HITACHI 2SJ506L

2SJ506(L), 2SJ506(S)
Silicon P Channel MOS FET
High Speed Power Switching
ADE-208-548
Target Specification 1st. Edition
Features
• Low on-resistance
R DS(on) = 0.065 Ω typ. (at V GS = –10V, ID = –5A)
• Low drive current
• High speed switching
• 4V gate drive devices.
Outline
DPAK–2
4
4
D
1 2
G
1 2
S
3
3
1. Gate
2. Drain
3. Source
4. Drain
2SJ506(L), 2SJ506(S)
Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Ratings
Unit
Drain to source voltage
VDSS
–30
V
Gate to source voltage
VGSS
±20
V
Drain current
ID
–10
A
–40
A
–10
A
20
W
Drain peak current
I D(pulse)
Body to drain diode reverse drain current
I DR
Note1
Note2
Channel dissipation
Pch
Channel temperature
Tch
150
°C
Storage temperature
Tstg
–55 to +150
°C
Notes: 1. PW ≤ 10µs, duty cycle ≤ 1 %
2. Value at Tc = 25°C
2
2SJ506(L), 2SJ506(S)
Electrical Characteristics (Ta = 25°C)
Item
Symbol
Min
Typ
Max
Unit
Test Conditions
Drain to source breakdown
voltage
V(BR)DSS
–30
—
—
V
I D = –10mA, VGS = 0
Gate to source breakdown
voltage
V(BR)GSS
±20
—
—
V
I G = ±100µA, VDS = 0
Zero gate voltege drain
current
I DSS
—
—
–10
µA
VDS = –30 V, VGS = 0
Gate to source leak current
I GSS
—
—
±10
µA
VGS = ±16V, VDS = 0
Gate to source cutoff voltage VGS(off)
–1.0
—
–2.0
V
I D = –1mA, VDS = –10V
Static drain to source on state RDS(on)
—
65
85
mΩ
I D = –5A, VGS = –10VNote3
resistance
RDS(on)
—
110
180
mΩ
I D = –5A, VGS = –4V Note3
Forward transfer admittance
|yfs|
10
16
—
S
I D = –5A, VDS = –10V Note3
Input capacitance
Ciss
—
660
—
pF
VDS = –10V
Output capacitance
Coss
—
440
—
pF
VGS = 0
Reverse transfer capacitance Crss
—
140
—
pF
f = 1MHz
Turn-on delay time
t d(on)
—
12
—
ns
I D = –5A, RL = 2Ω
Rise time
tr
—
65
—
ns
VGS = –10V
Turn-off delay time
t d(off)
—
85
—
ns
Fall time
tf
—
65
—
ns
Body to drain diode forward
voltage
VDF
—
–1.05
—
V
I F = –10A, VGS = 0
Body to drain diode reverse
recovery time
t rr
—
65
—
ns
I F = –10A, VGS = 0
diF/ dt = 50A/µs
Note:
3. Pulse test
3
2SJ506(L), 2SJ506(S)
Main Characteristics
Power vs. Temperature Derating
20
10
–100
–50
–10
–5
Maximum Safe Operation Area
Ta = 25 °C
10
–20
–2
–1
–0.5
PW
DC
0
1 m µs
s
=1
0m
s(
1s
er
ho
(T atio
t)
n
c=
25
°C
)
Op
Operation in
this area is
limited by R DS(on)
50
100
150
200
–0.1 –0.2
Typical Output Characteristics
–10 V –8 V
–20
–4.5 V
Pulse Test
–5 V
–6 V
–16
–4 V
(A)
–12
ID
–8
–3 V
–4
0
–4
–8
–12
Drain to Source Voltage
–16
–20
V DS (V)
–2
–5 –10 –20
Drain to Source Voltage
Tc (°C)
–3.5 V
–0.5 –1
–50
V DS (V)
Typical Transfer Characteristics
–20
–16
V DS = –10 V
Pulse Test
25 °C
–12
–8
–4
75 °C
VGS = –2.5 V
4
µs
10
–0.2
–0.1
Case Temperature
I D (A)
I D (A)
30
Drain Current
–200
0
Drain Current
–500
Drain Current
Channel Dissipation
Pch (W)
40
Tc = –25 °C
0
–1
–2
–3
Gate to Source Voltage
–4
V GS (V)
–5
2SJ506(L), 2SJ506(S)
Drain to Source Saturation Voltage vs.
Gate to Source Voltage
–1.6
–1.2
–0.8
I D = –10 A
–0.4
–5 A
–2 A
0
–4
–8
–12
Gate to Source Voltage
Static Drain to Source on State Resistance
R DS(on) ( Ω)
Drain to Source On State Resistance
R DS(on) ( Ω )
Pulse Test
–16
–10 A
80
–2,–5 A
V GS = –10 V
0
40
80
Case Temperature
120
Tc
(°C)
VGS = –4 V
–10 V
50
20
Pulse Test
10
–1
–2
–5
–10
Drain Current
–2 A
120
0
–40
100
–20
I D = –10 A
V GS = –4 V
40
200
V GS (V)
Static Drain to Source on State Resistance
vs. Temperature
200
–5 A
Pulse Test
160
500
160
100
Forward Transfer Admittance |y fs | (S)
Drain to Source Saturation Voltage
V DS(on) (V)
–2
Static Drain to Source on State Resistance
vs. Drain Current
1000
–50 –100
–20
I D (A)
Forward Transfer Admittance vs.
Drain Current
50
20
10
Tc = –25 °C
25 °C
5
2
75 °C
V DS = –10 V
Pulse Test
1
0.5
–0.1–0.2 –0.5 –1 –2
–5 –10 –20 –50
Drain Current I D (A)
5
2SJ506(L), 2SJ506(S)
Body to Drain Diode Reverse
Recovery Time
Typical Capacitance vs.
Drain to Source Voltage
5000
50
20
1000
–0.5 –1 –2
Reverse Drain Current
Coss
200
50
20
10
0
V DD = –25 V
–10 V
–5 V
–30
–4
–8
–12
V GS
–40
–16
I = –10 A
–50 D
0
8
16
Gate Charge
32
24
Qg (nc)
–20
40
V GS (V)
V DS
1000
500
Switching Time t (ns)
–20
–20
–30
–40
–50
Switching Characteristics
0
Gate to Source Voltage
V DS (V)
Drain to Source Voltage
–10
–10
Drain to Source Voltage V DS (V)
I DR (A)
Dynamic Input Characteristics
VDD = –5 V
–10 V
–25 V
Crss
100
–5 –10 –20
0
Ciss
500
di / dt = 50 A / µs
VGS = 0, Ta = 25 °C
10
–0.1 –0.2
6
VGS = 0
f = 1 MHz
2000
Capacitance C (pF)
Reverse Recovery Time trr (ns)
100
V GS = –10 V, V DD = –10 V
PW = 10 µs, duty <
=1%
200
t d(off)
100
50
tf
tr
20
t d(on)
10
5
–0.1 –0.2 –0.5 –1 –2 –5 –10 –20
Drain Current I D (A)
–50
2SJ506(L), 2SJ506(S)
Reverse Drain Current vs.
Source to Drain Voltage
–20
Reverse Drain Current I DR (A)
Pulse Test
–5 V
–16
–10 V
–12
V GS = 0.5 V
–8
–4
0
–0.4
–0.8
–1.2
Source to Drain Voltage
–1.6
–2.0
V SD (V)
Normalized Transient Thermal Impedance vs. Pulse Width
Normalized Transient Thermal Impedance
γ s (t)
3
Tc = 25°C
1
D=1
0.5
0.3
0.1
0.03
0.2
0.1
0.05
θ ch – c(t) = γ s (t) • θ ch – c
θ ch – c = 6.25 °C/W, Tc = 25 °C
0.02
e
uls
1
0.0
PDM
P
ot
D=
h
1s
PW
T
PW
T
0.01
10 µ
100 µ
1m
10 m
Pulse Width
100 m
1
10
PW (S)
7
2SJ506(L), 2SJ506(S)
Switching Time Test Circuit
Waveforms
Vout
Monitor
Vin Monitor
Vin
10%
D.U.T.
RL
90%
Vin
50Ω
–10 V
V DD
= –10 V
Vout
td(on)
8
90%
90%
10%
10%
tr
td(off)
tf
2SJ506(L), 2SJ506(S)
Package Dimensions
L type
2.29 ± 0.5
1.2 typ
9.5 ± 0.5
2.3 ± 0.5
0.55 ± 0.1
2.29 ± 0.5
2.5 ± 0.5
2.29 ± 0.5
0.55 ± 0.1
1.2 Max
16.2 ± 0.5
3.1 ± 0.5
4.7 ± 0.5
2.29 ± 0.5
1.15 ± 0.1
0.8 ± 0.1
5.5 ± 0.5
6.5 ± 0.5
5.4 ± 0.5
1.15 ± 0.1
0.8 ± 0.1
1.7 ± 0.5
2.3 ± 0.2
0.55 ± 0.1
5.5 ± 0.5
6.5 ± 0.5
5.4 ± 0.5
1.7 ± 0.5
Unit: mm
S type
0 ~ 0.25
0.55 ± 0.1
Hitachi
EIAJ ( L type)
EIAJ ( S type)
JEDEC
DPAK–2
SC–63
SC–64
—
9
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica
: http:semiconductor.hitachi.com/
Europe
: http://www.hitachi-eu.com/hel/ecg
Asia (Singapore)
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm
Asia (Taiwan)
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm
Japan
: http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe GmbH
Electronic components Group
Dornacher Stra§e 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 778322
Hitachi Asia Pte. Ltd.
16 Collyer Quay #20-00
Hitachi Tower
Singapore 049318
Tel: 535-2100
Fax: 535-1533
Hitachi Asia Ltd.
Taipei Branch Office
3F, Hung Kuo Building. No.167,
Tun-Hwa North Road, Taipei (105)
Tel: <886> (2) 2718-3666
Fax: <886> (2) 2718-8180
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower, World Finance Centre,
Harbour City, Canton Road, Tsim Sha Tsui,
Kowloon, Hong Kong
Tel: <852> (2) 735 9218
Fax: <852> (2) 730 0281
Telex: 40815 HITEC HX
Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.