IRF IRF6678

PD - 96979B
IRF6678
DirectFET™ Power MOSFET
Typical values (unless otherwise specified)
Low Profile (<0.7 mm)
VDSS
VGS
RDS(on)
RDS(on)
Dual Sided Cooling Compatible
30V max ±20V max 1.7mΩ@ 10V 2.3mΩ@ 4.5V
Ultra Low Package Inductance
Qg tot Qgd
Qgs2
Qrr
Qoss Vgs(th)
Optimized for High Frequency Switching
43nC
15nC
4.0nC
46nC
28nC
1.8V
Ideal for CPU Core DC-DC Converters
Optimized for for SyncFET Socket of Sync. Buck Converter
Low Conduction and Switching Losses
Compatible with Existing Surface Mount Techniques
DirectFET™ ISOMETRIC
MX
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SQ
SX
ST
MQ
MX
MT
Description
The IRF6678 combines the latest HEXFET® power MOSFET silicon technology with advanced DirectFETTM packaging to achieve the lowest
on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing
layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques,
when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided
cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6678 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching
losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors
operating at higher frequencies. The IRF6678 has been optimized for parameters that are critical in synchronous buck operating from 12 volt
bus converters including RDS(on) and gate charge to minimize losses in the SyncFET socket.
Absolute Maximum Ratings
Parameter
VDS
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
EAS
IAR
Typical RDS(on) (mΩ)
20
ID = 29A
15
10
T J = 125°C
5
T J = 25°C
0
0
1
2
3
4
5
6
7
8
9
10
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
Notes:
Click on this section to link to the appropriate technical paper.
Click on this section to link to the DirectFET MOSFETs.
Repetitive rating; pulse width limited by max. junction temperature.
www.irf.com
VGS, Gate-to-Source Voltage (V)
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
Max.
Units
30
±20
30
24
150
240
210
24
V
A
mJ
A
6.0
ID= 23A
5.0
VDS= 24V
VDS= 15V
4.0
3.0
2.0
1.0
0.0
0
10
20
30
40
50
60
QG Total Gate Charge (nC)
Fig 2. Typical On-Resistance vs. Gate Voltage
Starting TJ = 25°C, L = 0.75mH, RG = 25Ω, IAS = 23A.
Surface mounted on 1 in. square Cu board, steady state.
TC measured with thermocouple mounted to top (Drain) of part.
1
04/18/05
IRF6678
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Conditions
Typ. Max. Units
VGS = 0V, ID = 250µA
BVDSS
Drain-to-Source Breakdown Voltage
30
–––
–––
∆ΒVDSS/∆TJ
RDS(on)
Breakdown Voltage Temp. Coefficient
–––
24
–––
Static Drain-to-Source On-Resistance
–––
1.7
2.2
mV/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 30A
–––
2.3
3.0
VGS = 4.5V, ID = 24A
V
VGS(th)
Gate Threshold Voltage
1.35
–––
2.25
V
∆VGS(th)/∆TJ
IDSS
Gate Threshold Voltage Coefficient
–––
-6.3
–––
mV/°C
Drain-to-Source Leakage Current
–––
–––
1.0
µA
–––
–––
150
–––
–––
100
IGSS
Gate-to-Source Forward Leakage
VDS = 24V, VGS = 0V
VDS = 24V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
Gate-to-Source Reverse Leakage
–––
–––
-100
Forward Transconductance
100
–––
–––
Total Gate Charge
–––
43
65
Qgs1
Pre-Vth Gate-to-Source Charge
–––
12
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
4.0
–––
Qgd
Gate-to-Drain Charge
–––
15
Qgodr
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
12
–––
Qsw
–––
19
–––
Qoss
Output Charge
–––
28
–––
nC
Ω
gfs
Qg
VDS = VGS, ID = 250µA
S
VDS = 15V, ID = 24A
VDS = 15V
nC
VGS = 4.5V
ID = 24A
See Fig. 17
RG
Gate Resistance
–––
1.0
2.2
td(on)
Turn-On Delay Time
–––
21
–––
tr
Rise Time
–––
71
–––
td(off)
Turn-Off Delay Time
–––
27
–––
tf
Fall Time
–––
8.1
–––
Ciss
Input Capacitance
–––
5640
–––
Coss
Output Capacitance
–––
1260
–––
Crss
Reverse Transfer Capacitance
–––
570
–––
Min.
Typ. Max. Units
VDS = 16V, VGS = 0V
VDD = 16V, VGS = 4.5V
ns
ID = 24A
Clamped Inductive Load
VGS = 0V
pF
VDS = 15V
ƒ = 1.0MHz
Diode Characteristics
Parameter
IS
Continuous Source Current
–––
–––
3.5
–––
–––
240
(Body Diode)
ISM
Pulsed Source Current
Conditions
MOSFET symbol
A
showing the
integral reverse
VSD
Diode Forward Voltage
–––
0.78
1.2
V
p-n junction diode.
TJ = 25°C, IS = 24A, VGS = 0V
trr
Reverse Recovery Time
–––
43
65
ns
TJ = 25°C, IF = 24A
Qrr
Reverse Recovery Charge
–––
46
69
nC
di/dt = 100A/µs
(Body Diode)
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRF6678
Absolute Maximum Ratings
Max.
Units
2.8
1.8
89
270
-40 to + 150
W
Parameter
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
°C
Thermal Resistance
Parameter
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Typ.
Max.
Units
–––
12.5
20
–––
1.0
45
–––
–––
1.4
–––
°C/W
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Linear Derating Factor
0.022
W/°C
100
Thermal Response ( Z thJA )
D = 0.50
10
0.20
0.10
0.05
1
0.02
0.01
τJ
0.1
R1
R1
τJ
τ1
SINGLE PULSE
( THERMAL RESPONSE )
0.01
R2
R2
τ2
τ1
R3
R3
τC
τ
τ3
τ2
τ3
τ4
τi (sec)
Ri (°C/W)
R4
R4
τ4
Ci= τi/Ri
Ci i/Ri
0.6784
0.00086
17.299
0.57756
17.566
8.94000
9.4701
106
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Notes:
Surface mounted on 1 in. square Cu board, steady state.
Used double sided cooling , mounting pad.
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
Surface mounted on 1 in. square Cu
board (still air).
www.irf.com
TC measured with thermocouple incontact with top (Drain) of part.
Rθ is measured at TJ of approximately 90°C.
Mounted to a PCB with a
thin gap filler and heat sink.
(still air)
Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
3
IRF6678
1000
1000
100
BOTTOM
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
BOTTOM
100
10
2.5V
2.5V
≤60µs PULSE WIDTH
10
0.1
1
10
100
1000
0.1
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
V DS, Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
Fig 5. Typical Output Characteristics
1000
1.5
ID = 29A
VDS = 15V
≤60µs PULSE WIDTH
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current (Α)
≤60µs PULSE WIDTH
Tj = 150°C
Tj = 25°C
1
100
T J = 150°C
T J = 25°C
10
T J = -40°C
1
0.1
1.0
V GS = 10V
V GS = 4.5V
0.5
1
2
3
4
25
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
T J = 25°C
Vgs = 3.0V
Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 10V
20
Typical RDS(on) ( mΩ)
C oss = C ds + C gd
10000
Ciss
Coss
1000
20 40 60 80 100 120 140 160
Fig 7. Normalized On-Resistance vs. Temperature
Fig 6. Typical Transfer Characteristics
100000
-60 -40 -20 0
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance(pF)
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
Crss
15
10
5
0
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
20
60
100
140
180
220
260
ID, Drain Current (A)
Fig 9. Normalized Typical On-Resistance vs.
Drain Current and Gate Voltage
www.irf.com
IRF6678
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
100
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
100
10
T J = 150°C
T J = 25°C
T J = 40°C
1
1msec
10
10msec
1
T A = 25°C
T J = 150°C
VGS = 0V
Single Pulse
0
0.1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
0.01
0.10
VSD, Source-to-Drain Voltage (V)
10.00
100.00
VDS, Drain-to-Source Voltage (V)
Fig11. Maximum Safe Operating Area
Fig 10. Typical Source-Drain Diode Forward Voltage
2.2
180
Limited By Package
VGS(th) Gate threshold Voltage (V)
160
140
ID, Drain Current (A)
1.00
120
100
80
60
40
20
2.0
1.8
1.6
ID = 250µA
1.4
1.2
1.0
0.8
0.6
0
25
50
75
100
125
-75 -50 -25
150
0
25
50
75 100 125 150
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 13. Threshold Voltage vs. Temperature
Fig 12. Maximum Drain Current vs. Case Temperature
EAS , Single Pulse Avalanche Energy (mJ)
900
ID
800
TOP
8.7A
11A
BOTTOM 23A
700
600
500
400
300
200
100
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy vs. Drain Current
www.irf.com
5
IRF6678
Current Regulator
Same Type as D.U.T.
Id
Vds
50KΩ
Vgs
.2µF
12V
.3µF
+
V
- DS
D.U.T.
Vgs(th)
VGS
3mA
IG
ID
Qgs1 Qgs2
Current Sampling Resistors
Fig 15a. Gate Charge Test Circuit
Qgd
Qgodr
Fig 15b. Gate Charge Waveform
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
V
RGSG
+
V
- DD
IAS
20V
tp
A
I AS
0.01Ω
Fig 16c. Unclamped Inductive Waveforms
Fig 16b. Unclamped Inductive Test Circuit
LD
VDS
VDS
90%
+
VDD D.U.T
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
Fig 17a. Switching Time Test Circuit
6
10%
VGS
td(on)
tr
td(off)
tf
Fig 17b. Switching Time Waveforms
www.irf.com
IRF6678
D.U.T
Driver Gate Drive
+
-
-
-
RG
•
•
•
•
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
-
Re-Applied
Voltage
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
www.irf.com
7
IRF6678
DirectFET™ Outline Dimension, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
NOTE:
All dimensions are absolute & are
for Application
guidance/referance only.
CODE
A
B
C
D
E
F
G
H
J
K
L
M
N
P
MIN
6.25
4.80
3.85
0.35
0.68
0.68
1.38
0.80
0.38
0.88
2.28
0.59
0.03
0.08
MAX
6.35
5.05
3.95
0.45
0.72
0.72
1.42
0.84
0.42
1.01
2.41
0.70
0.08
0.17
IMPERIAL
MAX
MAX
0.246 0.250
0.189 0.201
0.152 0.156
0.014 0.018
0.027 0.028
0.027 0.028
0.054 0.056
0.032 0.033
0.015 0.017
0.035 0.039
0.090 0.095
0.023 0.028
0.001 0.003
0.003 0.007
DirectFET™ Part Marking
8
www.irf.com
IRF6678
DirectFET™ Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6678). For 1000 parts on 7" reel,
order IRF6678TR1)
STANDARD OPTION
METRIC
CODE
MIN
MAX
A
330.0
N.C
B
20.2
N.C
C
12.8
13.2
D
1.5
N.C
E
100.0
N.C
F
N.C
18.4
G
12.4
14.4
H
11.9
15.4
REEL DIMENSIONS
(QTY 4800)
TR1 OPTION (QTY 1000)
IMPERIAL
METRIC
IMPERIAL
MIN
MAX
MIN
MIN
MAX
MAX
6.9
N.C
12.992
177.77 N.C
N.C
0.75
0.795
N.C
19.06
N.C
N.C
0.53
0.504
0.50
13.5
0.520
12.8
0.059
0.059
1.5
N.C
N.C
N.C
2.31
3.937
N.C
58.72
N.C
N.C
N.C
N.C
0.53
N.C
0.724
13.50
0.47
0.488
11.9
N.C
0.567
12.01
0.47
0.469
11.9
0.606
N.C
12.01
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 04/05
www.irf.com
9