Resistance
rDS(ON)
Turn-On Time
tON
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-Off Time
Total Gate Charge
tD(ON)
QG(TOT)
VDS = 60V,
VGS = 0V
VGS = 0V to 20V
Gate Charge at 10V
QG(10)
VDD = 48V,
ID = 70A,
VGS = 0V to 10V RL = 0.68Ω
Threshold Gate Charge
QG(TH)
VGS = 0V to 2V
-
5.5
6.5
nC
VDS = 25V, VGS = 0V
f = 1MHz
-
3000
-
pF
Input Capacitance
CISS
Output Capacitance
COSS
-
900
-
pF
Reverse Transfer Capacitance
CRSS
-
300
-
pF
Thermal Resistance Junction to Case
RθJC
-
-
1.0
o
Thermal Resistance Junction to Ambient
RθJA
-
-
80
o
MIN
TYP
MAX
UNITS
C/W
C/W
Source-Drain Diode Specifications
PARAMETER
SYMBOL
TEST CONDITIONS
Forward Voltage
VSD
ISD = 70A
-
-
1.5
V
Reverse Recovery Time
tRR
ISD = 70A, dISD/dt = 100A/µs
-
-
125
ns
3-52
RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM
Typical Performance Curves
TC = +25oC
500
2
ZθJC, NORMALIZED
THERMAL RESPONSE
ID, DRAIN CURRENT (A)
1
100
100µs
1ms
10
10ms
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
1
1
VDSS
MAX = 60V
0.5
0.2
0.05
0.02
0.01
DC
SINGLE PULSE
0.01
10-5
100
10
10-3
10-2
10-1
100
TC = +25oC
IDM, PEAK CURRENT CAPABILITY (A)
1000
70
60
50
40
30
20
10
0
25
50
75
100
125
TC, CASE TEMPERATURE (oC)
150
FOR TEMPERATURES
ABOVE +25oC DERATE PEAK
CURRENT AS FOLLOWS:
I = I
100
PULSE DURATION = 250µs, TC = +25oC
VGS = 7V
160
120
VGS = 6V
80
VGS = 5V
40
VGS = 4.5V
0
1.0
2.0
3.0
4.0
10-3
10-2
10-1
t, PULSE WIDTH (s)
100
101
VDD = 15V
ID(ON), ON-STATE DRAIN CURRENT (A)
VGS = 8V
10-4
FIGURE 4. PEAK CURRENT CAPABILITY
200
VGS = 10V
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
50
10-5
175
 175 – T 
C

25  ---------------------150 
VGS = 10V
FIGURE 3. MAXIMUM CONTINUOUS DRAIN CURRENT vs
TEMPERATURE
VGS = 20V
101
FIGURE 2. NORMALIZED MAXIMUM TRANSIENT THERMAL
IMPEDANCE
80
ID, DRAIN CURRENT (A)
10-4
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC + TC
t, RECTANGULAR PULSE DURATION (s)
FIGURE 1. SAFE OPERATING AREA CURVE
ID, DRAIN CURRENT (A)
t1
100ms
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
0
PDM
0.1
0.1
200
PULSE TEST
PULSE DURATION = 250µs
DUTY CYCLE = 0.5% MAX
160
-55oC
+25oC
+175oC
120
80
40
0
5.0
0
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
FIGURE 5. TYPICAL SATURATION CHARACTERISTICS
2.0
4.0
6.0
8.0
VGS, GATE-TO-SOURCE VOLTAGE (V)
FIGURE 6. TYPICAL TRANSFER CHARACTERISTICS
3-53
10.0
RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM
Typical Performance Curves (Continued)
PULSE DURATION = 250µs, VGS = 10V, ID = 70A
2.0
1.5
1.0
0.5
-40
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
0.5
-40
1.2
POWER DISSIPATION MULTIPLIER
1.5
1.0
0.5
1.0
0.8
0.6
0.4
0.2
0.0
-40
0
40
80
120
160
200
0
25
TJ , JUNCTION TEMPERATURE (oC)
VGS = 0V, FREQUENCY (f) = 1MHz
60
VDS , DRAIN-SOURCE VOLTAGE (V)
C, CAPACITANCE (pF)
5000
4000
CISS
3000
2000
COSS
1000
CRSS
5
10
15
20
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
FIGURE 11. TYPICAL CAPACITANCE vs VOLTAGE
175
150
10
7.5
30
5.0
0.75 BVDSS
0.50 BVDSS
0.25 BVDSS
RL = 0.86Ω
IG(REF) = 2.2mA
VGS = 10V
15
I
G ( REF )
20 ---------------------
25
VDD = BVDSS
VDD = BVDSS
45
0
0
125
50
75
100
TC , CASE TEMPERATURE (oC)
FIGURE 10. NORMALIZED POWER DISSIPATION vs TEMPERATURE DERATING CURVE
FIGURE 9. NORMALIZED DRAIN-SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
0
200
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 8. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
ID = 250µA
0.0
-80
1.0
0.0
-80
200
FIGURE 7. NORMALIZED rDS(ON) vs JUNCTION
TEMPERATURE
2.0
1.5
I
G ( ACT )
2.5
0
I
t, TIME (µs)
VGS , GATE-SOURCE VOLTAGE (V)
0.0
-80
BVDSS, NORMALIZED DRAIN-TO-SOURCE
BREAKDOWN VOLTAGE
VGS = VDS, ID = 250µA
2.0
VGS(TH), NORMALIZED GATE
THRESHOLD VOLTAGE
rDS(ON), NORMALIZED ON RESISTANCE
2.5
G ( REF )
80 --------------------I
G ( ACT )
FIGURE 12. NORMALIZED SWITCHING WAVEFORMS FOR
CONSTANT GATE CURRENT. REFER TO HARRIS
APPLICATION NOTES AN7254 AND AN7260
3-54
RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM
Typical Performance Curves (Continued)
IAS, AVALANCHE CURRENT (A)
300
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R) ln [(IAS*R)/(1.3*RATED BVDSS-VDD) +1]
100
STARTING TJ = +25oC
STARTING TJ = +150oC
10
0.01
1
0.1
tAV, TIME IN AVALANCHE (ms)
10
FIGURE 13. UNCLAMPED INDUCTIVE SWITCHING
REFER TO HARRIS APPLICATION NOTES AN9321 AND AN9322
Test Circuits and Waveforms
VDS
BVDSS
tP
VDS
L
IAS
VARY tP TO OBTAIN
VDD
+
RG
REQUIRED PEAK IAS
VDD
-
VGS
DUT
0V
tP
IL
0.01Ω
tAV
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
VDD
tON
tOFF
tD(ON)
RL
tD(OFF)
tF
tR
VDS
90%
VDS
90%
VGS
10%
10%
0V
RGS
90%
DUT
VGS
50%
10%
FIGURE 16. RESISTIVE SWITCHING TEST CIRCUIT
50%
PULSE WIDTH
FIGURE 17. RESISTIVE SWITCHING WAVEFORMS
3-55
RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM
Temperature Compensated PSPICE Model for the
RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM
.SUBCKT RFG70N06 2 1 3 ;
rev 3/20/92
CA 12 8 5.56e-9
CB 15 14 5.30e-9
CIN 6 8 2.63e-9
RLDRAIN
DPLCAP
10
DBODY 7 5 DBDMOD
DBREAK 5 11 DBKMOD
DPLCAP 10 5 DPLCAPMOD
LDRAIN
RSCL2
RLGATE
LDRAIN 2 5 1e-9
LGATE 1 9 3.10e-9
LSOURCE 3 7 1.82e-9
9
20 +
RGATE
18
8
16
-
VTO
+
21
6
DBODY
+
EBREAK 17
18
-
MOS2
MOS1
LGATE
RIN
CIN
RLSOURCE
8
RSOURCE
7
3
SOURCE
LSOURCE
S2A
S1A
12
RBREAK 17 18 RBKMOD 1
RDRAIN 50 16 RDSMOD 4.66e-3
RLDRAIN 2 5 10
RGATE 9 20 1.21
RLGATE 1 9 31
RIN 6 8 1e9
RSOURCE 8 7 RDSMOD 3.92e-3
RLSOURCE 3 7 18.2
RVTO 18 19 RVTOMOD 1
11
RDRAIN
EVTO
MOS1 16 6 8 8 MOSMOD M = 0.99
MOS2 16 21 8 8 MOSMOD M = 0.01
S1A
S1B
S2A
S2B
6
8
+
GATE
1
DBREAK
50
ESG
2
DRAIN
RSCL1
+ 51
5
51 ESCL
EBREAK 11 7 17 18 65.18
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTO 20 6 18 8 1
IT 8 17 1
5
13
8
S1B
RBREAK
15
14
13
17
18
S2B
13
CA
+
6
8
EGS
-
RVTO
CB
+ 14
EDS 5
8
IT
19
VBAT
+
-
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
VBAT 8 19 DC 1
VTO 21 6 0.605
.MODEL DBDMOD D (IS = 7.91e-12 RS = 3.87e-3 TRS1 = 2.71e-3 TRS2 = 2.50e-7 CJO = 4.84e-9 TT = 4.51e-8)
.MODEL DBKMOD D (RS = 3.9e-2 TRS1 =1.05e-4 TRS2 = 3.11e-5)
.MODEL DPLCAPMOD D (CJO = 4.8e-9 IS = 1e-30 N = 10)
.MODEL MOSMOD NMOS (VTO = 3.46 KP = 47 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL RBKMOD RES (TC1 = 8.46e-4 TC2 = -8.48e-7)
.MODEL RDSMOD RES (TC1 = 2.23e-3 TC2 = 6.56e-6)
.MODEL RVTOMOD RES (TC1 = -3.29e-3 TC2 = 3.49e-7)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -8.35 VOFF= -6.35)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -6.35 VOFF= -8.35)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.0 VOFF= 3.0)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 3.0 VOFF= -2.0)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-circuit for the Power MOSFET Featuring Global
Temperature Options; written by William J. Hepp and C. Frank Wheatley.
3-56