RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM S E M I C O N D U C T O R 70A, 60V, Avalanche Rated, N-Channel Enhancement-Mode Power MOSFETs December 1995 Features Packages JEDEC STYLE TO-247 • 70A, 60V SOURCE DRAIN GATE • rDS(on) = 0.014Ω DRAIN (BOTTOM SIDE METAL) • Temperature Compensated PSPICE Model • Peak Current vs Pulse Width Curve • UIS Rating Curve (Single Pulse) • +175oC Operating Temperature Description The RFG70N06, RFP70N06, RF1S70N06 and RF1S70N06SM are N-channel power MOSFETs manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI circuits, gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers and relay drivers. These transistors can be operated directly from integrated circuits. JEDEC TO-220AB SOURCE DRAIN GATE DRAIN (FLANGE) PACKAGE AVAILABILITY PART NUMBER PACKAGE BRAND TO-247 RFG70N06 RFP70N06 TO-220AB RFP70N06 RF1S70N06 TO-262AA F1S70N06 RF1S70N06SM TO-263AB F1S70N06 JEDEC TO-262AA SOURCE DRAIN GATE DRAIN (FLANGE) A RFG70N06 NOTE: When ordering use the entire part number. Add the suffix, 9A, to obtain the TO-263AB variant in tape and reel, e.g. RF1S70N06SM9A. Formerly developmental type TA49007. Symbol D JEDEC TO-263AB M A A DRAIN (FLANGE) G GATE SOURCE S Absolute Maximum Ratings TC = +25oC, Unless Otherwise Specified Drain Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain Gate Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current RMS Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Single Pulse Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation TC = +25oC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate above +25oC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TSTG, TJ RFG70N06, RFP70N06 RF1S70N06, RF1S70N06SM UNITS 60 60 ±20 V V V 70 Refer to Peak Current Curve Refer to UIS Curve A 150 1.0 -55 to +175 W W/oC oC CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD handling procedures. Copyright © Harris Corporation 1995 3-51 File Number 3206.3 Specifications RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM Electrical Specifications TC = +25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Drain-Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V 60 - - V Gate Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA 2 - 4 V TC = +25oC - - 1 µA TC = +150oC - - 50 µA VGS = ±20V - - 100 nA ID = 70A, VGS = 10V - - 0.014 Ω VDD = 30V, ID = 70A RL = 0.43Ω, VGS = +10V RGS = 2.5Ω - - 125 ns - 12 - ns tR - 50 - ns tD(OFF) - 40 - ns tF - 15 - ns tOFF - - 125 ns - 185 215 nC - 100 115 nC Zero Gate Voltage Drain Current Gate-Source Leakage Current IDSS IGSS On Resistance rDS(ON) Turn-On Time tON Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time Total Gate Charge tD(ON) QG(TOT) VDS = 60V, VGS = 0V VGS = 0V to 20V Gate Charge at 10V QG(10) VDD = 48V, ID = 70A, VGS = 0V to 10V RL = 0.68Ω Threshold Gate Charge QG(TH) VGS = 0V to 2V - 5.5 6.5 nC VDS = 25V, VGS = 0V f = 1MHz - 3000 - pF Input Capacitance CISS Output Capacitance COSS - 900 - pF Reverse Transfer Capacitance CRSS - 300 - pF Thermal Resistance Junction to Case RθJC - - 1.0 o Thermal Resistance Junction to Ambient RθJA - - 80 o MIN TYP MAX UNITS C/W C/W Source-Drain Diode Specifications PARAMETER SYMBOL TEST CONDITIONS Forward Voltage VSD ISD = 70A - - 1.5 V Reverse Recovery Time tRR ISD = 70A, dISD/dt = 100A/µs - - 125 ns 3-52 RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM Typical Performance Curves TC = +25oC 500 2 ZθJC, NORMALIZED THERMAL RESPONSE ID, DRAIN CURRENT (A) 1 100 100µs 1ms 10 10ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 1 VDSS MAX = 60V 0.5 0.2 0.05 0.02 0.01 DC SINGLE PULSE 0.01 10-5 100 10 10-3 10-2 10-1 100 TC = +25oC IDM, PEAK CURRENT CAPABILITY (A) 1000 70 60 50 40 30 20 10 0 25 50 75 100 125 TC, CASE TEMPERATURE (oC) 150 FOR TEMPERATURES ABOVE +25oC DERATE PEAK CURRENT AS FOLLOWS: I = I 100 PULSE DURATION = 250µs, TC = +25oC VGS = 7V 160 120 VGS = 6V 80 VGS = 5V 40 VGS = 4.5V 0 1.0 2.0 3.0 4.0 10-3 10-2 10-1 t, PULSE WIDTH (s) 100 101 VDD = 15V ID(ON), ON-STATE DRAIN CURRENT (A) VGS = 8V 10-4 FIGURE 4. PEAK CURRENT CAPABILITY 200 VGS = 10V TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 50 10-5 175 175 – T C 25 ---------------------150 VGS = 10V FIGURE 3. MAXIMUM CONTINUOUS DRAIN CURRENT vs TEMPERATURE VGS = 20V 101 FIGURE 2. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 80 ID, DRAIN CURRENT (A) 10-4 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC + TC t, RECTANGULAR PULSE DURATION (s) FIGURE 1. SAFE OPERATING AREA CURVE ID, DRAIN CURRENT (A) t1 100ms VDS, DRAIN-TO-SOURCE VOLTAGE (V) 0 PDM 0.1 0.1 200 PULSE TEST PULSE DURATION = 250µs DUTY CYCLE = 0.5% MAX 160 -55oC +25oC +175oC 120 80 40 0 5.0 0 VDS, DRAIN-TO-SOURCE VOLTAGE (V) FIGURE 5. TYPICAL SATURATION CHARACTERISTICS 2.0 4.0 6.0 8.0 VGS, GATE-TO-SOURCE VOLTAGE (V) FIGURE 6. TYPICAL TRANSFER CHARACTERISTICS 3-53 10.0 RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM Typical Performance Curves (Continued) PULSE DURATION = 250µs, VGS = 10V, ID = 70A 2.0 1.5 1.0 0.5 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) 0.5 -40 1.2 POWER DISSIPATION MULTIPLIER 1.5 1.0 0.5 1.0 0.8 0.6 0.4 0.2 0.0 -40 0 40 80 120 160 200 0 25 TJ , JUNCTION TEMPERATURE (oC) VGS = 0V, FREQUENCY (f) = 1MHz 60 VDS , DRAIN-SOURCE VOLTAGE (V) C, CAPACITANCE (pF) 5000 4000 CISS 3000 2000 COSS 1000 CRSS 5 10 15 20 VDS, DRAIN-TO-SOURCE VOLTAGE (V) FIGURE 11. TYPICAL CAPACITANCE vs VOLTAGE 175 150 10 7.5 30 5.0 0.75 BVDSS 0.50 BVDSS 0.25 BVDSS RL = 0.86Ω IG(REF) = 2.2mA VGS = 10V 15 I G ( REF ) 20 --------------------- 25 VDD = BVDSS VDD = BVDSS 45 0 0 125 50 75 100 TC , CASE TEMPERATURE (oC) FIGURE 10. NORMALIZED POWER DISSIPATION vs TEMPERATURE DERATING CURVE FIGURE 9. NORMALIZED DRAIN-SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE 0 200 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 8. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE ID = 250µA 0.0 -80 1.0 0.0 -80 200 FIGURE 7. NORMALIZED rDS(ON) vs JUNCTION TEMPERATURE 2.0 1.5 I G ( ACT ) 2.5 0 I t, TIME (µs) VGS , GATE-SOURCE VOLTAGE (V) 0.0 -80 BVDSS, NORMALIZED DRAIN-TO-SOURCE BREAKDOWN VOLTAGE VGS = VDS, ID = 250µA 2.0 VGS(TH), NORMALIZED GATE THRESHOLD VOLTAGE rDS(ON), NORMALIZED ON RESISTANCE 2.5 G ( REF ) 80 --------------------I G ( ACT ) FIGURE 12. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT. REFER TO HARRIS APPLICATION NOTES AN7254 AND AN7260 3-54 RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM Typical Performance Curves (Continued) IAS, AVALANCHE CURRENT (A) 300 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R) ln [(IAS*R)/(1.3*RATED BVDSS-VDD) +1] 100 STARTING TJ = +25oC STARTING TJ = +150oC 10 0.01 1 0.1 tAV, TIME IN AVALANCHE (ms) 10 FIGURE 13. UNCLAMPED INDUCTIVE SWITCHING REFER TO HARRIS APPLICATION NOTES AN9321 AND AN9322 Test Circuits and Waveforms VDS BVDSS tP VDS L IAS VARY tP TO OBTAIN VDD + RG REQUIRED PEAK IAS VDD - VGS DUT 0V tP IL 0.01Ω tAV FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS VDD tON tOFF tD(ON) RL tD(OFF) tF tR VDS 90% VDS 90% VGS 10% 10% 0V RGS 90% DUT VGS 50% 10% FIGURE 16. RESISTIVE SWITCHING TEST CIRCUIT 50% PULSE WIDTH FIGURE 17. RESISTIVE SWITCHING WAVEFORMS 3-55 RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM Temperature Compensated PSPICE Model for the RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM .SUBCKT RFG70N06 2 1 3 ; rev 3/20/92 CA 12 8 5.56e-9 CB 15 14 5.30e-9 CIN 6 8 2.63e-9 RLDRAIN DPLCAP 10 DBODY 7 5 DBDMOD DBREAK 5 11 DBKMOD DPLCAP 10 5 DPLCAPMOD LDRAIN RSCL2 RLGATE LDRAIN 2 5 1e-9 LGATE 1 9 3.10e-9 LSOURCE 3 7 1.82e-9 9 20 + RGATE 18 8 16 - VTO + 21 6 DBODY + EBREAK 17 18 - MOS2 MOS1 LGATE RIN CIN RLSOURCE 8 RSOURCE 7 3 SOURCE LSOURCE S2A S1A 12 RBREAK 17 18 RBKMOD 1 RDRAIN 50 16 RDSMOD 4.66e-3 RLDRAIN 2 5 10 RGATE 9 20 1.21 RLGATE 1 9 31 RIN 6 8 1e9 RSOURCE 8 7 RDSMOD 3.92e-3 RLSOURCE 3 7 18.2 RVTO 18 19 RVTOMOD 1 11 RDRAIN EVTO MOS1 16 6 8 8 MOSMOD M = 0.99 MOS2 16 21 8 8 MOSMOD M = 0.01 S1A S1B S2A S2B 6 8 + GATE 1 DBREAK 50 ESG 2 DRAIN RSCL1 + 51 5 51 ESCL EBREAK 11 7 17 18 65.18 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTO 20 6 18 8 1 IT 8 17 1 5 13 8 S1B RBREAK 15 14 13 17 18 S2B 13 CA + 6 8 EGS - RVTO CB + 14 EDS 5 8 IT 19 VBAT + - 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 8 19 DC 1 VTO 21 6 0.605 .MODEL DBDMOD D (IS = 7.91e-12 RS = 3.87e-3 TRS1 = 2.71e-3 TRS2 = 2.50e-7 CJO = 4.84e-9 TT = 4.51e-8) .MODEL DBKMOD D (RS = 3.9e-2 TRS1 =1.05e-4 TRS2 = 3.11e-5) .MODEL DPLCAPMOD D (CJO = 4.8e-9 IS = 1e-30 N = 10) .MODEL MOSMOD NMOS (VTO = 3.46 KP = 47 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL RBKMOD RES (TC1 = 8.46e-4 TC2 = -8.48e-7) .MODEL RDSMOD RES (TC1 = 2.23e-3 TC2 = 6.56e-6) .MODEL RVTOMOD RES (TC1 = -3.29e-3 TC2 = 3.49e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -8.35 VOFF= -6.35) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -6.35 VOFF= -8.35) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.0 VOFF= 3.0) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 3.0 VOFF= -2.0) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-circuit for the Power MOSFET Featuring Global Temperature Options; written by William J. Hepp and C. Frank Wheatley. 3-56