2SJ506(L), 2SJ506(S) Silicon P Channel MOS FET High Speed Power Switching ADE-208-548 Target Specification 1st. Edition Features • Low on-resistance R DS(on) = 0.065 Ω typ. (at V GS = –10V, ID = –5A) • Low drive current • High speed switching • 4V gate drive devices. Outline DPAK–2 4 4 D 1 2 G 1 2 S 3 3 1. Gate 2. Drain 3. Source 4. Drain 2SJ506(L), 2SJ506(S) Absolute Maximum Ratings (Ta = 25°C) Item Symbol Ratings Unit Drain to source voltage VDSS –30 V Gate to source voltage VGSS ±20 V Drain current ID –10 A –40 A –10 A 20 W Drain peak current I D(pulse) Body to drain diode reverse drain current I DR Note1 Note2 Channel dissipation Pch Channel temperature Tch 150 °C Storage temperature Tstg –55 to +150 °C Notes: 1. PW ≤ 10µs, duty cycle ≤ 1 % 2. Value at Tc = 25°C 2 2SJ506(L), 2SJ506(S) Electrical Characteristics (Ta = 25°C) Item Symbol Min Typ Max Unit Test Conditions Drain to source breakdown voltage V(BR)DSS –30 — — V I D = –10mA, VGS = 0 Gate to source breakdown voltage V(BR)GSS ±20 — — V I G = ±100µA, VDS = 0 Zero gate voltege drain current I DSS — — –10 µA VDS = –30 V, VGS = 0 Gate to source leak current I GSS — — ±10 µA VGS = ±16V, VDS = 0 Gate to source cutoff voltage VGS(off) –1.0 — –2.0 V I D = –1mA, VDS = –10V Static drain to source on state RDS(on) — 65 85 mΩ I D = –5A, VGS = –10VNote3 resistance RDS(on) — 110 180 mΩ I D = –5A, VGS = –4V Note3 Forward transfer admittance |yfs| 10 16 — S I D = –5A, VDS = –10V Note3 Input capacitance Ciss — 660 — pF VDS = –10V Output capacitance Coss — 440 — pF VGS = 0 Reverse transfer capacitance Crss — 140 — pF f = 1MHz Turn-on delay time t d(on) — 12 — ns I D = –5A, RL = 2Ω Rise time tr — 65 — ns VGS = –10V Turn-off delay time t d(off) — 85 — ns Fall time tf — 65 — ns Body to drain diode forward voltage VDF — –1.05 — V I F = –10A, VGS = 0 Body to drain diode reverse recovery time t rr — 65 — ns I F = –10A, VGS = 0 diF/ dt = 50A/µs Note: 3. Pulse test 3 2SJ506(L), 2SJ506(S) Main Characteristics Power vs. Temperature Derating 20 10 –100 –50 –10 –5 Maximum Safe Operation Area Ta = 25 °C 10 –20 –2 –1 –0.5 PW DC 0 1 m µs s =1 0m s( 1s er ho (T atio t) n c= 25 °C ) Op Operation in this area is limited by R DS(on) 50 100 150 200 –0.1 –0.2 Typical Output Characteristics –10 V –8 V –20 –4.5 V Pulse Test –5 V –6 V –16 –4 V (A) –12 ID –8 –3 V –4 0 –4 –8 –12 Drain to Source Voltage –16 –20 V DS (V) –2 –5 –10 –20 Drain to Source Voltage Tc (°C) –3.5 V –0.5 –1 –50 V DS (V) Typical Transfer Characteristics –20 –16 V DS = –10 V Pulse Test 25 °C –12 –8 –4 75 °C VGS = –2.5 V 4 µs 10 –0.2 –0.1 Case Temperature I D (A) I D (A) 30 Drain Current –200 0 Drain Current –500 Drain Current Channel Dissipation Pch (W) 40 Tc = –25 °C 0 –1 –2 –3 Gate to Source Voltage –4 V GS (V) –5 2SJ506(L), 2SJ506(S) Drain to Source Saturation Voltage vs. Gate to Source Voltage –1.6 –1.2 –0.8 I D = –10 A –0.4 –5 A –2 A 0 –4 –8 –12 Gate to Source Voltage Static Drain to Source on State Resistance R DS(on) ( Ω) Drain to Source On State Resistance R DS(on) ( Ω ) Pulse Test –16 –10 A 80 –2,–5 A V GS = –10 V 0 40 80 Case Temperature 120 Tc (°C) VGS = –4 V –10 V 50 20 Pulse Test 10 –1 –2 –5 –10 Drain Current –2 A 120 0 –40 100 –20 I D = –10 A V GS = –4 V 40 200 V GS (V) Static Drain to Source on State Resistance vs. Temperature 200 –5 A Pulse Test 160 500 160 100 Forward Transfer Admittance |y fs | (S) Drain to Source Saturation Voltage V DS(on) (V) –2 Static Drain to Source on State Resistance vs. Drain Current 1000 –50 –100 –20 I D (A) Forward Transfer Admittance vs. Drain Current 50 20 10 Tc = –25 °C 25 °C 5 2 75 °C V DS = –10 V Pulse Test 1 0.5 –0.1–0.2 –0.5 –1 –2 –5 –10 –20 –50 Drain Current I D (A) 5 2SJ506(L), 2SJ506(S) Body to Drain Diode Reverse Recovery Time Typical Capacitance vs. Drain to Source Voltage 5000 50 20 1000 –0.5 –1 –2 Reverse Drain Current Coss 200 50 20 10 0 V DD = –25 V –10 V –5 V –30 –4 –8 –12 V GS –40 –16 I = –10 A –50 D 0 8 16 Gate Charge 32 24 Qg (nc) –20 40 V GS (V) V DS 1000 500 Switching Time t (ns) –20 –20 –30 –40 –50 Switching Characteristics 0 Gate to Source Voltage V DS (V) Drain to Source Voltage –10 –10 Drain to Source Voltage V DS (V) I DR (A) Dynamic Input Characteristics VDD = –5 V –10 V –25 V Crss 100 –5 –10 –20 0 Ciss 500 di / dt = 50 A / µs VGS = 0, Ta = 25 °C 10 –0.1 –0.2 6 VGS = 0 f = 1 MHz 2000 Capacitance C (pF) Reverse Recovery Time trr (ns) 100 V GS = –10 V, V DD = –10 V PW = 10 µs, duty < =1% 200 t d(off) 100 50 tf tr 20 t d(on) 10 5 –0.1 –0.2 –0.5 –1 –2 –5 –10 –20 Drain Current I D (A) –50 2SJ506(L), 2SJ506(S) Reverse Drain Current vs. Source to Drain Voltage –20 Reverse Drain Current I DR (A) Pulse Test –5 V –16 –10 V –12 V GS = 0.5 V –8 –4 0 –0.4 –0.8 –1.2 Source to Drain Voltage –1.6 –2.0 V SD (V) Normalized Transient Thermal Impedance vs. Pulse Width Normalized Transient Thermal Impedance γ s (t) 3 Tc = 25°C 1 D=1 0.5 0.3 0.1 0.03 0.2 0.1 0.05 θ ch – c(t) = γ s (t) • θ ch – c θ ch – c = 6.25 °C/W, Tc = 25 °C 0.02 e uls 1 0.0 PDM P ot D= h 1s PW T PW T 0.01 10 µ 100 µ 1m 10 m Pulse Width 100 m 1 10 PW (S) 7 2SJ506(L), 2SJ506(S) Switching Time Test Circuit Waveforms Vout Monitor Vin Monitor Vin 10% D.U.T. RL 90% Vin 50Ω –10 V V DD = –10 V Vout td(on) 8 90% 90% 10% 10% tr td(off) tf 2SJ506(L), 2SJ506(S) Package Dimensions L type 2.29 ± 0.5 1.2 typ 9.5 ± 0.5 2.3 ± 0.5 0.55 ± 0.1 2.29 ± 0.5 2.5 ± 0.5 2.29 ± 0.5 0.55 ± 0.1 1.2 Max 16.2 ± 0.5 3.1 ± 0.5 4.7 ± 0.5 2.29 ± 0.5 1.15 ± 0.1 0.8 ± 0.1 5.5 ± 0.5 6.5 ± 0.5 5.4 ± 0.5 1.15 ± 0.1 0.8 ± 0.1 1.7 ± 0.5 2.3 ± 0.2 0.55 ± 0.1 5.5 ± 0.5 6.5 ± 0.5 5.4 ± 0.5 1.7 ± 0.5 Unit: mm S type 0 ~ 0.25 0.55 ± 0.1 Hitachi EIAJ ( L type) EIAJ ( S type) JEDEC DPAK–2 SC–63 SC–64 — 9 Cautions 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Hitachi, Ltd. Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica : http:semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322 Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533 Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180 Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.