TI TPA3111D1

TPA3111D1
www.ti.com ................................................................................................................................................................................................ SLOS618 – AUGUST 2009
10-W FILTER-FREE MONO CLASS-D AUDIO POWER AMPLIFIER with SPEAKER GUARD™
Check for Samples: TPA3111D1
FEATURES
1
•
2
•
•
•
•
•
•
•
•
•
•
10-W into an 8-Ω Load at 10% THD+N From a
12-V Supply
7-W into an 4-Ω Load at 10% THD+N From a
8-V Supply
94% Efficient Class-D Operation into 8-Ω Load
Eliminates Need for Heat Sinks
Wide Supply Voltage Range Allows Operation
from 8 to 26 V
Filter-Free Operation
SpeakerGuard™ Speaker Protection Includes
Adjustable Power Limiter plus DC Protection
Flow Through Pin Out Facilitates Easy Board
Layout
Robust Pin-to-Pin Short Circuit Protection and
Thermal Protection with Auto-Recovery Option
Excellent THD+N/ Pop Free Performance
Four Selectable, Fixed Gain Settings
Differential Inputs
APPLICATIONS
•
•
•
Televisions
Monitor/Laptop
Consumer Audio Equipment
DESCRIPTION
The TPA3111D1 is a 10-W efficient, Class-D audio
power amplifier for driving a bridge tied speaker.
Advanced EMI Suppresion Technology enables the
use of inexpensive ferrite bead filters at the outputs
while meeting EMC requirements. SpeakerGuard™
speaker protection system includes an adjustable
power limiter and a DC detection circuit. The
adjustable power limiter allows the user to set a
"virtual" voltage rail lower than the chip supply to limit
the amount of current through the speaker. The DC
detect circuit measures the frequency and amplitude
of the PWM signal and shuts off the output stage if
the input capacitors are damaged or shorts exist on
the inputs.
The TPA3111D1 can drive a mono speaker as low as
4Ω. The high efficiency of the TPA3111D1, > 90%,
eliminates the need for an external heat sink when
playing music.
The outputs are fully protected against shorts to
GND, VCC, and output-to-output. The short-circuit
protection and thermal protection includes an
auto-recovery feature.
1uF
Audio
Source
OUT+
INP
OUT -
INN
TPA3111D1
OUTP
FERRITE
BEAD
FILTER
OUTN
10W
8Ω
GAIN0
GAIN1
PLIMIT
Fault
SD
PVCC
8 to 26V
Figure 1. Simplified Application Diagram
1
2
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
SpeakerGuard is a trademark of Texas Instruments.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2009, Texas Instruments Incorporated
TPA3111D1
SLOS618 – AUGUST 2009 ................................................................................................................................................................................................ www.ti.com
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
ABSOLUTE MAXIMUM RATINGS
over operating free-air temperature range (unless otherwise noted) (1)
UNIT
VCC
Supply voltage
AVCC, PVCC
VI
Interface pin voltage
–0.3 V to 30 V
SD, FAULT,GAIN0, GAIN1
–0.3 V to VCC + 0.3 V
PLIMIT
–0.3 V toGVDD + 0.3 V
INN, INP
–0.3 V to 6.3 V
Continuous total power dissipation
See Dissipation Rating Table
TA
Operating free-air temperature range
–40°C to 85°C
TJ
Operating junction temperature range (2)
–40°C to 150°C
Tstg
Storage temperature range
–65°C to 150°C
RL
Minimum Load Resistance
Electrostatic discharge
(1)
BTL
3.2
Human body model
(3)
Charged-device model
(all pins)
(4)
±2 kV
(all pins)
±500 V
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings
only, and functional operations of the device at these or any other conditions beyond those indicated under recommended operating
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
The TPA3111D1 incorporates an exposed thermal pad on the underside of the chip. This acts as a heatsink, and it must be connected
to a thermally dissipating plane for proper power dissipation. Failure to do so may result in the device going into thermal protection
shutdown. See TI Technical Briefs SCBA017D and SLUA271 for more information about using the QFN thermal pad. See TI Technical
Briefs SLMA002 for more information about using the HTQFP thermal pad.
In accordance with JEDEC Standard 22, Test Method A114-B.
In accordance with JEDEC Standard 22, Test Method C101-A
(2)
(3)
(4)
TYPICAL DISSIPATION RATINGS
PACKAGE
(1)
28 pin TSSOP
(PWP)
(1)
TA ≤ 25°C
DERATING FACTOR
TA = 85°C
θJP
ψJT
4.98 W
25.1 °C/W
2.59 W
0.72
°C/W
0.45 °C/W
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
website at www.ti.com.
RECOMMENDED OPERATING CONDITIONS
over operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
MAX
26
UNIT
VCC
Supply voltage
PVCC, AVCC
8
VIH
High-level input voltage
SD, GAIN0, GAIN1
2
V
VIL
Low-level input voltage
SD, GAIN0, GAIN1
0.8
VOL
Low-level output voltage
FAULT, RPULLUP=100kΩ, VCC=26V
0.8
V
IIH
High-level input current
SD, GAIN0, GAIN1, VI = 2, VCC = 18 V
50
µA
IIL
Low-level input current
SD, GAIN0, GAIN1, VI = 0.8V, VCC = 18 V
5
µA
TA
Operating free-air temperature
85
°C
V
–40
V
DC CHARACTERISTICS
TA = 25°C, VCC = 24 V, RL = 8 Ω (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP MAX
UNIT
| VOS |
Class-D output offset voltage (measured
differentially)
VI = 0 V, Gain = 36 dB
1.5
ICC
Quiescent supply current
SD = 2 V, no load, PVcc=21V
40
mA
ICC(SD)
Quiescent supply current in shutdown mode
SD = 0.8 V, no load, PVcc=21V
400
µA
2
Submit Documentation Feedback
15
mV
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPA3111D1
TPA3111D1
www.ti.com ................................................................................................................................................................................................ SLOS618 – AUGUST 2009
DC CHARACTERISTICS (continued)
TA = 25°C, VCC = 24 V, RL = 8 Ω (unless otherwise noted)
PARAMETER
rDS(on)
TEST CONDITIONS
IO = 500 mA,
TJ = 25°C
Drain-source on-state resistance
GAIN1 = 0.8 V
G
Gain
GAIN1 = 2 V
tON
Turn-on time
SD = 2 V
tOFF
Turn-off time
SD = 0.8 V
GVDD
Gate Drive Supply
IGVDD = 2mA
MIN
TYP MAX
High Side
240
Low side
240
mΩ
GAIN0 = 0.8 V
19
20
21
GAIN0 = 2 V
25
26
27
GAIN0 = 0.8 V
31
32
33
GAIN0 = 2 V
35
36
37
6.5
UNIT
dB
dB
10
ms
2
μs
6.9
7.3
V
DC CHARACTERISTICS
TA = 25°C, VCC = 12 V, RL = 8 Ω (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP MAX
UNIT
| VOS |
Class-D output offset voltage (measured
differentially)
VI = 0 V, Gain = 36 dB
1.5
ICC
Quiescent supply current
SD = 2 V, no load, PVcc=12V
20
mA
ICC(SD)
Quiescent supply current in shutdown mode
SD = 0.8 V, no load, PVcc=12V
200
µA
Drain-source on-state resistance
IO = 500 mA,
TJ = 25°C
rDS(on)
GAIN1 = 0.8 V
G
Gain
GAIN1 = 2 V
High Side
240
Low side
240
15
mΩ
GAIN0 = 0.8 V
19
20
21
GAIN0 = 2 V
25
26
27
GAIN0 = 0.8 V
31
32
33
GAIN0 = 2 V
35
36
37
tON
Turn-on time
SD = 2 V
tOFF
Turn-off time
SD = 0.8 V
GVDD
Gate Drive Supply
IGVDD = 2mA
PLIMIT
Output Voltage maximum under PLIMIT
control
VPLIMIT=2.0 V; VI=6.0V differential
mV
10
dB
dB
ms
μs
2
6.5
6.9
7.3
V
6.75
7.90
8.75
V
MAX
UNIT
AC CHARACTERISTICS
TA = 25°C, VCC = 24 V, RL = 8 Ω (unless otherwise noted)
PARAMETER
TEST CONDITIONS
KSVR
Power Supply ripple rejection
200 mVPP ripple from 20 Hz–1 kHz,
Gain = 20 dB, Inputs ac-coupled to AGND
PO
Continuous output power
THD+N ≤ 0.1%, f = 1 kHz, VCC = 24 V
THD+N
Total harmonic distortion + noise
VCC = 24 V, f = 1 kHz, PO = 5 W (half-power)
Vn
MIN
TYP
–70
dB
10
W
<0.05
%
65
µV
Output integrated noise
20 Hz to 22 kHz, A-weighted filter, Gain = 20 dB
–80
dBV
Crosstalk
VO = 1 Vrms, Gain = 20 dB, f = 1 kHz
–70
dB
SNR
Signal-to-noise ratio
Maximum output at THD+N < 1%, f = 1 kHz,
Gain = 20 dB, A-weighted
102
dB
fOSC
Oscillator frequency
250
Thermal trip point
Thermal hysteresis
310
350
°C
15
°C
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPA3111D1
kHz
150
3
TPA3111D1
SLOS618 – AUGUST 2009 ................................................................................................................................................................................................ www.ti.com
AC CHARACTERISTICS
TA = 25°C, VCC = 12 V, RL = 8 Ω (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
KSVR
Supply ripple rejection
200 mVPP ripple from 20 Hz–1 kHz,
Gain = 20 dB, Inputs ac-coupled to AGND
PO
Continuous output power
PO
Continuous output power
THD+N
Total harmonic distortion + noise
RL = 8 Ω, f = 1 kHz, PO = 5 W (half-power)
Vn
Output integrated noise
20 Hz to 22 kHz, A-weighted filter, Gain = 20 dB
Crosstalk
SNR
Signal-to-noise ratio
fOSC
Oscillator frequency
TYP
MAX
UNIT
–70
dB
THD+N ≤ 10%, f = 1 kHz , RL = 8Ω
10
W
THD+N ≤ 0.1%, f = 1 kHz , RL = 4Ω
10
W
<0.06
%
65
µV
–80
dBV
Po = 1 W, Gain = 20 dB, f = 1 kHz
–70
dB
Maximum output at THD+N < 1%, f = 1 kHz,
Gain = 20 dB, A-weighted
102
dB
250
Thermal trip point
Thermal hysteresis
310
350
kHz
150
°C
15
°C
PWP (TSSOP) Package
(Top View)
SD
FAULT
1
28
2
27
GND
GND
GAIN0
GAIN1
3
26
4
25
5
24
6
23
AVCC
AGND
GVDD
PLIMIT
7
22
8
21
INN
INP
NC
AVCC
9
20
10
19
11
18
12
17
13
16
14
15
PVCC
PVCC
BSN
OUTN
PGND
OUTN
BSN
BSP
OUTP
PGND
OUTP
BSP
PVCC
PVCC
PIN FUNCTIONS
PIN
NAME
SD
Pin #
1
I/O
DESCRIPTION
I
Shutdown logic input for audio amp(LOW = outputs Hi-Z, HIGH = outputs enabled).
TTL logic levels with compliance to AVCC.
O
Open drain output used to display short circuit or dc detect fault status. Voltage
compliant to AVCC. Short circuit faults can be set to auto-recovery by connecting
FAULT pin to SD pin. Otherwise bothe short circuit faults and dc detect faults must
be reset by cycling PVCC.
FAULT
2
GND
3
GND
4
GAIN0
5
I
Gain select least significant bit. TTL logic levels with compliance to AVCC.
GAIN1
6
I
Gain select most significant bit. TTL logic levels with compliance to AVCC.
AVCC
7
P
Analog supply.
AGND
8
GVDD
9
O
High-side FET gate drive supply. Nominal voltage is 7V. May also be used as
supply for PLILMIT divider. Add a 1μF cap to ground at this pin.
PLIMIT
10
I
Power limit level adjust. Connect directly to GVDD pin for no power limiting. Add a
1μF cap to ground at this pin.
4
Connect to local ground
Connect to local ground
Analog supply ground. Connect to the thermal pad.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPA3111D1
TPA3111D1
www.ti.com ................................................................................................................................................................................................ SLOS618 – AUGUST 2009
PIN FUNCTIONS (continued)
PIN
NAME
Pin #
I/O
DESCRIPTION
INN
11
I
Negative audio input. Biased at 3V.
INP
12
I
Positive audio input. Biased at 3V.
NC
13
AVCC
14
P
Connect AVCC supply to this pin
PVCC
15
P
Power supply for H-bridge. PVCC pins are also connected internally.
PVCC
16
P
Power supply for H-bridge. PVCC pins are also connected internally.
BSP
17
I
Bootstrap I/O for positive high-side FET.
OUTP
18
O
Class-D H-bridge positive output.
PGND
19
OUTP
20
O
Class-D H-bridge positive output.
BSP
21
I
Bootstrap I/O for positive high-side FET.
BSN
22
I
Bootstrap I/O for negative high-side FET.
OUTN
23
O
Class-D H-bridge negative output.
PGND
24
OUTN
25
BSN
PVCC
PVCC
Not connected
Power ground for the H-bridges.
Power ground for the H-bridges.
O
Class-D H-bridge negative output.
26
I
Bootstrap I/O for negative high-side FET.
27
P
Power supply for H-bridge. PVCC pins are also connected internally.
28
P
Power supply for H-bridge. PVCC pins are also connected internally.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPA3111D1
5
TPA3111D1
SLOS618 – AUGUST 2009 ................................................................................................................................................................................................ www.ti.com
FUNCTIONAL BLOCK DIAGRAM
GVDD
PVCC
BSP
PVCC
OUTP FB
OUTP FB
INP
Gain
Control
PWM
Logic
PLIMIT
Gate
Drive
OUTP
INN
OUTN FB
PGND
FAULT
SD
GAIN0
TTL
Buffer
Gain
Control
GAIN1
PLIMIT
Reference
PLIMIT
GVDD
AVDD
AVCC
PVCC
BSN
PVCC
LDO
Regulator
SC Detect
GVDD
DC Detect
GVDD
Ramp
Generator
Biases and
References
Startup Protection
Logic
Thermal
Detect
Gate
Drive
OUTN
OUTN FB
UVLO/OVLO
PGND
AGND
6
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPA3111D1
TPA3111D1
www.ti.com ................................................................................................................................................................................................ SLOS618 – AUGUST 2009
TYPICAL CHARACTERISTICS
(All Measurements taken at 1 kHz, unless otherwise noted. Measurements were made using the TPA3110D2 EVM which is
available at ti.com.)
TOTAL HARMONIC DISTORTION
vs
FREQUENCY
TOTAL HARMONIC DISTORTION
vs
FREQUENCY
10
Gain = 20 dB
VCC = 12 V
ZL = 8 Ω + 66 µH
THD − Total Harmonic Distortion − %
THD − Total Harmonic Distortion − %
10
1
0.1
PO = 1 W
0.01
PO = 5 W
Gain = 20 dB
VCC = 24 V
ZL = 8 Ω + 66 µH
1
PO = 1 W
0.1
0.01
PO = 10 W
PO = 5 W
PO = 2.5 W
0.001
20
100
1k
10k
0.001
20
20k
100
1k
f − Frequency − Hz
10k
G001
G002
Figure 2.
Figure 3.
TOTAL HARMONIC DISTORTION
vs
FREQUENCY
TOTAL HARMONIC DISTORTION + NOISE
vs
OUTPUT POWER
10
Gain = 20 dB
VCC = 12 V
ZL = 4 Ω + 33 µH
THD+N − Total Harmonic Distortion + Noise − %
THD − Total Harmonic Distortion − %
10
1
PO = 5 W
PO = 10 W
0.1
0.01
0.001
20
20k
f − Frequency − Hz
PO = 1 W
100
1k
10k
20k
Gain = 20 dB
VCC = 12 V
ZL = 8 Ω + 66 µH
1
f = 1 kHz
f = 20 Hz
0.1
0.01
f = 10 kHz
0.001
0.01
f − Frequency − Hz
G003
Figure 4.
0.1
1
10
PO − Output Power − W
20
G004
Figure 5.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPA3111D1
7
TPA3111D1
SLOS618 – AUGUST 2009 ................................................................................................................................................................................................ www.ti.com
TYPICAL CHARACTERISTICS (continued)
(All Measurements taken at 1 kHz, unless otherwise noted. Measurements were made using the TPA3110D2 EVM which is
available at ti.com.)
TOTAL HARMONIC DISTORTION + NOISE
vs
OUTPUT POWER
TOTAL HARMONIC DISTORTION + NOISE
vs
OUTPUT POWER
10
Gain = 20 dB
VCC = 24 V
ZL = 8 Ω + 66 µH
THD+N − Total Harmonic Distortion + Noise − %
THD+N − Total Harmonic Distortion + Noise − %
10
1
f = 1 kHz
f = 20 Hz
0.1
0.01
f = 10 kHz
0.001
0.01
0.1
1
10
PO − Output Power − W
20
0.01
f = 10 kHz
0.1
1
10
G005
Figure 6.
Figure 7.
MAXIMUM OUTPUT POWER
vs
PLIMIT VOLTAGE
OUTPUT POWER
vs
PLIMIT VOLTAGE
20
G006
20
Gain = 20 dB
VCC = 12 V
ZL = 4 Ω + 33 µH
Gain = 20 dB
VCC = 24 V
ZL = 8 Ω + 66 µH
15
15
10
10
5
5
0
0.0
0.5
1.0
1.5
2.0
2.5
VPLIMIT − PLIMIT Voltage − V
3.0
0
0.0
0.5
1.0
1.5
VPLIMIT − PLIMIT Voltage − V
G007
Note: Dashed line represents thermally limited region.
2.0
G008
Note: Dashed line represents thermally limited region.
Figure 8.
8
f = 20 Hz
f = 1 kHz
0.1
PO − Output Power − W
PO − Output Power − W
PO(Max) − Maximum Output Power − W
1
0.001
0.01
25
20
Gain = 20 dB
VCC = 12 V
ZL = 4 Ω + 33 µH
Figure 9.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPA3111D1
TPA3111D1
www.ti.com ................................................................................................................................................................................................ SLOS618 – AUGUST 2009
TYPICAL CHARACTERISTICS (continued)
(All Measurements taken at 1 kHz, unless otherwise noted. Measurements were made using the TPA3110D2 EVM which is
available at ti.com.)
GAIN/PHASE
vs
FREQUENCY
EFFICIENCY
vs
OUTPUT POWER
40
100
35
50
100
Phase
30
VCC = 12 V
90
80
0
VCC = 24 V
−50
Phase − °
Gain − dB
25
Gain
20
−100
15
−150
CI = 1 µF
Gain = 20 dB
Filter = Audio Precision AUX-0025
VCC = 12 V
VI = 0.1 Vrms
ZL = 8 Ω + 66 µH
10
5
0
10
100
1k
η − Efficiency − %
70
50
40
−200
30
−250
20
Gain = 20 dB
ZL = 8 Ω + 66 µH
10
−300
100k
10k
60
0
f − Frequency − Hz
0
G009
1
2
3
4
5
6
7
8
9
PO − Output Power − W
Figure 10.
Figure 11.
EFFICIENCY
vs
OUTPUT POWER
SUPPLY CURRENT
vs
TOTAL OUTPUT POWER
G012
1.2
100
Gain = 20 dB
ZL = 8 Ω + 66 µH
90
1.0
ICC − Supply Current − A
80
70
η − Efficiency − %
10
60
50
40
30
0.8
VCC = 12 V
0.6
0.4
VCC = 24 V
20
0.2
Gain = 20 dB
VCC = 12 V
ZL = 4 Ω + 33 µH
10
0
0.0
0
1
2
3
4
5
6
7
PO − Output Power − W
8
9
10
0
1
G013
Figure 12.
2
3
4
5
6
7
8
9
PO(Tot) − Total Output Power − W
10
G014
Figure 13.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPA3111D1
9
TPA3111D1
SLOS618 – AUGUST 2009 ................................................................................................................................................................................................ www.ti.com
TYPICAL CHARACTERISTICS (continued)
(All Measurements taken at 1 kHz, unless otherwise noted. Measurements were made using the TPA3110D2 EVM which is
available at ti.com.)
SUPPLY CURRENT
vs
TOTAL OUTPUT POWER
SUPPLY RIPPLE REJECTION RATIO
vs
FREQUENCY
0
1.2
ICC − Supply Current − A
1.0
KSVR − Supply Ripple Rejection Ratio − dB
Gain = 20 dB
VCC = 12 V
ZL = 4 Ω + 33 µH
0.8
0.6
0.4
0.2
0.0
0
1
2
3
4
5
6
7
8
9
10
Gain = 20 dB
ZL = 8 Ω + 66 µH
−20
−40
−60
VCC = 12 V
−80
−100
−120
20
100
1k
10k
20k
f − Frequency − Hz
PO(Tot) − Total Output Power − W
G016
G015
Figure 14.
Figure 15.
DEVICE INFORMATION
Gain setting via GAIN0 and GAIN1 inputs
The gain of the TPA3111D1 is set by two input terminals, GAIN0 and GAIN1.
The gains listed in Table 1 are realized by changing the taps on the input resistors inside the amplifier. This
causes the input impedance (ZI) to be dependent on the gain setting. The actual gain settings are controlled by
ratios of resistors, so the gain variation from part-to-part is small. However, the input impedance from part-to-part
at the same gain may shift by ±20% due to shifts in the actual resistance of the input resistors.
For design purposes, the input network (discussed in the next section) should be designed assuming an input
impedance of 7.2 kΩ, which is the absolute minimum input impedance of the TPA3111D1. At the lower gain
settings, the input impedance could increase as high as 72 kΩ
Table 1. Gain Setting
10
AMPLIFIER GAIN (dB)
INPUT IMPEDANCE
(kΩ)
TYP
TYP
20
60
1
26
30
0
32
15
1
36
9
GAIN1
GAIN0
0
0
0
1
1
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPA3111D1
TPA3111D1
www.ti.com ................................................................................................................................................................................................ SLOS618 – AUGUST 2009
SD OPERATION
The TPA3111D1 employs a shutdown mode of operation designed to reduce supply current (ICC) to the absolute
minimum level during periods of nonuse for power conservation. The SD input terminal should be held high (see
specification table for trip point) during normal operation when the amplifier is in use. Pulling SD low causes the
outputs to mute and the amplifier to enter a low-current state. Never leave SD unconnected, because amplifier
operation would be unpredictable.
For the best power-off pop performance, place the amplifier in the shutdown mode prior to removing the power
supply voltage.
PLIMIT
The voltage at pin 10 can used to limit the power to levels below that which is possible based on the supply rail.
Add a resistor divider from GVDD to ground to set the voltage at the PLIMIT pin. An external reference may also
be used if tighter tolerance is required. Also add a 1μF capacitor from pin 10 to ground.
The PLIMIT circuit sets a limit on the output peak-to-peak voltage. This limit can be thought of as a "virtual"
voltage rail which is lower than the supply connected to PVCC. This "virtual" rail is 4 times the voltage at the
PLIMIT pin. This output voltage can be used to calculate the maximum output power for a given maximum input
voltage and speaker impedance.
Figure 16. PLIMIT Circuit Operation
The PLIMIT circuits sets a limit on the output peak-to-peak voltage. The limiting is done by limiting the duty cycle
to fixed maximum value. This limit can be thought of as a “virtual” voltage rail which is lower than the supply
connected to PVCC. This “virtual” rail is 4 times the voltage at the PLIMIT pin. This output voltage can be used to
calculate the maximum output power for a given maximum input voltage and speaker impedance.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPA3111D1
11
TPA3111D1
SLOS618 – AUGUST 2009 ................................................................................................................................................................................................ www.ti.com
POUT
ææ
ö
ö
RL
çç ç
÷ ´ VP ÷÷
2
R
R
+
´
S ø
è L
ø
=è
2 ´ RL
2
for unclipped power
(1)
Where:
RS is the total series resistance including RDS(on), and any resistance in the output filter.
RL is the load resistance.
VP is the peak amplitude of the output possible within the supply rail.
VP = 4 × PLIMIT voltage if PLIMIT < 4 × VP
POUT(10%THD) = 1.25 × POUT(unclipped)
Table 2. PLIMIT Typical Operation
Test Conditions ()
PLIMIT Voltage
Output Power (W)
Output Voltage
Amplitude (VP-P)
PVCC=24V, Vin=1Vrms,
RL=4Ω, Gain=20dB
1.92
10
15.0
PVCC=24V, Vin=1Vrms,
RL=4Ω, Gain=20dB
1.24
5
10.0
PVCC=12V, Vin=1Vrms,
RL=4Ω, Gain=20dB
1.75
10
15.3
PVCC=12V, Vin=1Vrms,
RL=4Ω, Gain=20dB
1.20
5
10.3
GVDD Supply
The GVDD Supply is used to power the gates of the output full bridge transistors. It can also used to supply the
PLIMIT voltage divider circuit. Add a 1μF capacitor to ground at this pin.
DC Detect
TPA3111D1 has circuitry which will protect the speakers from DC current which might occur due to defective
capacitors on the input or shorts on the printed circuit board at the inputs. A DC detect fault will be reported on
the FAULT pin as a low state. The DC Detect fault will also cause the amplifier to shutdown by changing the
state of the outputs to Hi-Z. To clear the DC Detect it is necessary to cycle the PVCC supply. Cycling SD will
NOT clear a DC detect fault.
A DC Detect Fault is issued when the output differential duty-cycle exceeds 14% (eg. +57%, -43%) for more than
420 ms at the same polarity. This feature protects the speaker from large DC currents or AC currents less than 2
Hz. To avoid nuisance faults due to the DC detect circuit, hold the SD pin low at power-up until the signals at the
inputs are stable. Also, take care to match the impedance seen at the positive and negative input to avoid
nuisance DC detect faults.
The minimum differential input voltages required to trigger the DC detect are shown in Table Table 3. The inputs
must remain at or above the voltage listed in the table for more than 420 ms to trigger the DC detect.
Table 3. DC Detect Threshold
12
AV(dB)
Vin (mV, differential)
20
112
26
56
32
28
36
17
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPA3111D1
TPA3111D1
www.ti.com ................................................................................................................................................................................................ SLOS618 – AUGUST 2009
SHORT-CIRCUIT PROTECTION AND AUTOMATIC RECOVERY FEATURE
TPA3110D2 has protection from over-current conditions caused by a short circuit on the output stage. The short
circuit protection fault is reported on the FAULT pin as a low state. The amplifier outputs are switched to a Hi-Z
state when the short circuit protection latch is engaged. The latch can be cleared by cycling the SD pin through
the low state.
If automatic recovery from the short circuit protection latch is desired, connect the FAULT pin directly to the SD
pin. This will allow the FAULT pin function to automatically drive the SD pin low which will clear the short circuit
protection latch.
THERMAL PROTECTION
Thermal protection on the TPA3111D1 prevents damage to the device when the internal die temperature
exceeds 150°C. There is a ±15°C tolerance on this trip point from device to device. Once the die temperature
exceeds the thermal set point, the device enters into the shutdown state and the outputs are disabled. This is not
a latched fault. The thermal fault is cleared once the temperature of the die is reduced by 15°C. The device
begins normal operation at this point with no external system interaction.
Thermal protection faults are NOT reported on the FAULT terminal.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPA3111D1
13
TPA3111D1
SLOS618 – AUGUST 2009 ................................................................................................................................................................................................ www.ti.com
APPLICATION INFORMATION
PVCC
100 μF
0.1 μF
1000pF
100k Ω
Control
System
1
SD
PVCC
FAULT
PVCC
28
1 kΩ
2
3
4
5
6
AVCC
PVCC
7
GND
BSN
GND
OUTN
GAIN0
PGND
GAIN1
OUTN
AVCC
BSN
10 Ω
8
TPA3111D1
AGND
BSP
GVDD
OUTP
PLIMIT
PGND
INN
OUTP
INP
BSP
NC
PVCC
27
26
0.47 μF
25
24
FB
23
1000 pF
22
21
1000 pF
9
1 uF
10
1 uF
Audio
Source
11
12
1 uF
13
20
FB
19
0.47 μF
18
17
16
100 μF
AVCC
14
AVCC
PVCC
GND
29
PowerPAD
15
0.1 μF
1000pF
PVCC
Figure 17. Mono Class-D Amplifier with BTL Output
14
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPA3111D1
TPA3111D1
www.ti.com ................................................................................................................................................................................................ SLOS618 – AUGUST 2009
CLASS-D OPERATION
This section focuses on the class-D operation of the TPA3111D1.
TPA3111D1 Modulation Scheme
The TPA3111D1 uses a modulation scheme that allows operation without the classic LC reconstruction filter
when the amp is driving an inductive load. Each output is switching from 0 volts to the supply voltage. The OUTP
and OUTN are in phase with each other with no input so that there is little or no current in the speaker. The duty
cycle of OUTP is greater than 50% and OUTN is less than 50% for positive output voltages. The duty cycle of
OUTP is less than 50% and OUTN is greater than 50% for negative output voltages. The voltage across the load
sits at 0 V throughout most of the switching period, greatly reducing the switching current, which reduces any I2R
losses in the load.
OUTP
OUTN
Differential
Voltage
Across
Load
Output = 0 V
+12 V
0V
-12 V
Current
OUTP
OUTN
Differential
Voltage
Across
Load
Output > 0 V
+12 V
0V
-12 V
Current
Figure 18. The TPA3111D1 Output Voltage and Current Waveforms Into an Inductive Load
Ferrite Bead Filter Considerations
Using the Advanced Emissions Suppression Technology in the TPA3111D1 amplifier it is possible to design a
high efficiency Class-D audio amplifier while minimizing interference to surrounding circuits. it is also possible to
accomplishthis with only a low-cost ferrite bead filter. In this case it is necessary to carefully select the ferrite
bead used in the filter.
One important aspect of the ferrite bead selection is the type of material used in the ferrite bead. Not all ferrite
material is alike, so it is important to select a material that is effective in the 10 to 100 MHz range which is key to
the operation of the Class D amplifier. Many of the specifications regulating consumer electronics have
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPA3111D1
15
TPA3111D1
SLOS618 – AUGUST 2009 ................................................................................................................................................................................................ www.ti.com
emissions limits as low as 30 MHz. It is important to use the ferrite bead filter to block radiation in the 30 MHz
and above range from appearing on the speaker wires and the power supply lines which are good antennas for
these signals. The impedance of the ferrite bead can be used along with a small capacitor with a value in the
range of 1000 pF to reduce the frequency spectrum of the signal to an acceptable level. For best performance,
the resonant frequency of the ferrite bead/ capacitor filter should be less than 10 MHz.
Also, it is important that the ferrite bead is large enough to maintain its impedance at the peak currents expected
for the amplifier. Some ferrite bead manufacturers specify the bead impedance at a variety of current levels. In
this case it is possible to make sure the ferrite bead maintains an adequate amount of impedance at the peak
current the amplifier will see. If these specifications are not available, it is also possible to estimate the bead
current handling capability by measuring the resonant frequency of the filter output at very low power and at
maximum power. A change of resonant frequency of less than fifty percent under this condition is desirable.
Examples of ferrite beads which have been tested and work well with the TPA3110D2 include 28L0138-80R-10
and HI1812V101R-10 from Steward and the 742792510 from Wurth Electronics.
A high quality ceramic capacitor is also needed for the ferrite bead filter. A low ESR capacitor with good
temperature and voltage characteristics will work best.
Additional EMC improvements may be obtained by adding snubber networks from each of the class D outputs to
ground. Suggested values for a simple RC series snubber network would be 10 ohms in series with a 330 pF
capacitor although design of the snubber network is specific to every application and must be designed taking
into account the parasitic reactance of the printed circuit board as well as the audio amp. Take care to evaluate
the stress on the component in the snubber network especially if the amp is running at high PVCC. Also, make
sure the layout of the snubber network is tight and returns directly to the PGND or the PowerPad beneath the
chip.
Efficiency: LC Filter Required With the Traditional Class-D Modulation Scheme
The main reason that the traditional class-D amplifier needs an output filter is that the switching waveform results
in maximum current flow. This causes more loss in the load, which causes lower efficiency. The ripple current is
large for the traditional modulation scheme, because the ripple current is proportional to voltage multiplied by the
time at that voltage. The differential voltage swing is 2 x VCC, and the time at each voltage is half the period for
the traditional modulation scheme. An ideal LC filter is needed to store the ripple current from each half cycle for
the next half cycle, while any resistance causes power dissipation. The speaker is both resistive and reactive,
whereas an LC filter is almost purely reactive.
The TPA3111D1 modulation scheme has little loss in the load without a filter because the pulses are short and
the change in voltage is VCC instead of 2 x VCC. As the output power increases, the pulses widen, making the
ripple current larger. Ripple current could be filtered with an LC filter for increased efficiency, but for most
applications the filter is not needed.
An LC filter with a cutoff frequency less than the class-D switching frequency allows the switching current to flow
through the filter instead of the load. The filter has less resistance but higher impedance at the switching
frequency than the speaker, which results in less power dissipation, therefore increasing efficiency.
When to Use an Output Filter for EMI Suppression
The TPA3111D1 has been tested with a simple ferrite bead filter for a variety of applications including long
speaker wires up to 125 cm and high power. The TPA3111D1 EVM passes FCC Class B specifications under
these conditions using twisted speaker wires. The size and type of ferrite bead can be selected to meet
applicaton requirements. Also, the filter capacitor can be increased if necessary with some impact on efficiency.
There may be a few circuit instances where it is necessary to add a complete LC reconstruction filter. These
circumstances might occur if there are nearby circuits which are very sensitive to noise. In these cases a classic
second order Butterworth filter similar to those shown in the figures below can be used.
16
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPA3111D1
TPA3111D1
www.ti.com ................................................................................................................................................................................................ SLOS618 – AUGUST 2009
33 mH
OUTP
L1
C2
1 mF
33 mH
OUTN
L2
C3
1 mF
Figure 19. Typical LC Output Filter, Cutoff Frequency of 27 kHz, Speaker Impedance = 8 Ω
15 mH
OUTP
L1
C2
2.2 mF
15 mH
OUTN
L2
C3
2.2 mF
Figure 20. Typical LC Output Filter, Cutoff Frequency of 27 kHz, Speaker Impedance = 4 Ω
Ferrite
Chip Bead
OUTP
1 nF
Ferrite
Chip Bead
OUTN
1 nF
Figure 21. Typical Ferrite Chip Bead Filter (Chip Bead Example: Steward HI0805R800R-10)
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPA3111D1
17
TPA3111D1
SLOS618 – AUGUST 2009 ................................................................................................................................................................................................ www.ti.com
INPUT RESISTANCE
Changing the gain setting can vary the input resistance of the amplifier from its smallest value, 9 kΩ ±20%, to the
largest value, 60 kΩ ±20%. As a result, if a single capacitor is used in the input high-pass filter, the -3 dB or
cutoff frequency may change when changing gain steps.
Zf
Ci
IN
Input
Signal
Zi
The -3-dB frequency can be calculated using Equation 2. Use the ZI values given in Table 1.
f =
1
2p Zi Ci
(2)
INPUT CAPACITOR, CI
In the typical application, an input capacitor (CI) is required to allow the amplifier to bias the input signal to the
proper dc level for optimum operation. In this case, CI and the input impedance of the amplifier (ZI) form a
high-pass filter with the corner frequency determined in Equation 3.
-3 dB
fc =
1
2p Zi Ci
fc
(3)
The value of CI is important, as it directly affects the bass (low-frequency) performance of the circuit. Consider
the example where ZI is 60 kΩ and the specification calls for a flat bass response down to 20 Hz. Equation 3 is
reconfigured as Equation 4.
Ci =
1
2p Zi fc
(4)
In this example, CI is 0.13 µF; so, one would likely choose a value of 0.15 μF as this value is commonly used. If
the gain is known and is constant, use ZI from Table 1 to calculate CI. A further consideration for this capacitor is
the leakage path from the input source through the input network (CI) and the feedback network to the load. This
leakage current creates a dc offset voltage at the input to the amplifier that reduces useful headroom, especially
in high gain applications. For this reason, a low-leakage tantalum or ceramic capacitor is the best choice. If a
ceramic capacitor is used, use a high quality capacitor with good temperature and voltage coefficient. An X7R
type works well and if possible use a higher voltage rating than required. This will give a better C vs voltage
characteristic. When polarized capacitors are used, the positive side of the capacitor should face the amplifier
input in most applications as the dc level there is held at 3 V, which is likely higher than the source dc level. Note
that it is important to confirm the capacitor polarity in the application. Additionally, lead-free solder can create dc
offset voltages and it is important to ensure that boards are cleaned properly.
POWER SUPPLY DECOUPLING, CS
The TPA3111D1 is a high-performance CMOS audio amplifier that requires adequate power supply decoupling
to ensure that the output total harmonic distortion (THD) is as low as possible. Power supply decoupling also
prevents oscillations for long lead lengths between the amplifier and the speaker.
Optimum decoupling is achieved by using a network of capacitors of different types that target specific types of
18
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPA3111D1
TPA3111D1
www.ti.com ................................................................................................................................................................................................ SLOS618 – AUGUST 2009
noise on the power supply leads. For higher frequency transients due to parasitic circuit elements such as bond
wire and copper trace inductances as well as lead frame capacitance, a good quality low
equivalent-series-resistance (ESR) ceramic capacitor of value between 220 pF and 1000 pF works well. This
capacitor should be placed as close to the device PVCC pins and system ground (either PGND pins or
PowerPad) as possible. For mid-frequency noise due to filter resonances or PWM switching transients as well as
digital hash on the line, another good quality capacitor typically 0.1 mF to 1 μF placed as close as possible to the
device PVCC leads works best For filtering lower frequency noise signals, a larger aluminum electrolytic
capacitor of 220 mF or greater placed near the audio power amplifier is recommended. The 220 mF capacitor
also serves as a local storage capacitor for supplying current during large signal transients on the amplifier
outputs. The PVCC terminals provide the power to the output transistors, so a 220 μF or larger capacitor should
be placed on each PVCC terminal. A 10 μF capacitor on the AVCC terminal is adequate. Also, a small
decoupling resistor between AVCC and PVCC can be used to keep high frequency class D noise from entering
the linear input amplifiers.
BSN and BSP CAPACITORS
The full H-bridge output stage uses only NMOS transistors. Therefore, they require bootstrap capacitors for the
high side of each output to turn on correctly. A 220-nF ceramic capacitor, rated for at least 25 V, must be
connected from each output to its corresponding bootstrap input. Specifically, one 220-nF capacitor must be
connected from OUTP to BSP, and one 220-nF capacitor must be connected from OUTN to BSN. (See the
application circuit diagram in Figure 1.)
The bootstrap capacitors connected between the BSx pins and corresponding output function as a floating power
supply for the high-side N-channel power MOSFET gate drive circuitry. During each high-side switching cycle,
the bootstrap capacitors hold the gate-to-source voltage high enough to keep the high-side MOSFETs turned on.
DIFFERENTIAL INPUTS
The differential input stage of the amplifier cancels any noise that appears on both input lines of the channel. To
use the TPA3111D1 with a differential source, connect the positive lead of the audio source to the INP input and
the negative lead from the audio source to the INN input. To use the TPA3111D1 with a single-ended source, ac
ground the INP or INN input through a capacitor equal in value to the input capacitor on INN or INP and apply
the audio source to either input. In a single-ended input application, the unused input should be ac grounded at
the audio source instead of at the device input for best noise performance. For good transient performance, the
impedance seen at each of the two differential inputs should be the same.
The impedance seen at the inputs should be limited to an RC time constant of 1 ms or less if possible. This is to
allow the input dc blocking capacitors to become completely charged during the 14 msec power-up time. If the
input capacitors are not allowed to completely charge, there will be some additional sensitivity to component
matching which can result in pop if the input components are not well matched.
USING LOW-ESR CAPACITORS
Low-ESR capacitors are recommended throughout this application section. A real (as opposed to ideal) capacitor
can be modeled simply as a resistor in series with an ideal capacitor. The voltage drop across this resistor
minimizes the beneficial effects of the capacitor in the circuit. The lower the equivalent value of this resistance,
the more the real capacitor behaves like an ideal capacitor.
PRINTED-CIRCUIT BOARD (PCB) LAYOUT
The TPA3111D1 can be used with a small, inexpensive ferrite bead output filter for most applications. However,
since the Class-D switching edges are very fast, it is necessary to take care when planning the layout of the
printed circuit board. The following suggestions will help to meet EMC requirements.
• Decoupling capacitors—The high-frequency decoupling capacitors should be placed as close to the PVCC
and AVCC terminals as possible. Large (220 μF or greater) bulk power supply decoupling capacitors should
be placed near the TPA3111D1 on the PVCC supplies. Local, high-frequency bypass capacitors should be
placed as close to the PVCC pins as possible. These caps can be connected to the thermal pad directly for
an excellent ground connection. Consider adding a small, good quality low ESR ceramic capacitor between
220 pF and 1000 pF and a larger mid-freqency cap of value between 0.1mF and 1mF also of good quality to
the PVCC connections at each end of the chip.
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPA3111D1
19
TPA3111D1
SLOS618 – AUGUST 2009 ................................................................................................................................................................................................ www.ti.com
•
•
•
Keep the current loop from each of the outputs through the ferrite bead and the small filter cap and back to
PGND as small and tight as possible. The size of this current loop determines its effectiveness as an
antenna.
Output filter—The ferrite EMI filter (Figure 32) should be placed as close to the output terminals as possible
for the best EMI performance. The LC filter (Figure 30 and Figure 31) should be placed close to the outputs.
The capacitors used in both the ferrite and LC filters should be grounded to power ground.
Thermal Pad—The thermal pad must be soldered to the PCB for proper thermal performance and optimal
reliability. The dimensions of the thermal pad and thermal land should be 6.46 mm by 2.35mm. Seven rows of
solid vias (three vias per row, 0.33 mm or 13 mils diameter) should be equally spaced underneath the thermal
land. The vias should connect to a solid copper plane, either on an internal layer or on the bottom layer of the
PCB. The vias must be solid vias, not thermal relief or webbed vias. . See TI Application Report SLMA002 for
more information about using the TSSOP thermal pad. For recommended PCB footprints, see figures at the
end of this data sheet.
For an example layout, see the TPA3111D1 Evaluation Module (TPA3111D1EVM) User Manual. Both the EVM
user manual and the thermal pad application note are available on the TI Web site at http://www.ti.com.
20
Submit Documentation Feedback
Copyright © 2009, Texas Instruments Incorporated
Product Folder Link(s): TPA3111D1
PACKAGE MATERIALS INFORMATION
www.ti.com
9-Sep-2009
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
TPA3111D1PWPR
Package Package Pins
Type Drawing
SPQ
HTSSOP
2000
PWP
28
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
330.0
16.4
Pack Materials-Page 1
6.9
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
10.2
1.8
12.0
16.0
Q1
PACKAGE MATERIALS INFORMATION
www.ti.com
9-Sep-2009
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
TPA3111D1PWPR
HTSSOP
PWP
28
2000
346.0
346.0
33.0
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DLP® Products
www.dlp.com
Communications and
Telecom
www.ti.com/communications
DSP
dsp.ti.com
Computers and
Peripherals
www.ti.com/computers
Clocks and Timers
www.ti.com/clocks
Consumer Electronics
www.ti.com/consumer-apps
Interface
interface.ti.com
Energy
www.ti.com/energy
Logic
logic.ti.com
Industrial
www.ti.com/industrial
Power Mgmt
power.ti.com
Medical
www.ti.com/medical
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
RFID
www.ti-rfid.com
Space, Avionics &
Defense
www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions www.ti.com/lprf
Video and Imaging
www.ti.com/video
Wireless
www.ti.com/wireless-apps
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated