IRF GB50XF120K

Bulletin PD - 94567 rev.B 08/03
GB50XF120K
IGBT SIXPACK MODULE
VCES = 1200V
Features
•
•
•
•
•
Low VCE (on) Non Punch Through IGBT Technology
Low Diode VF
10µs Short Circuit Capability
Square RBSOA
HEXFRED Antiparallel Diode with Ultrasoft
Reverse Recovery Characteristics
• Positive VCE (on) Temperature Coefficient
• Ceramic DBC Substrate
• Low Stray Inductance Design
IC = 50A @ TC=80°C
tsc > 10µs @ TJ=150°C
VCE(on) typ. = 2.45V
ECONO2 6PACK
Benefits
•
•
•
•
•
•
•
Benchmark Efficiency for Motor Control
Rugged Transient Performance
Low EMI, Requires Less Snubbing
Direct Mounting to Heatsink
PCB Solderable Terminals
Low Junction to Case Thermal Resistance
UL Approved E78996
Absolute Maximum Ratings
Parameter
Max.
Units
VCES
Collector-to-Emitter Voltage
1200
V
IC @ Tc=25°C
Continuous Collector Current
75
A
IC @ Tc=80°C
Continuous Collector Current
50
ICM
Pulsed Collector Current (Ref. Fig. C.T.5)
150
ILM
Clamped Inductive Load Current
150
IF @ Tc=25°C
Diode Continuous Forward Current
75
IF @ Tc=80°C
Diode Continuous Forward Current
50
IFM
Pulsed Diode Maximum Forward Current
150
VGE
Gate-to-Emitter Voltage
±20
V
PD @ Tc=25°C
Maximum Power Dissipation (IGBT and Diode)
329
W
PD @ Tc=80°C
Maximum Power Dissipation (IGBT and Diode)
184
TJ
Maximum Operating Junction Temperature
TSTG
Storage Temperature Range
VISOL
Isolation Voltage
150
°C
-40 to +125
AC 2500 (MIN)
V
Thermal and Mechanical Characteristics
Min
Typical
Maximum
Units
RθJC (IGBT)
Junction-to-Case IGBT
Parameter
-
-
0.38
°C/W
RθJC (Diode)
Junction-to-Case Diode
-
-
0.70
RθCS (Module)
Case-to-Sink, flat, greased surface
Mounting Torque (M5)
Weight
1
-
0.05
-
2.7
-
3.3
-
170
-
N*m
g
www.irf.com
GB50XF120K
Bulletin PD - 94567 rev.B 08/03
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
BV(CES)
Parameter
Collector-to-Emitter Breakdown Voltage
∆V(BR)CES/∆TJ
Temp. Coefficient of Breakdown Voltage
VCE(ON)
Collector-to-Emitter Voltage
Min. Typ. Max. Units Conditions
1200 V
VGE = 0 IC = 500µA
-
0.31
-
-
2.45 2.65
2.85 3.15
IC = 75A VGE = 15V
-
2.85
-
IC = 50A VGE = 15V TJ = 125°C
-
3.45
-
4.0
4.9
6.0
Gate Threshold Voltage
∆VGE (th)/∆TJ
Thresold Voltage temp. coefficient
-
-12
-
ICES
Zero Gate Voltage Collector Current
-
-
100
-
1000
-
IGES
Diode Forward Voltage Drop
Gate-to-Emitter Leakage Current
V
VGE = 0 IC = 1mA (25°C - 125°C)
-
VGE (th)
V FM
V/°C
IC = 50A VGE = 15V
IC =75A VGE = 15V TJ = 125°C
VCE = VGE IC = 250µA
mV/°C VCE = VGE IC = 1mA (25°C-125°C)
µA
VGE = 0 VCE = 1200V
VGE = 0 VCE = 1200V Tj = 125°C
-
1.95 2.25
-
2.20 2.60
V
IF = 50A
-
2.05
-
IF = 50A Tj = 125°C
-
2.40
-
IF = 75A Tj = 125°C
-
-
±200
IF = 75A
nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units Conditions
QG
Total Gate Charge (turn-on)
-
355
535
QGE
Gate-to-Emitter Charge (turn-on)
-
35
55
IC = 50A
QGC
Gate-to-Collector Charge (turn-on)
-
165
250
EON
Turn-On Switching Loss
-
3600 4635
EOFF
Turn-Off Switching Loss
-
3740 4780
VGE = 15V RG = 10Ω L = 400µH
ETOT
Total Switching Loss
-
7340 9415
Tj = 25°C 
nC
VCC = 600A
VGE = 15V
µJ
µJ
IC = 50A VCC = 600V
EON
Turn-On Switching Loss
-
5050 7100
EOFF
Turn-Off Switching Loss
-
5525 7750
VGE = 15V RG = 10Ω L = 400µH
ETOT
Total Switching Loss
-
10575 14850
Tj = 125°C 
ns
IC = 50A VCC = 600V
td(on)
Turn-On delay time
-
60
80
tr
Rise time
-
40
60
VGE = 15V RG = 10Ω L =400µH
td(off)
Turn-Off delay time
-
570
665
Tj = 125°C
tf
Fall time
-
205
270
Cies
Input Capacitance
-
4945
-
Coes
Output Capacitance
-
885
-
VCC = 30V
Cres
Reverse Transfer Capacitance
-
100
-
f = 1Mhz
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
SCSOA
Short Circuit Safe Operating Area
pF
IC = 50A VCC = 600V
VGE = 0
Tj = 150°C IC = 150A
RG =10Ω VGE = 15V to 0
10
-
-
µs
Tj = 150°C
VCC = 900V VP = 1200V
RG = 10Ω
Irr
Diode Peak Rev. Recovery Current
-
87
-
A
VGE = 15V to 0
Tj = 125°C
VCC = 600V IF = 50A L = 400µH
VGE = 15V RG = 10Ω
 Energy losses include "tail" and diode reverse recovery.
2
www.irf.com
GB50XF120K
Bulletin PD - 94567 rev.B 08/03
100
100
90
VGE = 18V
80
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
60
80
50
60
50
40
40
30
30
20
20
10
10
0
0
0
1
2
3
4
5
0
6
1
2
3
4
5
6
VCE (V)
VCE (V)
Fig. 1 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
Fig. 2 - Typ. IGBT Output Characteristics
TJ = 125°C; tp = 80µs
20
20
18
18
16
16
14
14
12
ICE = 25A
10
VCE (V)
VCE (V)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
70
ICE (A)
ICE (A)
70
90
ICE = 50A
ICE = 100A
8
12
ICE = 25A
10
ICE = 50A
ICE = 100A
8
6
6
4
4
2
2
0
0
5
10
15
20
5
10
V GE (V)
15
20
VGE (V)
Fig. 4 - Typical VCE vs. VGE
TJ = 125°C
Fig. 3 - Typical VCE vs. VGE
TJ = 25°C
10000
1000
tdOFF
9000
8000
Swiching Time (ns)
Energy (µJ)
tF
EOFF
7000
6000
5000
EON
4000
3000
100
tdON
tR
2000
1000
0
10
0
www.irf.com
20
40
60
80
100
120
0
20
40
60
80
100
IC (A)
IC (A)
Fig. 5 - Typ. Energy Loss vs. IC
TJ = 125°C; L=400µH; VCE= 600V
RG= 10Ω; VGE= 15V
Fig. 6 - Typ. Switching Time vs. IC
TJ = 125°C; L=400µH; VCE= 600V
RG= 10Ω; VGE= 15V
120
3
GB50XF120K
Bulletin PD - 94567 rev.B 08/03
10000
10000
9000
8000
Swiching Time (ns)
Energy (µJ)
7000
EOFF
6000
5000
EON
4000
3000
tdOFF
1000
tF
100
tdON
2000
tR
1000
0
10
0
10
20
30
40
50
0
R G ( Ω)
10
20
30
50
R G (Ω)
Fig. 7 - Typ. Energy Loss vs. RG
TJ = 125°C; L=400µH; VCE= 600V
ICE= 50A; VGE= 15V
Fig. 8 - Typ. Switching Time vs. RG
TJ = 125°C; L=400µH; VCE= 600V
ICE= 50A; VGE= 15V
16
10000
Cies
14
400V
12
Coes
1000
600V
10
VGE (V)
Capacitance (pF)
40
6
Cres
100
8
4
2
0
10
0
20
40
60
80
0
100
50
VCE (V)
100 150 200 250 300 350 400
Q G , Total Gate Charge (nC)
Fig. 10 - Typical Gate Charge vs. VGE
ICE = 50A; L = 600µH
Fig. 9- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
80
350
70
300
60
250
Ptot (W)
IC (A)
50
40
200
150
30
100
20
50
10
0
0
0
20
40
60
80
100 120 140 160
T C (°C)
Fig. 11 - Maximum DC Collector Current vs.
Case Temperature
4
0
20
40
60
80
100 120 140 160
T C (°C)
Fig. 12 - Power Dissipation vs. Case
Temperature
www.irf.com
GB50XF120K
Bulletin PD - 94567 rev.B 08/03
1000
1000
100
100
IC A)
IC (A)
20 µs
100 µs
10
10
1ms
1
10ms
DC
0.1
1
1
10
100
1000
10
10000
100
V CE (V)
10000
V CE (V)
Fig. 13 - Forward SOA
TC = 25°C; TJ ≤ 150°C
Fig. 14 - Reverse Bias SOA
TJ = 150°C; VGE =15V
100
700
90
25°C
125°C
600
500
T J = 25°C
80
T J = 125°C
70
60
400
IF (A)
VCE (A)
1000
300
50
40
30
200
20
100
10
0
0
0
5
10
15
20
0.0
VGE (V)
1.0
2.0
3.0
4.0
V F (V)
Fig. 16 - Typ. Diode Forward Characteristics
tp = 80µs
Fig. 15 - Typ. Transfer Characteristics
VCE=50V; tp=10µs
120
120
RG = 4.7 Ω
100
100
RG = 10 Ω
80
RG = 22 Ω
60
IRR (A)
IRR (A)
80
RG = 47 Ω
40
40
20
20
0
0
0
25
50
75
IF (A)
100
125
Fig. 17 - Typical Diode IRR vs. IF
TJ = 125°C
www.irf.com
60
150
0
10
20
30
40
50
R G ( Ω)
Fig. 18 - Typical Diode IRR vs. RG
TJ = 125°C; IF = 50A
5
GB50XF120K
Bulletin PD - 94567 rev.B 08/03
120
100
IRR (A)
80
60
40
20
0
0
500
1000
1500
2000
2500
diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt ; VCC= 600V;
VGE= 15V; ICE= 50A; TJ = 125°C
1
Thermal Response ( Z thJC )
D = 0.50
0.1
0.20
0.10
0.05
0.01
τJ
0.02
0.01
R1
R1
τJ
τ1
R2
R2
τ2
τ1
R3
R3
τ3
τ2
τC
τ
τ3
Ci= τi/Ri
Ci= τi/Ri
0.001
Ri (°C/W) τi (sec)
0.052
0.000444
0.062
0.005937
0.266
0.019420
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 20. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
τJ
0.01
R1
R1
τJ
τ1
τ1
R2
R2
τ2
R3
R3
τ3
τ2
Ci= τi/Ri
Ci= τi/Ri
0.001
τC
τ
τ3
Ri (°C/W) τi (sec)
0.116
0.000372
0.201
0.010642
0.382
0.034977
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 21. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
6
www.irf.com
GB50XF120K
Bulletin PD - 94567 rev.B 08/03
L
L
VCC
DUT
80 V
DUT
0
1000V
Rg
1K
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
R=
diode clamp /
DUT
Driver
VCC
ICM
L
D
C
900V
- 5V
DUT
DUT /
DRIVER
DUT
VCC
Rg
Fig.C.T.4 - Switching Loss Circuit
Fig.C.T.3 - S.C. SOA Circuit
VCC
Rg
Fig.C.T.5 - Resistive Load Circuit
800
80
800
160
700
70
700
140
600
60
600
120
TEST CURRENT
500
50
500
40
400
100
30
80
90% test current
300
60
ICE (A)
tf
300
VCE (V)
400
ICE (A)
VCE (V)
90% ICE
5% V CE
200
20
200
40
10% test current
tr
5% ICE
100
10
0
0
100
0
5% V CE
20
0
Eon Loss
Eoff Loss
-100
-1.00
0.00
1.00
2.00
3.00
-10
4.00
Time(µs)
Fig. WF1- Typ. Turn-off Loss Waveform
@ TJ = 125°C using Fig. CT.4
www.irf.com
-100
9.90
10.10
10.30
10.50
-20
10.70
Time (µs)
Fig. WF2- Typ. Turn-on Loss Waveform
@ TJ = 125°C using Fig. CT.4
7
GB50XF120K
Bulletin PD - 94567 rev.B 08/03
Econo2 6Pak Package Outline
Dimensions are shown in millimeters (inches)
>@&219(;
Econo2 6Pak Part Marking Information
GB50XF120K
GB50XF120K
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR's Web site.
8
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 10/02
www.irf.com