Holtek 32-bit Microcontroller with ARM® Cortex™-M3 Core HT32F1755/HT32F1765/HT32F2755 Datasheet Revision: V1.00 Date: ��������������� August 13, 2012 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 Table of Contents 1 General Description................................................................................................. 6 2 Features.................................................................................................................... 7 Core........................................................................................................................................ 7 Flash Memory Controller........................................................................................................ 8 Reset Control Unit.................................................................................................................. 8 Clock Control Unit................................................................................................................... 8 Power Management................................................................................................................ 9 Analog to Digital Converter..................................................................................................... 9 Analog Operational Amplifier/Comparator.............................................................................. 9 I/O Ports................................................................................................................................ 10 PWM Generation and Capture Timers – GPTM................................................................... 10 Motor Control Timer – MCTM............................................................................................... 11 Basic Function Timer – BFTM.............................................................................................. 11 Watchdog Timer.................................................................................................................... 12 Real Time Clock.................................................................................................................... 12 Inter-integrated Circuit – I2C................................................................................................. 13 Serial Peripheral Interface – SPI.......................................................................................... 13 Universal Synchronous Asynchronous Receiver Transmitter – USART............................... 14 Smart Card Interface – SCI.................................................................................................. 14 Peripheral Direct Memory Access – PDMA.......................................................................... 15 Universal Serial Bus Device Controller – USB..................................................................... 15 CMOS Sensor Interface – CSIF (HT32F2755 only)............................................................. 16 Debug Support...................................................................................................................... 16 Package and Operation Temperature................................................................................... 16 3 Overview................................................................................................................. 17 Device Information................................................................................................................ 17 Block Diagram...................................................................................................................... 18 Memory Map......................................................................................................................... 19 Clock Structure..................................................................................................................... 20 Pin Assignment..................................................................................................................... 21 Rev. 1.00 2 of 45 August 13, 2012 Table of Contents On-chip Memory..................................................................................................................... 7 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 4 Electrical Characteristics...................................................................................... 28 Absolute Maximum Ratings.................................................................................................. 28 Recommended DC Characteristics...................................................................................... 28 On-Chip LDO Voltage Regulator Characteristics.................................................................. 28 Power Consumption............................................................................................................. 29 External Clock Characteristics.............................................................................................. 30 Internal Clock Characteristics............................................................................................... 31 PLL Characteristics............................................................................................................... 31 Memory Characteristics........................................................................................................ 31 I/O Port Characteristics......................................................................................................... 32 ADC Characteristics............................................................................................................. 33 Operation Amplifier/Comparator Characteristics.................................................................. 35 GPTM/MCTM Characteristics............................................................................................... 35 I2C Characteristics................................................................................................................ 36 SPI Characteristics............................................................................................................... 37 CSIF Characteristics............................................................................................................. 38 USB Characteristics.............................................................................................................. 39 5 Package Information............................................................................................. 41 48-pin LQFP (7mm×7mm) Outline Dimensions.................................................................... 41 64-pin LQFP (7mm×7mm) Outline Dimensions.................................................................... 43 100-pin LQFP (14mm×14mm) Outline Dimensions.............................................................. 44 Rev. 1.00 3 of 45 August 13, 2012 Table of Contents Reset and Supply Monitor Characteristics............................................................................ 29 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 List of Tables Rev. 1.00 1. HT32F1755/1765/2755 Series Features and Peripheral List.................................................... 17 2. HT32F1755/1765/2755 Pin Descriptions.................................................................................. 24 3. Absolute Maximum Ratings....................................................................................................... 28 4. Recommended DC Operating Conditions................................................................................. 28 5. LDO Characteristics.................................................................................................................. 28 6. Power Consumption Characteristics......................................................................................... 29 7. LVD/BOD Characteristics.......................................................................................................... 29 8. High Speed External Clock (HSE) Characteristics.................................................................... 30 9. Low Speed External Clock (LSE) Characteristics..................................................................... 30 10. High Speed Internal Clock (HSI) Characteristics.................................................................... 31 11. Low Speed Internal Clock (LSI) Characteristics...................................................................... 31 12. PLL Characteristics................................................................................................................. 31 13. Flash Memory Characteristics................................................................................................. 31 14. I/O Port Characteristics........................................................................................................... 32 15. ADC Characteristics................................................................................................................ 33 16. OPA/CMP Characteristics....................................................................................................... 35 17. GPTM/MCTM Characteristics................................................................................................. 35 18. I2C Characteristics................................................................................................................... 36 19. SPI Characteristics.................................................................................................................. 37 20. CSIF Characteristics............................................................................................................... 38 21. USB DC Electrical Characteristics.......................................................................................... 39 22. USB AC Electrical Characteristics........................................................................................... 40 4 of 45 August 13, 2012 List of Tables Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 List of Figures Rev. 1.00 1. HT32F1755/1765/2755 Block Diagram................................................................................... 18 2. HT32F1755/1765/2755 Memory Map...................................................................................... 19 3. HT32F1755/1765/2755 Clock Structure.................................................................................. 20 4. HT32F1755/1765/2755 48-LQFP Pin Assignment.................................................................. 21 5. HT32F1755/1765/2755 64-LQFP Pin Assignment.................................................................. 22 6. HT32F1755/1765/2755 100-LQFP Pin Assignment................................................................ 23 7. ADC Sampling Network Model................................................................................................ 34 8. I2C Timing Diagrams................................................................................................................ 36 9. SPI Timing Diagrams – SPI Master Mode............................................................................... 37 10. SPI Timing Diagrams – SPI Slave Mode and CPHA=1......................................................... 38 11. USB Signal Rise Time and Fall time and Cross-Point Voltage (VCRS) Definition.................... 40 5 of 45 August 13, 2012 List of Figures Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 1 General Description The Holtek HT32F1755/1765/2755 devices are high performance and low power consumption 32-bit microcontrollers based around an ARM® Cortex™-M3 processor core. The Cortex™-M3 is a next-generation processor core which is tightly coupled with Nested Vectored Interrupt Controller (NVIC), SysTick timer, and including advanced debug support. The above features ensure that the HT32F1755/1765/2755 devices are suitable for use in a wide range of applications, especially in areas such as white goods application control, power monitors, alarm systems, consumer products, handheld equipment, data logging applications, motor control, fingerprint recognition and so on. Rev. 1.00 6 of 45 August 13, 2012 General Description The HT32F1755/1765/2755 devices operate at a frequency of up to 72MHz with a Flash accelerator to obtain maximum efficiency. It provides 128KB of embedded Flash memory for code/data storage and up to 64KB of embedded SRAM memory for system operation and application program usage. A variety of peripherals, such as ADC, I 2C, USART, SPI, PDMA, GPTM, MCTM, SCI, CSIF, USB2.0 FS, SWJ-DP (Serial Wire and JTAG Debug Port), etc., are also implemented in the device series. Several power saving modes provide the flexibility for maximum optimisation between wakeup latency and power consumption, an especially important consideration in low power applications. 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 2 Features Core On-chip Memory ▀ 128KB on-chip Flash memory for instruction/data and options storage ▀ up to 64KB on-chip SRAM ▀ Supports multiple boot modes The ARM® Cortex™-M3 processor is structured using a Harvard architecture which uses separate busses to fetch instructions and load/store data. The instruction code and data are both located in the same memory address space but in different address ranges. The maximum address range of the Cortex™-M3 is 4GB due to its 32-bit bus address width. Additionally, a pre-defined memory map is provided by the Cortex™-M3 processor to reduce the software complexity of repeated implementation for different device vendors. However, some regions are used by the ARM® Cortex™-M3 system peripherals. Refer to the ARM® Cortex™-M3 Technical Reference Manual for more information. The Figure 2. shows the memory map of the HT32F1755/1765/2755 series of devices, including Code, SRAM, peripheral, and other pre-defined regions. Rev. 1.00 7 of 45 August 13, 2012 Features ® ▀ 32-bit ARM Cortex™-M3 processor core ▀ Up to 72MHz operation frequency ▀ 1.25 DMIPS/MHz (Dhrystone 2.1) ▀ Single-cycle multiplication and hardware division ▀ Integrated Nested Vectored Interrupt Controller (NVIC) ▀ 24-bit SysTick timer The Cortex™-M3 processor is a general-purpose 32-bit processor core especially suitable for products requiring high performance and low power consumption microcontrollers. It offers many new features such as a Thumb-2 instruction set, hardware divider, low latency interrupt respond time, atomic bit-banding access and multiple buses for simultaneous accesses. The Cortex™-M3 processor is based on the ARMv7 architecture and supports both Thumb and Thumb-2 instruction sets. 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 Flash Memory Controller ▀ Flash accelerator for maximum efficiency ▀ 32-bit word programming with In System Programming Interface (ISP) and In Application Programming (IAP) ▀ Flash protection capability to prevent illegal access Reset Control Unit ▀ Supply supervisor: ● Power-on Reset – POR ● Brown-out Detector – BOD ● Programmable Low Voltage Detector – LVD The Reset Control Unit (RSTCU) has three kinds of reset, the power on reset, system reset and an APB unit reset. The power on reset, known as a cold reset, resets the full system during power up. A system reset resets the processor core and peripheral IP components with the exception of the SWJ-DP controller. The resets can be triggered by an external signal, internal events and the reset generators. Clock Control Unit ▀ External 4 to 16MHz crystal oscillator ▀ External 32,768Hz crystal oscillator ▀ Internal 8MHz RC oscillator trimmed to ±2% accuracy at 3.3V operating voltage and 25°C operating temperature ▀ Internal 32kHz RC oscillator ▀ Integrated system clock PLL ▀ Independent clock gating bits for peripheral clock sources The Clock Control unit, CKCU, provides a range of oscillator and clock functions. These include a High Speed Internal RC oscillator (HSI), a High Speed External crystal oscillator (HSE), a Low Speed Internal RC oscillator (LSI), a Low Speed External crystal oscillator (LSE), a Phase Lock Loop (PLL), a HSE clock monitor, clock prescalers, clock multiplexers and clock gating circuitry. The clocks of the AHB, APB and CortexTM-M3 are derived from the system clock (CK_SYS) which can come from the HSI, HSE or PLL. The Watchdog Timer and Real Time Clock (RTC) use either the LSI or LSE as their clock source. The maximum operating frequency of the system core clock (CK_AHB) can be up to 72MHz. Rev. 1.00 8 of 45 August 13, 2012 Features The Flash Memory Controller, FMC, provides all the necessary functions and pre-fetch buffer for the embedded on-chip Flash Memory. Since the access speed of the Flash Memory is slower than the CPU, a wide access interface with a pre-fetch buffer is provided for the Flash Memory in order to reduce the CPU waiting time which will cause CPU instruction execution delays. Flash Memory word program/page erase functions are also provided. 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 Power Management Analog to Digital Converter ▀ 12-bit SAR ADC engine ▀ Up to 1Msps conversion rate – 1μs at 56MHz, 1.17μs at 72MHz ▀ 8 external analog input channels ▀ Supply voltage range: 2.7V ~ 3.6V ▀ Conversion range: VREF+ ~ VREFA 12-bit multi-channel ADC is integrated in the device. There are a total of 10 multiplexed channels, which include 8 external channels on which the external analog signals can be measured, and 2 internal channels. If the input voltage is required to remain within a specific threshold window, an Analog Watchdog function will monitor and detect these signals. An interrupt will then be generated to inform the device that the input voltage is not within the preset threshold levels. There are three conversion modes to convert an analog signal to digital data. The ADC can be operated in one shot, continuous and discontinuous conversion modes. Analog Operational Amplifier/Comparator ▀ Two Operational Amplifiers or Comparator functions which are software configurable ▀ Supply voltage range: 2.7V ~ 3.6V Two Operational Amplifiers/Comparators (OPA/CMP) are implemented within the devices. They can be configured either as Operational Amplifiers or as Analog Comparators. When configured as comparators, they are capable of generating interrupts to the NVIC. Rev. 1.00 9 of 45 August 13, 2012 Features ▀ Single 3.3V power supply: 2.7V to 3.6V ▀ Integrated 1.8V LDO regulator for core and peripheral power supply ▀ VBAT battery power supply for RTC and backup registers ▀ Three power domains: 3.3V, 1.8V and Backup ▀ Four power saving modes: Sleep, Deep-Sleep1, Deep-Sleep2, Power-Down The Power consumption can be regarded as one of the most important issues for many embedded system applications. Accordingly the Power Control Unit, PWRCU, in these devices provides many types of power saving modes such as Sleep, Deep-Sleep1, Deep-Sleep2 and Power-Down mode. These operating modes reduce the power consumption and allow the application to achieve the best trade-off between the conflicting demands of CPU operating time, speed and power consumption. 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 I/O Ports The GPIO ports are pin-shared with other alternative functions to obtain maximum functional flexibility on the package pins. The GPIO pins can be used as alternative functional pins by configuring the corresponding registers regardless of the input or output pins. The external interrupts on the GPIO pins of the device have related control and configuration registers in the External Interrupt Control Unit, EXTI. PWM Generation and Capture Timers – GPTM ▀ Two 16-bit General-Purpose Timers – GPTM ▀ Up to 4-channel PWM Compare Output or Input Capture function for each GPTM ▀ External trigger input T he General-P u r pose Timers, k now n as GPTM0 and GPTM1, consist of one 16 -bit up/down-counter, four 16-bit Capture/Compare Registers (CCRs), one 16-bit Counter-Reload Register (CRR) and several control/status registers. They can be used for a variety of purposes including general time measurement, input signal pulse width measurement, output waveform generation such as single pulse generation, or PWM output generation. The GPTM supports an Encoder Interface using a decoder with two inputs. Rev. 1.00 10 of 45 August 13, 2012 Features ▀ Up to 80 GPIOs ▀ Port A, B, C, D, E are mapped as 16 external interrupts – EXTI ▀ Almost all I/O pins are 5V-tolerant except for pins shared with analog inputs There are up to 80 General Purpose I/O pins, (GPIO), named PA0 ~ PA15 to PE0 ~ PE15 for the implementation of logic input/output functions. Each of the GPIO ports has a series of related control and configuration registers to maximise flexibility and to meet the requirements of a wide range of applications. 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 Motor Control Timer – MCTM The Motor Control Timer consists of a single 16-bit up/down counter, four 16-bit CCRs (Capture/Compare Registers), single one 16-bit counter-reload register (CRR), single 8-bit repetition counter and several control/status registers. It can be used for a variety of purposes including measuring the pulse widths of input signals or generating output waveforms such as compare match outputs, PWM outputs or complementary PWM outputs with dead-time insertion. The MCTM supports an Encoder interface controller to an incremental encoder with two inputs. The MCTM is capable of offering full functional support for motor control, hall sensor interfacing and brake input. Basic Function Timer – BFTM ▀ Two 32-bit compare/match count-up counters – no I/O control features ▀ One shot mode – counting stops after a match condition ▀ Repetitive mode – restart counter after a match condition The Basic Function Timer is a simple count-up 32-bit counter designed to measure time intervals and generate a one shot or repetitive interrupts. The BFTM operates in two functional modes, repetitive or one shot mode. In the repetitive mode the BFTM restarts the counter when a compare match event occurs. The BFTM also supports a one shot mode which forces the counter to stop counting when a compare match event occurs. Rev. 1.00 11 of 45 August 13, 2012 Features ▀ Single 16-bit up, down, up/down auto-reload counter ▀ 16-bit programmable prescaler allowing dividing the counter clock frequency by any factor between 1 and 65536 ▀ Input Capture function ▀ Compare Match Output ▀ PWM waveform generation with Edge and Centre-aligned Modes ▀ Single Pulse Mode Output ▀ Complementary Outputs with programmable dead-time insertion ▀ Encoder interface controller with two inputs using quadrature decoder ▀ Support 3-phase motor control and hall sensor interface ▀ Brake input to force the timer’s output signals into a reset or fixed condition 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 Watchdog Timer Real Time Clock ▀ 32-bit up-counter with a programmable prescaler ▀ Alarm function ▀ Interrupt and Wake-up event The Real Time Clock, RTC, circuitry includes the APB interface, a 32-bit count-up counter, a control register, a prescaler, a compare register and a status register. Most of the RTC circuits are located in the Backup Domain except for the APB interface. The APB interface is located in the VDD18 power domain. Therefore, it is necessary to be isolated from the ISO signal that comes from the power control unit when the V DD18 power domain is powered off, that is when the device enters the Power-Down mode. The RTC counter is used as a wakeup timer to generate a system resume signal from the Power-Down mode. Rev. 1.00 12 of 45 August 13, 2012 Features ▀ 12-bit down counter with 3-bit prescaler ▀ Interrupt or reset event for the system ▀ Programmable watchdog timer window function ▀ Registers write protection function The Watchdog Timer is a hardware timing circuit that can be used to detect system failures due to software malfunctions. It includes a 12-bit count-down counter, a prescaler, a WDT counter value register, a WDT delta value register, interrupt related circuits, WDT operation control circuitry and a WDT protection mechanism. The Watchdog Timer can be operated in an interrupt mode or a reset mode. The Watchdog Timer will generate an interrupt or a reset when the counter counts down and reaches a zero value. If the software does not reload the counter value before a Watchdog Timer underflow occurs, an interrupt or a reset will be generated when the counter underflows. In addition, an interrupt or reset is also generated if the software reloads the counter when the counter value is greater than or equal to the WDT delta value. This means the counter must be reloaded within a limited timing window using a specific method. The Watchdog Timer counter can be stopped while the processor is in the debug mode. There is a register write protect function which can be enabled to prevent it from changing the Watchdog Timer configuration unexpectedly. 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 Inter-integrated Circuit – I2C The SDA line which is connected directly to the I2C bus is a bi-directional data line between the master and slave devices and is used for data transmission and reception. The I2C module also has an arbitration detect function and clock synchronization to prevent situations where more than one master attempts to transmit data to the I2C bus at the same time. Serial Peripheral Interface – SPI ▀ Supports both master and slave mode ▀ Frequency of up to 36MHz for master mode and 18MHz for slave mode ▀ FIFO Depth: 8 levels ▀ Multi-master and multi-slave operation The Serial Peripheral Interface, SPI, provides an SPI protocol data transmit and receive function in both master and slave mode. The SPI interface uses 4 pins, which are the serial data input and output lines MISO and MOSI, the clock line, SCK, and the slave select line, SEL. One SPI device acts as a master device which controls the data flow using the SEL and SCK signals to indicate the start of data communication and the data sampling rate. To receive a data byte, the streamed data bits are latched on a specific clock edge and stored in the data register or in the RX FIFO. Data transmission is carried in a similar way but with a reverse sequence. The mode fault detection provides a capability for multi-master applications. Rev. 1.00 13 of 45 August 13, 2012 Features ▀ Support both master and slave mode with a frequency of up to 1MHz ▀ Provide an arbitration function and clock synchronization ▀ Supports 7-bit and 10-bit addressing mode and general call addressing ▀ Supports slave multi-addressing mode with maskable address The I2C Module is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line, SDA, and a serial clock line, SCL. The I2C module provides three data transfer rates: (1). 100kHz in the Standard mode, (2). 400kHz in the Fast mode and, (3). 1MHz in the Fast mode plus. The SCL period generation register is used to setup different kinds of duty cycle implementation for the SCL pulse. 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 Universal Synchronous Asynchronous Receiver Transmitter – USART The USART includes a programmable baud rate generator which is capable of dividing the CK_AHB to produce a clock for the USART transmitter and receiver. Smart Card Interface – SCI ▀ Support ISO 7816-3 standard ▀ Character mode ▀ Single transmit buffer and single receive buffer ▀ 11-bit ETU (Elementary Time Unit) counter ▀ 9-bit guard time counter ▀ 24-bit general purpose waiting time counter ▀ Parity generation and checking ▀ Automatic character retry on parity error detection in transmission and reception modes The Smart Card Interface is compatible with the ISO 7816-3 standard. This interface includes Card Insertion/Removal detection, SCI data transfer control logic and data buffers, internal Timer Counters and corresponding control logic circuits to perform all the necessary Smart Card operations. The Smart Card interface acts as a Smart Card Reader to facilitate communication with the external Smart Card. The overall functions of the Smart Card interface are controlled by a series of registers including control and status registers together with several corresponding interrupts which are generated to get the attention of the microcontroller for SCI transfer status. Rev. 1.00 14 of 45 August 13, 2012 Features ▀ Operating frequency up to 4.5MHz ▀ Supports both asynchronous and clocked synchronous serial communication modes ▀ IrDA SIR encoder and decoder ▀ RS485 mode with output enable control ▀ Full Modem function for USART0 ▀ Auto hardware flow control mode – RTS, CTS ▀ FIFO Depth: 16×9 bits for both receiver and transmitter The Universal Synchronous Asynchronous Receiver Transceiver, USART, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. The USART is used to translate data between parallel and serial interfaces, and is also commonly used for RS232 standard communication. The USART peripheral function supports five types of interrupt including Line Status Interrupt, Transmitter FIFO Empty Interrupt, Receiver Threshold Level Reaching Interrupt, Time Out Interrupt and MODEM Status Interrupt. The USART module includes a 16-byte transmitter FIFO (TX_FIFO) and a 16-byte receiver FIFO (RX_FIFO). The software can detect a USART error status by reading the Line Status Register, LSR. The status includes the type and the condition of transfer operations as well as several error conditions resulting from Parity, Overrun, Framing and Break events. 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 Peripheral Direct Memory Access – PDMA Universal Serial Bus Device Controller – USB ▀ Complies with USB 2.0 full-speed (12Mbps) specification ▀ On-chip USB full-speed transceiver ▀ 1 control endpoint (EP0) for control transfer ▀ 3 single-buffered endpoints for bulk and interrupt transfer ▀ 4 double-buffered endpoints for bulk, interrupt and isochronous transfer ▀ 1024 bytes EP-SRAM used as the endpoint data buffers The USB device controller is compliant with USB 2.0 full-speed specification. There is one control endpoint known as Endpoint 0 and seven configurable endpoints. A 1024-byte SRAM is used as the endpoint buffers. Each endpoint buffer size is programmable using corresponding registers, which provides maximum flexibility for various applications. The integrated USB full-speed transceiver helps to minimise the overall system complexity and cost. The USB functional block also contains the resume and suspend features to meet the requirements of low-power consumption. Rev. 1.00 15 of 45 August 13, 2012 Features ▀ 12 channels with trigger source grouping ▀ Supports Single and block transfer mode ▀ 8/16/32-bit width data transfer ▀ Supports Address increment, decrement or fixed mode ▀ 4-level programmable channel priority ▀ Auto reload mode 2 ▀ Supports trigger source: CSIF, ADC, SPI, USART, I C, GPTM, MCTM, SCI and software The Peripheral Direct Memory Access controller, PDMA, moves data between the peripherals (USART, SPI, ADC, GPTM, MCTM, CSIF, I2C and SCI, CPU for software mode) and the system memory on the AHB bus. Each PDMA channel has a source address, destination address, block length and transfer count. The PDMA can exclude the CPU intervention and avoid interrupt service routine execution. It improves system performance as the software does not need to join each data movement operation. 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 CMOS Sensor Interface – CSIF (HT32F2755 only) Debug Support ▀ ▀ ▀ ▀ Serial Wire or JTAG Debug Port SWJ-DP 6 instruction comparators and 2 literal comparators for hardware breakpoint or code/literal patch 4 comparators for hardware watchpoints 1-bit asynchronous trace – TRACESWO Package and Operation Temperature ▀ 48/64/100-pin LQFP packages ▀ Operation temperature range: -40°C to +85°C Rev. 1.00 16 of 45 August 13, 2012 Features ▀ Up to 2048×2048 input resolution ▀ Supports 8-bit YUV422 and Raw RGB formats ▀ Up to 24MHz input pixel clock frequency ▀ Multi VSYNC and HSYNC settings for image capture ▀ Hardware window capture function ▀ Fractional hardware sub-sample function ▀ Dual FIFOs each with a capacity of 8×32 bits which can be read by the PDMA or CPU The CMOS Sensor Interface, otherwise known as the CSIF, provides an interface for image capture from CMOS sensors. The device can be connected to the CMOS sensor directly using its CMOS Sensor Interface. The CSIF supports both Vertical SYNC and Horizontal SYNC modes for image capture implementation. The CSIF consists of window capture and sub-sampling functions together with dual FIFOs, each with a capacity of 8×32 bits, to store data which can be moved to the internal SRAM via the Peripheral Direct Memory Access circuitry, PDMA. The CSIF does not support image data conversion or decode but rather transfers the image data received from the CMOS sensor to the internal SRAM transparently. 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 3 Overview Device Information Table 1. HT32F1755/1765/2755 Series Features and Peripheral List Peripherals HT32F1755 HT32F2755 127 127 Option Bytes Flash (KB) 1 1 1 SRAM (KB) 32 64 64 Timers MCTM 1 GPTM 2 BFTM 2 RTC 1 WDT 1 — Communication USB 1 SCI 1 USART 2 SPI 2 I2C 2 GPIO Up to 80 EXTI 16 12-bit ADC Number of channels 1 8 Channels OPA/Comparator 2 CPU frequency Up to 72MHz Operating voltage 2.7V ~ 3.6V Operating temperature -40℃ ~ +85℃ Package 48/64/100-pin LQFP 17 of 45 — Overview 127 CSIF Rev. 1.00 HT32F1765 Main Flash (KB) 1 August 13, 2012 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 Block Diagram JTRST, JTDI, JTDO, JTCK_SWCLK, JTMS_SWDIO TRACESWO AF BOOT0 BOOT1 AF CSIF_VSYNC, CSIF_HSYNC, CSIF_MCK, CSIF_PCK, CSIF_D[7:0] AF AF Powered by VDD18 SWJ-DP ICode TPIU Control Registers VSS33_1~4 Control Registers Control/Data Registers 1.8 V CKCU/RSTCU Control Registers PLL HSE 4 ~ 16 MHz AF Interrupt request SRAM Controller PDMA fMax: 144 MHz Clock and reset control AHB Peripherals XTALIN XTALOUT HSI SRAM 8 MHz VLDOIN PDMA request LDO AHB to APB AHB to APB Bridge Bridge VLDOOUT 1.8 V VSSLDO BOD LVD Powered by VLDOIN USART1 SPI1 AF SPI0 OPA/CMP WDT Powered by VDDA AF Analog OPA/CMP USB Device Power control AF ADC GPIOC PD [15:0] GPIOD PE [15:0] GPIOE SCI RTC AF PC [15:0] BFTM 0 ~ 1 AF GPIOB APB1 PB [15:0] APB0 GPIOA AF GPTM 0 ~ 1 PA [15:0] SPI1_MOSI, SPI1_MISO, SPI1_SCK, SPI1_SEL AF AF I2C 0 ~ 1 12-bit SAR ADC UR1_TX, UR1_RX, UR1_RTS/TXE, UR1_CTS/SCK AF USART0 AF VDD18 AF VDDA VSSA I2C0_SDA, I2C0_SCL I2C1_SDA, I2C1_SCL USBDP USBDM GT0_CH0~ GT0_CH3, GT0_ETI GT1_CH0~ GT1_CH3, GT1_ETI SCI_CLK, SCI_DIO, SCI_DET RTCOUT PWRSW VBAT VBAK AFIO PWRCU VLDOIN EXTI PORB MCTM AF VBAK 3.3 V BREG LSI 32 kHz LSE WAKEUP 32,768 Hz nRST Backup Domain VBAK Powered by VDD18 AF MT_CH0~ MT_CH3 , MT_CH0N~ MT_CH2N , MT_CH3 , MT_ETI , MT_BRK . CSIF FMC 12 Channels VREF+, VREFCN0, CP0 AOUT0 CN1, CP1 AOUT1 PDMA Bus Matrix NVIC ADC_IN0 : ADC_IN7 VDD33_1~4 AF XTAL32KIN XTAL32KOUT Power supply: Bus: Control signal: Alternate function: AF NOTE: The AHB peripheral function, CSIF, is only available in the HT32F2755 device. Figure 1. HT32F1755/1765/2755 Block Diagram Rev. 1.00 18 of 45 August 13, 2012 Overview fMax: 72 MHz SPI0_MOSI, SPI0_MISO, SPI0_SCK, SPI0_SEL Flash Memory POR DCode System Cortex -M3 Processor UR0_TX, UR0_RX, UR0_DCD, UR0_DSR, UR0_DTR, UR0_RI UR0_RTS/TXE UR0_CTS/SCK Flash Memory Interface MPU TM 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 Memory Map 0xFFFF_FFFF Reserved 0x400F_FFFF 0xE010_0000 0x4400_0000 Reserved APB/AHB bit band alias Peripheral 32 Mbytes 0x4200_0000 0x4010_0000 0x4008_0000 0x4000_0000 0x2220_0000 Reserved AHB peripherals 512 kbytes APB peripherals 512 kbytes Reserved SRAM bit band alias 2 Mbytes SRAM 0x2200_0000 0x2001_0000 Reserved 64 kbytes (HT32F1765/ HT32F2755) 32 kB on-chip SRAM 0x2000_0000 0x1FF0_0400 0x1FF0_0000 0x1F00_0800 0x1F00_0000 Code 0x0002_0000 32 kB on-chip SRAM 32 kbytes (HT32F1755) Reserved Option bytes alias 1 kbytes Reserved Boot loader 2 kbytes Reserved 128 kbytes 128 kB on-chip Flash 0x0000_0000 0x4007_8000 0x4007_7000 0x4007_6000 0x4007_0000 0x4006_F000 0x4006_E000 0x4006_B000 0x4006_A000 0x4006_9000 0x4006_8000 0x4004_F000 0x4004_E000 0x4004_A000 0x4004_9000 0x4004_8000 0x4004_5000 0x4004_4000 0x4004_3000 0x4004_1000 0x4004_0000 0x4002_D000 0x4002_C000 0x4002_5000 0x4002_4000 0x4002_3000 0x4002_2000 0x4001_F000 0x4001_E000 0x4001_D000 0x4001_C000 0x4001_B000 0x4001_A000 0x4001_9000 0x4001_8000 0x4001_1000 0x4001_0000 0x4000_5000 0x4000_4000 0x4000_1000 0x4000_0000 Reserved CSIF Reserved PDMA Reserved CKCU/RSTCU Reserved FMC Reserved BFTM1 BFTM0 Reserved GPTM1 GPTM0 Reserved RTC/PWRCU Reserved WDT Reserved USB Reserved I2C1 I2C0 Reserved SPI1 SCI Reserved USART1 Reserved MCTM Reserved EXTI Reserved AFIO Reserved GPIOE GPIOD GPIOC GPIOB GPIOA Reserved OPA/CMP Reserved ADC Reserved SPI0 Reserved USART0 AHB APB1 APB0 Figure 2. HT32F1755/1765/2755 Memory Map Rev. 1.00 19 of 45 August 13, 2012 Overview 0xE000_0000 Private peripheral bus 0x400C_E000 0x400C_C000 0x4009_2000 0x4009_0000 0x4008_A000 0x4008_8000 0x4008_2000 0x4008_0000 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 Clock Structure fCSIF_MCK,max = 24MHz CK_MCK CSIF_MCK ( to CSIF clock output) 1 HSIEN f CK_PLL,max = 144MHz CK_PLL PLL 0 0x CK_HSE CK_SYS AHB Prescaler ÷ 1,2,4,8 32.768 kHz CK_LSE LSE OSC LSEEN(Note1) STCLK (to SysTick) FCLK ( free running clock) 10 Clock Monitor 32 kHz LSI RC ÷8 WDTSRC 1 0 CK_LSI HCLKC ( to CortexTM-M3) CM3EN (control by HW) CK_AHB HSEEN 11 CK_USART0 CK_USART1 URnEN fCK_SYS,max = 144MHz CK_HSI fCK_USARTn,max = 72MHz Prescaler ÷1, 2 SW[1:0] 4-16 MHz HSE XTAL CK_USB USBEN fCK_AHB,max = 72MHz PLLEN fCK_USB,max = 48MHz Prescaler ÷1, 2, 3 CSIFMPRE CSIFMEN PLLSRC CK_PLL Prescaler ÷1 ~ 32 CK_WDT DMAEN HCLKD ( to DMA) CSIFEN CK_CSIF ( to CSIF) WDTEN RTCSRC(Note1) HCLKF ( to Flash) CM3EN LSIEN(Note1) FMCEN 1 0 HCLKS ( to SRAM) CK_RTC CM3EN RTCEN(Note1) SRAMEN HCLKBM ( to Bus Matrix) CKOUTSRC[2:0] CM3EN CKOUT 000 CK_MCK 001 CK_AHB/16 010 CK_SYS/16 011 CK_HSE/16 100 CK_HSI/16 101 CK_LSE 110 CK_LSI BMEN HCLKAPB0 ( to APB0 Bridge) CM3EN APB0EN HCLKAPB1 ( to APB1 Bridge) CM3EN APB1EN Legend: HSE = High Speed External clock HSI = High Speed Internal clock LSE = Low Speed External clock LSI = Low Speed Internal clock OPA0EN WDTEN Note 1: Those control bits are located at RTC Control Register (RTC_CTRL) ADC Prescaler ÷ 1,2,4,6,8... PCLK (OPA, AFIO, GPIO Port, ADC, SPI, USART, I2C, GPTM, MCTM, BFTM, EXTI, RTC, SCI, Watchdog Timer) CK_ADC ADCEN Figure 3. HT32F1755/1765/2755 Clock Structure Rev. 1.00 20 of 45 August 13, 2012 Overview 8 MHz HSI RC Divider ÷2 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 Pin Assignment MT_CH2 AF2 SPI0-SEL AF1 PD8 AF0 (Default) 5VT 5VT 5VT 5VT 3.3 V Digital Power Pad P18 33V 3.3 V Analog Power Pad 1.8 V Power Pad 3.3 V I/O Pad 5VT 5 V Tolerance I/O Pad 5VT High Current Output 5 V Tolerance I/O Pad USB USB PHY Pad 33V 33V P33 P33 13 14 15 16 17 21 22 23 24 VSS33_2 19 20 AF3 AF3* (HT32F1755) (HT32F2755) (HT32F1765) 36 VSS33_3 P33 35 VDD33_3 5VT 34 PC12 I2C0_SDA MT_CH1N UR0_CTS 5VT 33 PC11 I2C0_SCL MT_CH1 UR0_RTS CSIF_PCK 5VT 32 JTRST PE15 MT_CH0N UR1_RX CSIF_VSYNC 5VT 31 JTDI PE14 MT_CH0 UR1_TX CSIF_HSYNC 5VT 30 JTMS_ SWDIO JTCK_ 29 SWCLK JTDO_ 28 TRACESWO 5VT 27 5VT 26 5VT 25 PC10 PC9_ BOOT1 PC8_ BOOT0 CSIF_MCK PE13 PE12 PE11 SCI_DET MT_ETI UR0_RX CKOUT -- UR0_TX XTAL32K OUT XTAL32K IN PB5 PB4 AF1 BAK BAK BAK BAK BAK 5VT P33 33V 33V 5VT AF2 AF0 (Default) Backup Domain Pad P33 VLDOOUT BAK AF1 P33 5VT P33 18 AF0 (Default) 5VT P18 Overview GT1_CH0 33V AP AF3 AF3* (HT32F1755) (HT32F2755) (HT32F1765) CSIF_D0 33V PB12 USB 33V VDD33_2 12 PD9 USBDM SPI0_SCK USB MT_CH2N 11 GT1_CH1 USBDP CSIF_D1 P33 33V PB11 10 33V AP XTALIN VSS33_1 33V P33 AP XTALOUT P33 PD10 9 PD11 VDD33_1 SPI0_MOSI 33V SPI0_MISO 8 MT_CH3 PA7 MT_BRK ADC_IN7 GT1_CH2 UR1_RX GT1_CH3 SPI1_MISO 37 PB6_ WAKEUP 33V 38 RTCOUT 7 39 nRST PA6 40 VBAT ADC_IN6 41 47 VLDOIN UR1_TX 42 46 48 VSSLDO SPI1_MOSI CSIF_D2 33V CSIF_D3 6 PE5 PA5 CN0 ADC_IN5 SPI1_SCK GT0_CH0 33V SPI1-SEL 5 CSIF_D4 PA4 PE6 ADC_IN4 UR1_RTS / TXE UR1_CTS / SCK SPI1_SEL CP0 33V GT0_CH1 33V 4 SPI1_SCK 3 PA3 CSIF_D5 PA2 ADC_IN3 PE7 ADC_IN2 UR0_RX AOUT0 UR0_TX GT1_CH3 GT0_CH2 GT1_CH2 SPI1_MOSI 33V CSIF_D6 2 PE8 PA1 PE9 ADC_IN1 CP1 SCI_DIO CN1 GT1_CH1 GT0_ETI 33V GT0_CH3 1 SPI1_MISO PA0 43 I2C1_SCL ADC_IN0 CSIF_D7 SCI_CLK 44 PE10 GT1_CH0 45 AOUT1 AF0 (Default) GT1_ETI AF1 VSSA AF2 VDDA AF3 I2C1_SDA Holtek HT32F1755/1765/2755 48 LQFP Figure 4. HT32F1755/1765/2755 48-LQFP Pin Assignment Rev. 1.00 21 of 45 August 13, 2012 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 GT1_CH0 GT1_CH1 GT1_CH2 GT1_CH3 AF3 AF3* (HT32F1755) (HT32F2755) (HT32F1765) CSIF_D0 CSIF_D1 CSIF_D2 CSIF_D3 GT1_ETI SPI1-SEL SPI1_SCK SPI1_MOSI GT0_ETI CSIF_D4 CSIF_D5 CSIF_D6 SPI1_MISO AF1 AF0 (Default) 53 52 51 50 49 5VT 5VT 5VT 5VT 5VT 5VT PD9 54 P33 PD10 55 P33 PD11 56 33V PD12 57 33V PD13 58 33V PE5 59 33V PE6 60 33V PE7 61 33V PE8 62 AP PE9 63 AP PE10 64 Overview AF2 PD8 VSS33_4 VDD33_4 SPI0-SEL SPI0_SCK SPI0_MOSI SPI0_MISO MT_CH0 MT_CH0N CN0 CP0 AOUT0 CP1 CN1 MT_CH2 MT_CH2N MT_CH3 MT_BRK I2C0_SCL I2C0_SDA GT0_CH0 GT0_CH1 GT0_CH2 GT0_ETI GT0_CH3 AOUT1 AF0 (Default) I2C1_SCL GT1_ETI AF1 VSSA AF2 VDDA AF3 CSIF_D7 I2C1_SDA Holtek HT32F1755/1765/2755 64 LQFP AF0 (Default) AF1 AF3 AF3* (HT32F1755) (HT32F2755) (HT32F1765) AF2 GT1_CH0 SCI_CLK ADC_IN0 PA0 1 33V 5VT 48 PC15 SCI_DET GT0_ETI UR0_DSR GT1_CH1 SCI_DIO ADC_IN1 PA1 2 33V 5VT 47 PC14 SCI_DIO MT_CH0N UR1_CTS GT1_CH2 UR0_TX ADC_IN2 PA2 3 33V 5VT 46 PC13 SCI_CLK MT_CH0 GT1_CH3 UR0_RX ADC_IN3 PA3 4 33V 5VT 45 PC12 I2C0_SDA MT_CH1N UR0_CTS CSIF_MCK SPI1_SEL UR1_RTS ADC_IN4 PA4 5 33V 5VT 44 PC11 I2C0_SCL MT_CH1 UR0_RTS CSIF_PCK SPI1_SCK UR1_CTS ADC_IN5 PA5 6 33V P33 43 VSS33_3 SPI1_MOSI UR1_TX ADC_IN6 PA6 7 33V SPI1_MISO UR1_RX ADC_IN7 PA7 8 33V VDD33_1 9 P33 VSS33_1 10 P33 USBDP 11 USB USBDM 12 USB P33 AP SPI0_SEL UR1_RTS GT0_CH0 PB0 13 5VT SPI0_SCK UR1_CTS GT0_CH1 PB1 14 5VT SPI0_MOSI UR1_TX GT0_CH2 PB2 15 SPI0_MISO UR1_RX GT0_CH3 PB3 16 3.3 V Digital Power Pad 3.3 V Analog Power Pad P18 1.8 V Power Pad 33V 3.3 V I/O Pad P33 42 VDD33_3 5VT 41 JTRST PE15 MT_CH0N UR1_RX CSIF_VSYNC JTDI PE14 MT_CH0 UR1_TX CSIF_HSYNC 5VT 5 V Tolerance I/O Pad 5VT 40 5VT 5VT High Current Output 5 V Tolerance I/O Pad 39 USB USB PHY Pad 5VT 5VT JTMS_ SWDIO JTCK_ 38 SWCLK JTDO_ 37 TRACESWO 5VT 36 5VT 35 5VT 5VT 34 5VT 5VT 33 BAK Backup Domain Pad PC10 PC9_ BOOT1 PC8_ BOOT0 PC3 P33 P33 BAK BAK BAK BAK BAK 5VT P33 33V 33V 5VT 5VT 33V 33V P33 P33 5VT 5VT 5VT 17 18 19 20 21 25 26 27 28 29 30 31 32 VLDOIN VSSLDO nRST VBAT PB7 XTALIN XTALOUT VDD33_2 VSS33_2 PC0 PC1 PC2 AF0 (Default) GT0_ETI PB11 PB12 SPI1_SEL SPI1_SCK SPI1_MOSI AF1 GT1_CH0 GT1_CH1 GT1_CH2 AF2 I2C1_SCL I2C1_SDA UR0_RI AF3 23 24 RTCOUT XTAL32K OUT XTAL32K IN VLDOOUT P18 22 UR1_RTS PE13 PE12 PE11 SCI_DET MT_ETI UR0_RX CKOUT -- UR0_TX SPI1_MISO GT1_CH3 UR0_DCD PB5 PB6_ WAKEUP PB4 I2C1_SDA UR0_DTR Figure 5. HT32F1755/1765/2755 64-LQFP Pin Assignment Rev. 1.00 22 of 45 August 13, 2012 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 GT1_CH0 GT1_CH1 GT1_CH2 GT1_CH3 76 5VT 5VT AF0 (Default) AF1 AF2 AF3 AF3* (HT32F1755) (HT32F2755) (HT32F1765) GT1_CH0 SCI_CLK ADC_IN0 PA0 1 33V 5VT 75 PD7 SPI1_MISO GT1_CH1 SCI_DIO ADC_IN1 PA1 2 33V 5VT 74 PD6 SPI1_MOSI GT1_CH2 UR0_TX ADC_IN2 PA2 3 33V 5VT 73 PD5 SPI1_SCK GT1_CH3 UR0_RX ADC_IN3 PA3 4 33V 5VT 72 PD4 SPI1_SEL SPI1_SEL UR1_RTS ADC_IN4 PA4 5 33V 5VT 71 PD3 GT0_CH3 SPI0_MISO SPI1_SCK UR1_CTS ADC_IN5 PA5 6 33V 5VT 70 PD2 GT0_CH2 SPI0_MOSI SPI1_MOSI UR1_TX ADC_IN6 PA6 7 33V 5VT 69 PD1 GT0_CH1 SPI0_SCK UR0_RI SPI1_MISO UR1_RX ADC_IN7 PA7 8 33V 5VT 68 PD0 GT0_CH0 SPI0_SEL UR0_DTR UR0_RTS SPI1_SEL PA8 9 5VT UR0_CTS SPI1_SCK PA9 10 5VT UR0_TX SPI1_MOSI PA10 11 5VT UR0_RX SPI1_MISO PA11 12 5VT GT1_CH0 PA12 13 5VT P33 AP 3.3 V Digital Power Pad 3.3 V Analog Power Pad P18 1.8 V Power Pad 33V 3.3 V I/O Pad UR0_DCD 5VT 5 V Tolerance I/O Pad 5VT 67 PC15 SCI_DET GT0_ETI UR0_DSR High Current Output 5 V Tolerance I/O Pad 5VT 5VT 66 PC14 SCI_DIO MT_CH0N UR1_CTS 5VT 65 PC13 SCI_CLK MT_CH0 USB USB PHY Pad 5VT 64 PC12 I2C0_SDA MT_CH1N UR0_CTS CSIF_MCK Backup Domain Pad 5VT 63 PC11 I2C0_SCL MT_CH1 UR0_RTS CSIF_PCK BAK P33 62 VSS33_3 UR1_RTS VDD33_1 14 VSS33_1 15 P33 P33 61 VDD33_3 USBDP 16 USB 5VT 60 JTRST PE15 MT_CH0N UR1_RX CSIF_VSYNC USBDM 17 USB 5VT 59 JTDI PE14 MT_CH0 UR1_TX CSIF_HSYNC GT1_CH1 PA13 18 5VT 5VT 58 GT1_CH2 PA14 19 5VT 5VT GT1_CH3 PA15 20 5VT 5VT P33 JTMS_ SWDIO JTCK_ 57 SWCLK JTDO_ 56 TRACESWO PC10 PE13 PE12 PE11 SPI0_SEL UR1_RTS GT0_CH0 PB0 21 5VT 5VT 55 SPI0_SCK UR1_CTS GT0_CH1 PB1 22 5VT 5VT 54 SPI0_MOSI UR1_TX GT0_CH2 PB2 23 5VT 5VT 53 SPI0_MISO UR1_RX GT0_CH3 PB3 24 5VT 5VT 52 PC7 NC 25 5VT 5VT 51 PC6 I2C1_SCL SCI_CLK PC9_ BOOT1 PC8_ BOOT0 5VT 5VT 5VT 5VT 5VT 5VT 26 27 28 29 30 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VLDOIN VSSLDO nRST VBAT XTALIN XTALOUT VDD33_2 VSS33_2 PB13 PB14 PB15 PC0 PC1 PC2 PC3 PC4 PC5 AF0 (Default) PB11 PB12 UR0_RX UR1_CTS UR1_RTS SPI1_SEL SPI1_SCK SPI1_MOSI SPI1_MISO UR1_TX UR1_RX AF1 GT1_CH0 GT1_CH1 GT1_CH2 GT1_CH3 I2C0_SCL I2C0_SDA AF2 I2C1_SCL I2C1_SDA UR0_RI UR0_DCD 32 33 34 35 PB4 31 MT_ETI UR0_RX CKOUT -- UR0_TX I2C1_SDA SCI_DIO GT1_ETI I2C1_SDA UR0_DTR AF3 5VT UR0_TX 5VT UR0_CTS 5VT PB9 P33 PB10 P33 GT0_ETI 33V UR0_RTS 33V PB8 5VT PB7 5VT PB5 5VT PB6_ WAKEUP 5VT RTCOUT BAK BAK BAK BAK BAK 5VT P33 33V 33V 5VT XTAL32KIN P33 XTAL32KOUT P33 VLDOOUT P18 SCI_DET Figure 6. HT32F1755/1765/2755 100-LQFP Pin Assignment Rev. 1.00 23 of 45 August 13, 2012 Overview 77 5VT PD8 78 5VT PD9 79 5VT PD10 80 5VT PD11 81 5VT PD12 82 5VT PD13 83 5VT PD14 84 P33 PD15 85 P33 PE0 86 5VT AF0 (Default) VDD33_4 VSS33_4 87 5VT PE1 88 5VT PE2 89 5VT PE3 90 33V PE4 91 33V PE5 92 33V PE6 93 33V PE7 94 33V AF1 SPI0-SEL SPI0_SCK SPI0_MOSI SPI0_MISO MT_CH0 MT_CH0N MT_CH1 MT_CH1N MT_CH2 MT_CH2N MT_CH3 MT_ETI MT_BRK CP0 CN0 AOUT0 95 33V PE8 96 AP PE9 97 AP AP AF2 MT_CH2 MT_CH2N MT_CH3 MT_BRK I2C0_SCL I2C0_SDA SCI_CLK SCI_DIO GT0_CH0 GT0_CH1 GT0_CH2 CP1 CN1 98 AP AF3 AF3* (HT32F1755) (HT32F2755) (HT32F1765) CSIF_D0 CSIF_D1 CSIF_D2 CSIF_D3 GT1_ETI SPI1-SEL SPI1_SCK SPI1_MOSI GT0_ETI CSIF_D4 CSIF_D5 CSIF_D6 GT0_ETI GT0_CH3 AF0 (Default) PE10 VDDA AF1 SPI1_MISO AOUT1 AF2 I2C1_SCL GT1_ETI VREF+ 100 99 VSSA VREF- AF3 CSIF_D7 I2C1_SDA Holtek HT32F1755/1765/2755 100 LQFP 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 Table 2. HT32F1755/1765/2755 Pin Descriptions Pins Description (Note1) IO Level 1 AI/O — PA0 ADC_IN0 SCI_CLK GT1_CH0 GT1_CH0 2 AI/O — PA1 ADC_IN1 SCI_DIO GT1_CH1 GT1_CH1 3 3 AI/O — PA2 ADC_IN2 UR0_TX GT1_CH2 GT1_CH2 4 4 AI/O — PA3 ADC_IN3 UR0_RX GT1_CH3 GT1_CH3 5 5 5 AI/O — PA4 ADC_IN4 UR1_RTS SPI1_SEL /TXE SPI1_SEL PA5 6 6 6 AI/O — PA5 ADC_IN5 UR1_CTS SPI1_SCK /SCK SPI1_SCK PA6 7 7 7 AI/O — PA6 ADC_IN6 UR1_TX SPI1_MOSI SPI1_MOSI PA7 8 8 8 AI/O — PA7 ADC_IN7 UR1_RX SPI1_MISO SPI1_MISO 48 64 100 LQFP LQFP LQFP PA0 1 1 PA1 2 2 PA2 3 PA3 4 PA4 (Note2) Main function (AF0) AF1 AF2 AF3 AF3 (HT32F1755) (HT32F2755) (HT32F1765) PA8 — — 9 I/O 5V-T PA8 SPI1_SEL UR0_RTS /TXE — — PA9 — — 10 I/O 5V-T PA9 SPI1_SCK UR0_CTS /SCK — — PA10 — — 11 I/O 5V-T PA10 SPI1_MOSI UR0_TX — — PA11 — — 12 I/O 5V-T PA11 SPI1_MISO UR0_RX — — — 5V-T PA12 GT1_CH0 — — PA12 13 I/O VDD33_1 9 — 9 14 P — 3.3V voltage for digital I/O — VSS33_1 10 10 15 P — Ground reference for digital I/O USBDP 11 11 16 AI/O — USB Differential data bus conforming to the Universal Serial Bus standard USBDM 12 12 17 AI/O — USB Differential data bus conforming to the Universal Serial Bus standard PA13 — — 18 I/O 5V-T PA13 GT1_CH1 — — — PA14 — — 19 I/O 5V-T PA14 GT1_CH2 — — — PA15 — — 20 I/O 5V-T PA15 GT1_CH3 — — — SPI0_SEL UR1_CTS SPI0_SCK /SCK SPI0_SCK PB0 — 13 21 I/O 5V-T PB0 UR1_RTS GT0_CH0 SPI0_SEL /TXE PB1 — 14 22 I/O 5V-T PB1 GT0_CH1 PB2 — 15 23 I/O 5V-T PB2 GT0_CH2 UR1_TX SPI0_MOSI SPI0_MOSI PB3 — 16 24 I/O 5V-T PB3 GT0_CH3 UR1_RX SPI0_MISO SPI0_MISO NC — 25 — — No connection — VLDOOUT 13 17 26 P — LDO 1.8V output It is recommended to connect a capacitor, denoted as CLDO, as close as possible between this pin and VSSLDO VLDOIN 14 18 27 P — LDO 3.3V power input Connected to the power switch circuitry for the internal backup domain VSSLDO 15 19 28 P — LDO ground reference nRST 16 20 29 I 5V(BK) T_PU External reset pin and external wakeup pin in Power-Down mode VBAT 17 21 30 P VDD 3.3V for backup domain Rev. 1.00 — 24 of 45 August 13, 2012 Overview Pin Name Type 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 Pins Pin Name 48 64 100 LQFP LQFP LQFP Type (Note1) IO Level (Note2) Description Main function (AF0) AF1 AF2 AF3 AF3 (HT32F1755) (HT32F2755) (HT32F1765) 18 22 31 AI/O (BK) — XTAL32KIN PB4 — — — XTAL32KOUT 19 23 32 AI/O (BK) — XTAL32KOUT PB5 — — — RTCOUT 20 24 33 I/O 5V-T (BK) RTCOUT PB6_ WAKEUP — — — 25 34 I/O 5V-T PB7 GT0_ETI I2C1_ SDA PB7 — PB8 — — 35 I/O 5V-T PB8 UR0_RTS /TXE — — — PB9 — — 36 I/O 5V-T PB9 UR0_CTS /SCK — — — — 5V-T PB10 UR0_DTR 37 I/O PB10 UR0_TX — — — 21 26 38 AI/O — XTALIN PB11 — — — XTALOUT 22 27 39 AI/O — XTALOUT PB12 — — — VDD33_2 23 28 40 P — 3.3V voltage for digital I/O VSS33_2 24 29 41 P — Ground reference for digital I/O 42 I/O XTALIN PB13 — UR0_DTR — — 5V-T PB13 UR0_RX — — — GT1_ETI — — — — PB14 — — 43 I/O 5V-T PB14 UR1_CTS /SCK PB15 — — 44 I/O 5V-T PB15 UR1_RTS /TXE — PC0 — 30 45 I/O 5V-T PC0 SPI1_SEL GT1_ CH0 I2C1_SCL I2C1_SCL PC1 — 31 46 I/O 5V-T PC1 SPI1_SCK GT1_ CH1 I2C1_SDA I2C1_SDA PC2 — 32 47 I/O 5V-T PC2 SPI1_ MOSI GT1_ CH2 UR0_RI UR0_RI PC3 — 33 48 I/O 5V-T PC3 SPI1_ MISO GT1_ CH3 UR0_DCD UR0_DCD PC4 — — 49 I/O 5V-T PC4 UR1_TX I2C0_ SCL — — PC5 — — 50 I/O 5V-T PC5 UR1_RX I2C0_ SDA — — PC6 — — 51 I/O 5V-T PC6 I2C1_SCL SCI_ CLK — — PC7 — — 52 I/O 5V-T PC7 I2C1_SDA SCI_DIO — — PC8 25 34 53 I/O 5V-T_ PU PC8_BOOT0 CKOUT — PC9 26 35 54 I/O 5V-T_ PU PC9_BOOT1 — PC10 27 36 55 I/O 5V-T PC10 PE11 28 37 56 I/O 5V-T JTDO_ PE11 TRACESWO Rev. 1.00 25 of 45 — SCI_DET MT_ETI — UR0_TX — UR0_RX — UR0_TX — UR0_RX — August 13, 2012 Overview XTAL32KIN 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 Pins Type IO Level Description Main function (AF0) AF3 AF3 (HT32F1755) (HT32F2755) (HT32F1765) 48 64 100 LQFP LQFP LQFP PE12 29 38 57 I/O 5VT_PU JTCK_ SWCLK PE12 — — — PE13 30 39 58 I/O 5VT_PU JTMS/ SWDIO PE13 — — — PE14 31 40 59 I/O 5VT_PU JTDI PE14 MT_CH0 UR1_TX CSIF_ HSYNC PE15 32 41 60 I/O 5VT_PU JTRST PE15 MT_ CH0N UR1_RX CSIF_ VSYNC (Note1) (Note2) AF1 AF2 VDD33_3 — 42 61 P — 3.3V voltage for digital I/O VSS33_3 — 43 62 P — Ground reference for digital I/O PC11 33 44 63 I/O 5V-T PC11 I2C0_SCL MT_CH1 UR0_RTS /TXE CSIF_PCK PC12 34 45 64 I/O 5V-T PC12 I2C0_SDA MT_ CH1N UR0_CTS /SCK CSIF_MCK PC13 — 46 65 I/O 5V-T PC13 SCI_CLK MT_CH0 UR1_RTS /TXE UR1_RTS /TXE PC14 — 47 66 I/O 5V-T PC14 SCI_DIO MT_ CH0N UR1_CTS /SCK UR1_CTS /SCK PC15 — 48 67 I/O 5V-T PC15 SCI_DET GT0_ETI UR0_DSR UR0_DSR PD0 — — 68 I/O 5V-T PD0 GT0_CH0 SPI0_ SEL UR0_DTR UR0_DTR PD1 — — 69 I/O 5V-T PD1 GT0_CH1 SPI0_ SCK UR0_RI UR0_RI PD2 — — 70 I/O 5V-T PD2 GT0_CH2 SPI0_ MOSI UR0_DCD UR0_DCD PD3 — — 71 I/O 5V-T PD3 GT0_CH3 SPI0_ MISO — — PD4 — — 72 I/O 5V-T PD4 SPI1_SEL — — — PD5 — — 73 I/O 5V-T PD5 SPI1_SCK — — — PD6 — — 74 I/O 5V-T PD6 SPI1_ MOSI — — — PD7 — — 75 I/O 5V-T PD7 SPI1_ MISO — — — VDD33_3 35 VSS33_3 36 PD8 37 49 76 I/O 5V-T PD8 SPI0_SEL MT_CH2 GT1_CH0 CSIF_D0 PD9 38 50 77 I/O 5V-T PD9 SPI0_SCK MT_ CH2N GT1_CH1 CSIF_D1 PD10 39 51 78 I/O 5V-T PD10 SPI0_ MOSI MT_CH3 GT1_CH2 CSIF_D2 PD11 40 52 79 I/O 5V-T PD11 SPI0_ MISO MT_BRK GT1_CH3 CSIF_D3 53 80 I/O 5V-T PD12 MT_CH0 I2C0_ SCL GT1_ETI PD12 Rev. 1.00 — — — — P — P — 3.3V voltage for digital I/O — Ground reference for digital I/O 26 of 45 GT1_ETI August 13, 2012 Overview Pin Name 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 Pins Pin Name 48 64 100 LQFP LQFP LQFP Type (Note1) IO Level (Note2) Description Main function (AF0) AF1 AF2 I/O 5V-T PD13 MT_CH0N I2C0_ SDA — 82 I/O 5V-T PD14 MT_CH1 SCI_ CLK — 83 I/O 5V-T PD15 — 84 I/O 5V-T PE0 85 P 86 P 87 I/O 5V-T PE1 — 88 I/O 5V-T — 89 I/O 5V-T — 90 I/O 5V-T — 54 PD14 — PD15 — PE0 — VDD33_4 — 55 VSS33_4 — 56 PE1 — — PE2 — PE3 — PE4 — GT0_ETI GT0_ETI — — MT_CH1N SCI_DIO — — MT_CH2 — — — MT_CH2N — — — PE2 MT_CH3 — — — PE3 MT_BRK — — — PE4 MT_ETI — — — — 3.3V voltage for digital I/O — Ground reference for digital I/O PE5 41 57 91 AI/O — PE5 CN0 GT0_ CH0 PE6 42 58 92 AI/O — PE6 CP0 GT0_ CH1 SPI1_SCK CSIF_D5 PE7 43 59 93 AI/O — PE7 AOUT0 GT0_ CH2 SPI1_ MOSI CSIF_D6 PE8 44 60 94 AI/O — PE8 CN1 GT0_ CH3 SPI1_ MISO CSIF_D7 PE9 45 61 95 AI/O — PE9 CP1 GT0_ETI I2C1_SCL I2C1_SCL PE10 46 62 96 AI/O — PE10 AOUT1 GT1_ETI I2C1_SDA I2C1_SDA VDDA 47 63 97 P — 3.3V analog voltage for ADC and OPA/Comparator SPI1_SEL CSIF_D4 VREF+ — — 98 P — ADC positive reference voltage has to be lower or equal to VDDA VREF- — — 99 P — ADC negative reference voltage has to be directly connected to VSSA 100 P — Ground reference for the ADC and OPA/Comparator VSSA 48 64 NOTES: 1. I = input, O = output, A = Analog port, P = power supply, PU = pull-up, BK = Back-up domain. 2. 5V-T = 5V tolerant. 3. The GPIOs are in an AF0 state after a VDD18 power on reset (POR) except for the RTCOUT pin of in the Backup Domain I/O. The RTCOUT pin is reset by the Backup Domain power-on-reset (PORB) or by a Backup Domain software reset (BAK_RST bit in BAK_CR register). 4. The backup domain of I/O pins has drive current capability limitation of < 1mA @ VBAT = 3.3V. Rev. 1.00 27 of 45 August 13, 2012 Overview 81 PD13 AF3 AF3 (HT32F1755) (HT32F2755) (HT32F1765) 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 4 Electrical Characteristics Absolute Maximum Ratings Table 3. Absolute Maximum Ratings Symbol Parameter Min Max Unit VDD33 External main supply voltage VSS - 0.3 VSS + 3.6 V VDDA External analog supply voltage VSSA - 0.3 VSSA + 3.6 V VBAT External battery supply voltage VSS - 0.3 VSS + 3.6 V VLDOIN External LDO supply voltage VSS - 0.3 VSS + 3.6 V Input voltage on 5V-tolerant I/O VSS - 0.3 VSS + 5.5 V Input voltage on other I/O VSS - 0.3 VDD33 + 0.3 V VIN TA Ambient operating temperature range -40 +85 °C TSTG Storage temperature range -55 +150 °C TJ Maximum junction temperature — 125 °C PD Total power dissipation — 500 mW VESD Electrostatic discharge voltage (human body mode) -4000 +4000 V Recommended DC Characteristics Table 4. Recommended DC Operating Conditions Symbol Parameter TA = 25°C, unless otherwise specified. Conditions Min Typ Max Unit VDD33 I/O Operating voltage — 2.7 3.3 3.6 V VDDA Analog operating voltage — 2.7 3.3 3.6 V VBAT Battery supply operating voltage — 2.7 3.3 3.6 V VLDOIN LDO operating voltage — 2.7 3.3 3.6 V On-Chip LDO Voltage Regulator Characteristics Table 5. LDO Characteristics Symbol TA = 25°C, unless otherwise specified. Parameter Conditions Min Typ Max Unit VLDOOUT Internal regulator output voltage VLDOIN = 3.3V Regulator input 1.71 1.8 1.89 V ILDOOUT Output current VLDOIN = 2.7V Regulator input — — 200 mA CLDO External filter capacitor value for internal core power supply The capacitor value is dependent on the core power current consumption 2.2 — 10 μF Rev. 1.00 28 of 45 August 13, 2012 Electrical Characteristics The following table shows the absolute maximum ratings of the device. These are stress ratings only. Stresses beyond absolute maximum ratings may cause permanent damage to the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability. 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 Power Consumption Table 6. Power Consumption Characteristics Symbol Parameter Min Typ VDD33 = VBAT = 3.3V, HSE = 8MHz, PLL = 144MHz, fHCLK = 72MHz, fPCLK = 72MHz, All peripherals enabled — 60 72 mA VDD33 = VBAT = 3.3V, HSE = 8MHz, PLL = 144MHz, fHCLK = 72MHz, fPCLK = 72MHz, All peripherals disabled — 27 34 mA VDD = VBAT = 3.3V, HSE = 8MHz, PLL = 144MHz, fHCLK = 0MHz, fPCLK = 72MHz, All peripherals enabled — 42 50 mA VDD33 = VBAT = 3.3V, HSE = 8MHz, PLL = 144MHz, fHCLK = 0MHz, fPCLK = 72MHz, All peripherals disabled — 9 12 mA Supply current (Deep-Sleep1 mode) VDD33 = VBAT = 3.3V, All clock off (HSE/PLL/fHCLK), LDO in low power mode, LSI on, RTC on — 58 90 μA Supply current (Deep-Sleep2 mode) VDD33 = VBAT = 3.3V, All clock off (HSE/PLL/fHCLK), LDO off (DMOS on), LSI on, RTC on — 18 25 μA VDD33 = VBAT = 3.3V, LDO off, LSE on, LSI off, RTC on — — — μA VDD33 = VBAT = 3.3V, LDO off, LSE on, LSI off, RTC off — — — μA VDD33 = VBAT = 3.3V, LDO off, LSE off, LSI on, RTC on — — — μA VDD33 = VBAT = 3.3V, LDO off, LSE off, LSI on, RTC off — 5 6 μA VDD33 not present, VBAT = 3.3V, LDO off, LSE off, LSI on, RTC on — 4 — μA — 3.9 — μA Supply current (Sleep mode) Supply current (Power-Down mode) Battery supply current (PowerVDD33 not present, VBAT = 3.3V, LDO off, LSE off, LSI Down mode) on, RTC off IBAT Max Unit NOTES: 1. HSE is the high speed external oscillator. HSI means 8MHz high speed internal oscillator. 2. LSE means low speed external oscillator. LSI means 32.768KHz low speed internal oscillator. 3. RTC means real time clock. 4. Code = while (1) { 208 NOP } executed in Flash. Reset and Supply Monitor Characteristics Table 7. LVD/BOD Characteristics Symbol VBOD VLVD VPOR TA = 25°C, unless otherwise specified. Parameter Conditions Min Typ Max Unit — — 2.6 — V LVDS (Note1) = ‘00’ — 2.7 — V LVDS (Note1) Brown Out Detector Voltage Voltage of Low Voltage Detector = ‘01’ — 2.8 — V LVDS (Note1) = ‘10’ — 2.9 — V LVDS = ‘11’ — 3.0 — V — — 1.36 — V Power On Reset Voltage (Note1) NOTE: LVDS field is in PWRCU LVDCSR register. Rev. 1.00 29 of 45 August 13, 2012 Electrical Characteristics Conditions Supply current (Run mode) IDD TA = 25°C, unless otherwise specified. 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 External Clock Characteristics Table 8. High Speed External Clock (HSE) Characteristics Symbol Parameter TA = 25°C, unless otherwise specified. Conditions High Speed External oscillator frequency (HSE) CHSE Recommended load capacitance on XTAL32IN and XTAL32OUT pins RFHSE VDD33 = 3.3V 4 — 16 MHz — — TBD — pF Recommended external feedback resistor between XTAL32IN and XTAL32OUT pins — — 1.0 — MΩ DHSE HSE Oscillator Duty cycle — 40 — 60 % IDDHSE HSE Oscillator Operating Current VDD33 = 3.3V, TA = 25°C — 0.96 — mA ISTBHSE HSE Oscillator Standby current VDD33 = 3.3V, TA = 25°C — — 0.1 μA tSUHSE HSE Oscillator Startup time VDD33 = 3.3V, TA = 25°C — — 4 ms Table 9. Low Speed External Clock (LSE) Characteristics Symbol Parameter TA = 25°C, unless otherwise specified. Conditions Min Typ Max Unit VDD33 = VBAT = 3.3V — 32.768 — kHz fLSE Low Speed External oscillator frequency (LSE) CLSE Recommended load capacitance on XTAL32KIN and XTAL32KOUT pins — — TBD — pF RFLSE Recommended external feedback resistor between XTAL32KIN and XTAL32KOUT pins — — 10 — MΩ DLSE LSE Oscillator Duty cycle — 40 — 60 % IDDLSE LSE Oscillator Operating Current VDD33 = VBAT = 3.3V, LSESM = 0 (Normal startup mode) — 1.7 — μA ISTBLSE LSE Oscillator Standby current VDD33 = VBAT = 3.3V, LSESM = 1 (Fast startup mode) — 3 8 μA tSULSE LSE Oscillator Startup time VDD33 = VBAT = 3.3V, LSESM = 1 (Fast startup mode) — 200 — ms Rev. 1.00 30 of 45 August 13, 2012 Electrical Characteristics fHSE Min Typ Max Unit 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 Internal Clock Characteristics Table 10. High Speed Internal Clock (HSI) Characteristics Symbol Parameter TA = 25°C, unless otherwise specified. Conditions Min Typ Max Unit High Speed Internal Oscillator Frequency (HSI ) VDD33 = 3.3V, TA = -40°C ~ +85°C — 8 — MHz ACCHSI HSI Oscillator Frequency accuracy Factory-trimmed, VDD33 = 3.3V, TA = -40°C ~ +85°C -5 — +5 % DHSI HSI Oscillator Duty cycle VDD33 = 3.3V, fHSI = 8MHz 35 — 65 % IDDHSI HSI Oscillator Operating Current VDD33 = 3.3V, fHSI = 8MHz — 0.92 — mA tSUHSI HSI Oscillator Startup time VDD33 = 3.3V, fHSI = 8MHz, HSIRCBL = 0 (HSI Ready Counter Bits Length 7 Bits ) — 17 — μs NOTE: HSIRCBL field is in PWRCU HSIRCR register. Table 11. Low Speed Internal Clock (LSI) Characteristics Symbol Parameter TA = 25°C, unless otherwise specified. Conditions Min Typ Max Unit fLSI Low Speed Internal Oscillator Frequency(LSI) VDD33 = VBAT = 3.3V, TA = -40°C ~ +85°C 25 32 43 kHz IDDLSI LSI Oscillator Operating Current VDD33 = VBAT = 3.3V, TA = 25°C — 1.0 2 μA tSULSI LSI Oscillator Startup time VDD33 = VBAT = 3.3V, TA = 25°C — 35 — ms PLL Characteristics Table 12. PLL Characteristics Symbol Parameter TA = 25°C, unless otherwise specified. Conditions Min Typ Max Unit fPLLIN PLL input clock — 4 — 16 MHz fPLL PLL output clock — 8 — 144 MHz tLOCK PLL lock time — — TBD — ms Memory Characteristics Table 13. Flash Memory Characteristics Symbol Parameter TA = 25°C, unless otherwise specified. Conditions Min Typ Max Unit NENDU Number of guaranteed program /erase cycles before failure. (Endurance) TA= -40°C ~ +85°C 20 — — kcycles TRET Data retention time TA = 25°C 100 — — Years tPROG Word programming time TA = -40°C ~ +85°C 40 — — μs tERASE Page erase time TA = -40°C ~ +85°C 20 — 40 ms tMERASE Mass erase time TA = -40°C ~ +85°C 20 — 40 ms Rev. 1.00 31 of 45 August 13, 2012 Electrical Characteristics fHSI 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 I/O Port Characteristics Table 14. I/O Port Characteristics Symbol Parameter Conditions 3.3V IO IIL Low level input current 5V-tolerant IO 3.3V IO High level input current 5V-tolerant IO Reset pin VIL VIH VHYS IOL IOH VOL Low level input voltage High level input voltage Schmitt Trigger Input Voltage Hysteresis Low level output current (GPO Sink current) High level output current (GPO Source current) Low level output voltage VI = 0V, On-chip pull-up resister disabled. VI = VDD33, On-chip pulldown resister disabled. Rev. 1.00 High level output voltage Typ Max Unit — — 3 μA — — 3 μA — — 3 μA — — 3 μA — — 3 μA — — 3 μA 3.3V IO -0.3 — 0.8 V 5V-tolerant IO -0.3 — 0.8 V Reset pin -0.3 — 0.8 V 3.3V IO 2 — 3.6 V 5V-tolerant IO 2 — 5.5 V Reset pin 2 — 5.5 V 3.3V IO — 400 — mV 5V-tolerant IO — 400 — mV Reset pin — 400 — mV 3.3V IO 4mA drive, VOL = 0.4V 4 — — mA 3.3V IO 8mA drive, VOL = 0.4V 8 — — mA 5V-tolerant 8mA drive IO, VOL=0.4V 8 — — mA 5V-tolerant 12mA drive IO, VOL=0.4V 12 — — mA Backup Domain IO drive @ VBAT =3.3V, VOL = 0.4V, PB4, PB5, PB6 — — 1 mA 3.3V I/O 4mA drive, VOH=VDD33 - 0.4V 4 — — mA 3.3V I/O 8mA drive, VOH=VDD33 - 0.4V 8 — — mA 5V-tolerant I/O 8mA drive, VOH = VDD33 - 0.4V 8 — — mA 5V-tolerant I/O 12mA drive, VOH = VDD33 - 0.4V 12 — — mA Backup Domain IO drive@VBAT=3.3V, VOH = VDD33 - 0.4V, PB4, PB5, PB6 — — 1 mA 3.3V 4mA drive IO, IOL = 4mA — — 0.4 V 3.3V 8mA drive IO, IOL = 8mA — — 0.4 V 5V-tolerant 8mA drive IO, IOL=8mA — — 0.4 V 5V-tolerant 12mA drive IO, IOL=12mA VOH Min — — 0.4 V 3.3V 4mA drive IO, IOH = 4mA VDD33 - 0.4V — — V 3.3V 8mA drive IO, IOH = 8mA VDD33 - 0.4V — — V 5V-tolerant 8mA drive IO, IOH=8mA VDD33 - 0.4V — — V 5V-tolerant 12mA drive IO, IOH=12mA VDD33 - 0.4V — — V 32 of 45 August 13, 2012 Electrical Characteristics Reset pin IIH TA = 25°C, unless otherwise specified. 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 Symbol RPU Parameter Internal pull-up resistor RPD Internal pull-down resistor Conditions Min Typ Max Unit 3.3V I/O 34 — 74 kΩ 5V-tolerant I/O 38 — 89 kΩ 3.3V I/O 29 — 86 kΩ 5V-tolerant I/O 35 — 107 kΩ Table 15. ADC Characteristics Symbol TA = 25°C, unless otherwise specified. Parameter Conditions Min Typ Max Unit VDDA Operating voltage — 2.7 3.3 3.6 V VADCIN A/D Converter input voltage range — 0 — VREF+ V VREF+ A/D Converter Reference voltage — — VDDA VDDA V IADC Current consumption VDDA = 3.3V — 1 TBD mA IADC_DN Power down current consumption VDDA = 3.3V — 1 10 μA fADC A/D Converter clock — 0.7 — 14 MHz fS Sampling rate — 0.05 — 1 MHz fADCCONV A/D Converter conversion time — — 14 — 1/fADC Cycles RI Input sampling switch resistance — — — 1 kΩ CI Input sampling capacitance No pin/pad capacitance included — — 5 pF tSU Start up time — — — 1 μs N Resolution — — 12 — bits INL Integral Non-linearity error fS = 1MHz, VDDA = 3.3V -— ±2 ±5 LSB DNL Differential Non-linearity error fS = 1MHz, VDDA = 3.3V — — ±1 LSB EO Offset error — — — ±10 LSB EG Gain error — — — ±10 LSB NOTES: 1. Guaranteed by design, not tested in production. 2. The figure below shows the equivalent circuit of the A/D Converter Sample-and-Hold input stage where CI is the storage capacitor, RI is the resistance of the sampling switch and RS is the output impedance of the signal source VS. Normally the sampling phase duration is approximately, 1.5/fADC. The capacitance, CI, must be charged within this time frame and it must be ensured that the voltage at its terminals becomes sufficiently close to VS for accuracy. To guarantee this, RS may not have an arbitrarily large value. Rev. 1.00 33 of 45 August 13, 2012 Electrical Characteristics ADC Characteristics 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 SAR ADC sample RS RI Figure 7. ADC Sampling Network Model The worst case occurs when the extremities of the input range (0V and V REF ) are sampled consecutively. In this situation a sampling error below 1/4 LSB is ensured by using the following equation: RS < 1.5 − RI f ADC C I ln(2 N + 2 ) where fADC is the ADC clock frequency and N is the ADC resolution (N = 12 in this case). A safe margin should be considered due to the pin/pad parasitic capacitances, which are not accounted for in this simple model. If, in a system where this A/D Converter is used, there are no rail-to-rail input voltage variations between consecutive sampling phases, Rs may be larger than the value indicated by the equation above. Rev. 1.00 34 of 45 August 13, 2012 Electrical Characteristics CI VS 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 Operation Amplifier/Comparator Characteristics Table 16. OPA/CMP Characteristics Symbol TA = 25°C, unless otherwise specified. Min Typ Max Unit Operating voltage Parameter — 2.7 3.3 3.6 V IOPA/CMP Typical operating current — — 230 — μA Assign registers OPAEN = 0 and EN_OPAOP = 0 — — 0.1 μA VDDA = 3.3V, AnOF[5:0] = ‘100000’ -15 — 15 mV VDDA = 3.3V, After calibration -1 — 1 mV TA = -40°C ~ +85°C — — 0.04 mV/°C IOPA/CMP_DN Power down supply current VIOS Input offset voltage VIOS_DRIFT Input offset voltage drift RINPUT Input resistance — — 10 — MΩ GV Voltage Gain — 60 100 — dB Ut Unit-Gain Bandwidth RL = 100kΩ — 1.3 — RL = 100kΩ, CL = 100pF — 1.24 — VCM Common mode voltage range VDDA = 3.3V VSSA — VDDA – 1.2 V VOV OPA output voltage swing VDDA = 3.3V VSSA + 0.3 — VDDA – 0.5 V tRT Comparator response time VDDA = 3.3V; Input Overdrive = ±10mV — 1 — μs SR Slew Rate VDDA = 3.3V; Output capacitor load CL=100pF — 1.6 — V/μs MHz NOTE: Guaranteed by design, not tested in production. GPTM/MCTM Characteristics Table 17. GPTM/MCTM Characteristics Conditions Min Typ Max Unit fTM Symbol Timer clock source for GPTM and MCTM — — — 72 MHz tRES Timer resolution time — 1 — — fTM fEXT External signal frequency on channel 1 ~ 4 — — — 1/2 fTM RES Timer resolution — — — 16 bits Rev. 1.00 Parameter 35 of 45 August 13, 2012 Electrical Characteristics Conditions VDDA 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 I2C Characteristics Table 18. I2C Characteristics Symbol Parameter Conditions Min Typ Max Unit SCL clock frequency — — — 400 kHz tSCL(H) SCL clock high time — 600 — — ns tSCL(L) SCL clock low time — 1300 — — ns tFALL SCL and SDA fall time — — — 300 ns tRISE SCL and SDA rise time — — — 300 ns tSU(STA) START condition setup time — 600 — — ns tH(STA) START condition hold time — 600 — — ns tSU(SDA) SDA data setup time — 100 — — ns tH(SDA) SDA data hold time — 0 — — ns tSU(STO) STOP condition setup time — 600 — — ns tRISE tFALL SCL tSCL(L) tH(STA) tSCL(H) tH(SDA) tSU(SDA) tSU(STO) SDA tSU(STA) Figure 8. I2C Timing Diagrams Rev. 1.00 36 of 45 August 13, 2012 Electrical Characteristics fSCL 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 SPI Characteristics Table 19. SPI Characteristics Symbol Parameter Conditions Min Typ Max Unit fSCK SCK clock frequency — — — fPCLK/4 MHz tSCK(H) SCK clock high time — fPCLK/8 — — ns tSCK(L) SCK clock low time — fPCLK/8 — — ns tV(MO) Data output valid time — — — 5 ns tH(MO) Data output hold time — 2 — — ns tSU(MI) Data input setup time — 5 — — ns tH(MI) Data input hold time — 5 — — ns SPI Slave mode tSU(SEL) SEL enable setup time — 4 tPCLK — — ns tH(SEL) SEL enable hold time — 2 tPCLK — — ns tA(SO) Data output access time — — — 3 tPCLK ns tDIS(SO) Data output disable time — — — 10 ns tV(SO) Data output valid time — — — 25 ns tH(SO) Data output hold time — 15 — — ns tSU(SI) Data input setup time — 5 — — ns tH(SI) Data input hold time — 4 — — ns tSCK SCK (CPOL = 0) tSCK(H) tSCK(L) SCK (CPOL = 1) tV(MO) MOSI DATA VALID tSU(MI) MISO MOSI MISO DATA VALID DATA VALID tH(MI) CPHA = 1 DATA VALID DATA VALID tV(MO) tH(MO) DATA VALID tSU(MI) tH(MO) DATA VALID DATA VALID DATA VALID tH(MI) DATA VALID CPHA = 0 DATA VALID DATA VALID Figure 9. SPI Timing Diagrams – SPI Master Mode Rev. 1.00 37 of 45 August 13, 2012 Electrical Characteristics SPI Master mode 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 SEL tSU(SEL) tH(SEL) tSCK SCK (CPOL=0) tSCK(L) Electrical Characteristics tSCK(H) SCK (CPOL=1) tSU(SI) MOSI tH(SI) LSB/MSB IN MSB/LSB IN tA(SO) tV(SO) tDIS(SO) tH(SO) LSB/MSB OUT MSB/LSB OUT MISO Figure 10. SPI Timing Diagrams – SPI Slave Mode and CPHA=1 CSIF Characteristics Table 20. CSIF Characteristics Symbol Parameter Conditions Min Typ Max Unit fMCK CSIF_MCK clock frequency output — — — 36 MHz fPCK CSIF_PCK clock frequency input — — — 24 MHz rF APB clock and CSIF_PCK clock input frequency ratio — — 3 — Rev. 1.00 fPCLK/fPCK 38 of 45 August 13, 2012 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 USB Characteristics The USB interface is USB-IF certified – Full Speed. Table 21. USB DC Electrical Characteristics Symbol Parameter Conditions Min Typ Max Unit — 3.0 — 3.6 V USB Operating voltage VDI Differential input sensitivity 0.2 — — V VCM Common mode voltage range — 0.8 — 2.5 V VSE Single-ended receiver threshold — 0.8 — 2.0 V VOL Pad output low voltage VOH Pad output high voltage VCRS Differential output signal cross-point voltage ZDRV CIN |USBDP-USBDM| 0 — 0.3 V 2.8 — 3.6 V — 1.3 — 2.0 V Driver output resistance — — 10 — Ω Transceiver pad capacitance — — — 20 pF RL of 1.5kΩ to VDD NOTES: 1. Guaranteed by design, not tested in production. 2. To be compliant with the USB 2.0 full-speed electrical specification, the USBDP pin should be pulled up with a 1.5kΩ external resistor to a 3.0 to 3.6V voltage supply. 3. The USB functionality is ensured down to 2.7V but not the full USB electrical characteristics which will experience degradation in the 2.7 to 3.0V VDD voltage range. 4. RL is the load connected to the USB driver USBDP. Rev. 1.00 39 of 45 August 13, 2012 Electrical Characteristics VDD 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 Rise Time Fall Time Tr Tf 90% 90% 10% Electrical Characteristics VCRS 10% Figure 11. USB Signal Rise Time and Fall time and Cross-Point Voltage (VCRS) Definition Table 22. USB AC Electrical Characteristics Min Typ Max Unit Tr Symbol Rise time CL = 50pF 4 — 20 ns Tf Fall time CL = 50pF 4 — 20 ns Tr/f Rise time / fall time matching Tr/f = Tr / Tf 90 — 110 % Rev. 1.00 Parameter Conditions 40 of 45 August 13, 2012 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 5 Package Information Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the Holtek website (http://www. holtek.com.tw/english/literature/package.pdf) for the latest version of the package information. Package Information 48-pin LQFP (7mm×7mm) Outline Dimensions Symbol Rev. 1.00 Dimensions in inch Min. Nom. Max. A 0.350 ― 0.358 B 0.272 ― 0.280 C 0.350 ― 0.358 D 0.272 ― 0.280 E ― 0.020 ― F ― 0.008 ― G 0.053 ― 0.057 H ― ― 0.063 I ― 0.004 — J 0.018 ― 0.030 K 0.004 ― 0.008 α 0° ― 7° 41 of 45 August 13, 2012 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 Symbol Min. Nom. Max. A 8.90 ― 9.10 B 6.90 ― 7.10 C 8.90 ― 9.10 D 6.90 ― 7.10 E ― 0.50 ― F ― 0.20 ― G 1.35 ― 1.45 H ― ― 1.60 I — 0.10 — J 0.45 ― 0.75 K 0.10 ― 0.20 α 0° ― 7° 42 of 45 August 13, 2012 Package Information Rev. 1.00 Dimensions in mm 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 64-pin LQFP (7mm×7mm) Outline Dimensions Package Information Symbol Min. Nom. Max. A 0.350 ― 0.358 B 0.272 ― 0.280 C 0.350 ― 0.358 D 0.272 ― 0.280 E ― 0.016 ― F 0.005 ― 0.009 G 0.053 ― 0.057 H ― ― 0.063 I 0.002 ― 0.006 J 0.018 ― 0.030 K 0.004 ― 0.008 α 0° ― 7° Symbol Rev. 1.00 Dimensions in inch Dimensions in mm Min. Nom. Max. A 8.90 ― 9.10 B 6.90 ― 7.10 C 8.90 ― 9.10 D 6.90 ― 7.10 E ― 0.40 ― F 0.13 ― 0.23 G 1.35 ― 1.45 H ― ― 1.60 I 0.05 ― 0.15 J 0.45 ― 0.75 K 0.09 ― 0.20 α 0° ― 7° 43 of 45 August 13, 2012 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 100-pin LQFP (14mm×14mm) Outline Dimensions Package Information Symbol Dimensions in inch Min. Nom. Max. A 0.626 ― 0.634 B 0.547 ― 0.555 C 0.626 ― 0.634 D 0.547 ― 0.555 E ― 0.020 ― F ― 0.008 ― G 0.053 ― 0.057 H ― ― 0.063 I ― 0.004 — J 0.018 ― 0.030 K 0.004 ― 0.008 α 0° ― 7° Symbol Rev. 1.00 Dimensions in mm Min. Nom. Max. A 15.90 ― 16.10 B 13.90 ― 14.10 C 15.90 ― 16.10 D 13.90 ― 14.10 E ― 0.50 ― F ― 0.20 ― G 1.35 ― 1.45 H ― ― 1.60 I ― 0.10 — J 0.45 ― 0.75 K 0.10 ― 0.20 α 0° ― 7° 44 of 45 August 13, 2012 32-bit ARM Cortex™-M3 MCU HT32F1755/HT32F1765/HT32F2755 Package Information Holtek Semiconductor Inc. (Headquarters) No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan Tel: 886-3-563-1999 Fax: 886-3-563-1189 http://www.holtek.com.tw Holtek Semiconductor Inc. (Taipei Sales Office) 4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan Tel: 886-2-2655-7070 Fax: 886-2-2655-7373 Fax: 886-2-2655-7383 (International sales hotline) Holtek Semiconductor Inc. (Shenzhen Sales Office) 5F, Unit A, Productivity Building, No.5 Gaoxin M 2nd Road, Nanshan District, Shenzhen, China 518057 Tel: 86-755-8616-9908, 86-755-8616-9308 Fax: 86-755-8616-9722 Holtek Semiconductor (USA), Inc. (North America Sales Office) 46729 Fremont Blvd., Fremont, CA 94538, USA Tel: 1-510-252-9880 Fax: 1-510-252-9885 http://www.holtek.com Copyright© 2012 by HOLTEK SEMICONDUCTOR INC. The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw. Rev. 1.00 45 of 45 August 13, 2012