PD - 97441 IRF6723M2DTRPbF IRF6723M2DTR1PbF Applications l DirectFET Power MOSFET Dual Common Drain Control MOSFETs for Multiphase DC-DC Converters Typical values (unless otherwise specified) Features VDSS Replaces Two Discrete MOSFETs Optimized for High Frequency Switching Low Profile (<0.7 mm) Dual Sided Cooling Compatible Ultra Low Package Inductance Compatible with existing Surface Mount Techniques l RoHS Compliant and Halogen Free l 100% Rg tested l l l l l l VGS RDS(on) 30V max ±20V max 5.2mΩ@ 10V 8.6mΩ@ 4.5V Qg tot 9.4nC Qgd Qgs2 Qrr Qoss Vgs(th) 3.3nC 1.2nC 17nC 6.3nC 1.8V G1 G2 D D S1 S2 DirectFET ISOMETRIC Applicable DirectFET Outline and Substrate Outline S1 S2 SB RDS(on) M2 M4 MA L4 L6 L8 Description The IRF6723M2DPbF combines two MOSFET switches optimized for high side applications into a single medium can DirectFET package. The switches have low gate resistance and low charge along with ultra low package inductance providing significant reduction in switching losses. The reduced losses make this product ideal for high efficiency multiphase DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6723M2DPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the highest power density for two MOSFETs in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. Absolute Maximum Ratings (each die operating consecutively) Parameter Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM EAS IAR g Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current g h Typical RDS(on) (mΩ) 25 ID = 15A 20 15 T J = 125°C 10 5 T J = 25°C 0 2 4 6 8 10 12 14 16 18 e e f 20 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage VGS, Gate-to-Source Voltage (V) VDS 14.0 ID= 12A 12.0 10.0 Max. Units 30 ±20 15 13 47 130 71 12 V A mJ A VDS= 24V VDS= 15V 8.0 6.0 4.0 2.0 0.0 0 5 10 15 20 25 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.99mH, RG = 25Ω, IAS = 12A. 1 12/16/09 IRF6723M2DTR/TR1PbF Static @ TJ = 25°C (each die unless otherwise specified) Parameter BVDSS ∆ΒVDSS/∆TJ RDS(on) VGS(th) ∆VGS(th)/∆TJ IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss Conditions Min. Typ. Max. Units Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient 30 ––– ––– 20 ––– ––– Static Drain-to-Source On-Resistance ––– ––– 5.2 8.6 6.6 11.3 Gate Threshold Voltage Gate Threshold Voltage Coefficient 1.35 ––– 1.8 -7.2 Drain-to-Source Leakage Current ––– ––– ––– ––– Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage ––– ––– ––– ––– 100 -100 nA VDS = 24V, VGS = 0V, TJ = 125°C VGS = 20V Forward Transconductance Total Gate Charge 34 ––– ––– 9.4 ––– 14 S VGS = -20V VDS = 15V, ID =12A Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge ––– ––– 2.2 1.2 ––– ––– Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– ––– 3.3 2.7 ––– ––– Output Charge ––– ––– 4.5 6.3 ––– ––– Gate Resistance Turn-On Delay Time ––– ––– 0.4 14 ––– ––– Rise Time Turn-Off Delay Time ––– ––– 41 15 ––– ––– Fall Time Input Capacitance ––– ––– 20 1380 ––– ––– Output Capacitance Reverse Transfer Capacitance ––– ––– 290 120 ––– ––– V VGS = 0V, ID = 250µA mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 15A i = 12A i VGS = 4.5V, ID 2.35 V VDS = VGS, ID = 25µA ––– mV/°C 1.0 µA VDS = 24V, VGS = 0V 150 VDS = 15V nC VGS = 4.5V ID = 12A See Fig. 2 nC VDS = 16V, VGS = 0V Ω i VDD = 15V, VGS = 4.5V ID = 12A ns RG= 6.8Ω pF VGS = 0V VDS = 15V ƒ = 1.0MHz Diode Characteristics Min. Typ. Max. Units IS Continuous Source Current (Body Diode) Parameter ––– ––– 32 ISM Pulsed Source Current (Body Diode) ––– ––– 130 VSD Diode Forward Voltage ––– ––– trr Reverse Recovery Time Reverse Recovery Charge ––– ––– 16 17 Qrr g Conditions A MOSFET symbol showing the 1.0 V integral reverse p-n junction diode. TJ = 25°C, IS = 12A, VGS = 0V 24 26 ns nC TJ = 25°C, IF =12A di/dt = 370A/µs i i Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF6723M2DTR/TR1PbF Absolute Maximum Ratings (each die operating consecutively) Max. Units 2.7 1.9 25 270 -55 to + 175 W Parameter e e f Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG °C Thermal Resistance (each die operating consecutively) Parameter el jl kl fl RθJA RθJA RθJA RθJC RθJ-PCB Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor e Typ. Max. Units ––– 12.5 20 ––– 1.0 56 ––– ––– 5.9 ––– °C/W 0.018 W/°C 100 Thermal Response ( Z thJA ) D = 0.50 10 0.20 0.10 0.05 1 0.02 0.01 τJ 0.1 R1 R1 τJ τ1 R2 R2 R3 R3 τA τ1 τ2 τ2 τ3 τ3 τ4 τ4 Ci= τi/Ri Ci= τi/Ri 0.01 0.001 1E-006 0.0001 τA τi (sec) 3.1440 0.000878 23.201 0.291662 19.855 1.970485 9.7220 0.027200 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 Ri (°C/W) R4 R4 0.001 0.01 0.1 1 10 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Mounted on minimum footprint full size board with metalized Surface mounted on 1 in. square Cu board, steady state. TC measured with thermocouple incontact with top (Drain) of part. back and with small clip heatsink. Rθ is measured at TJ of approximately 90°C. Used double sided cooling, mounting pad with large heatsink. Surface mounted on 1 in. square Cu board (still air). www.irf.com Mounted on minimum footprint full size board with metalized back and with small clip heatsink. (still air) 3 IRF6723M2DTR/TR1PbF 1000 1000 ID, Drain-to-Source Current (A) 100 BOTTOM 10 TOP ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 100 1 0.1 2.5V 10 2.5V ≤60µs PULSE WIDTH Tj = 25°C 0.01 0.1 BOTTOM 1 Tj = 175°C 100 0.1 Fig 4. Typical Output Characteristics 100 2.0 ID = 15A VDS = 15V ≤60µs PULSE WIDTH Typical RDS(on) (Normalized) ID, Drain-to-Source Current (A) 10 Fig 5. Typical Output Characteristics 1000 100 10 T J = 175°C T J = 25°C T J = -40°C 1 0.1 V GS = 10V V GS = 4.5V 1.5 1.0 0.5 1 2 3 4 5 6 Fig 7. Normalized On-Resistance vs. Temperature Fig 6. Typical Transfer Characteristics 10000 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) 22 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd 18 Typical RDS(on) ( mΩ) Ciss 1000 Coss T J = 25°C Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.0V Vgs = 10V 20 C oss = C ds + C gd C, Capacitance(pF) 1 V DS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) 16 14 12 10 8 Crss 6 4 100 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 ≤60µs PULSE WIDTH 1 10 VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 0 25 50 75 100 125 150 ID, Drain Current (A) Fig 9. Typical On-Resistance vs. Drain Current and Gate Voltage www.irf.com IRF6723M2DTR/TR1PbF 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 100 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 T J = 175°C T J = 25°C T J = -40°C 10 1 100µsec 1msec 10 DC 10msec 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 0 VSD, Source-to-Drain Voltage (V) Fig 10. Typical Source-Drain Diode Forward Voltage ID, Drain Current (A) 40 30 20 10 0 50 75 100 125 150 100 3.0 2.5 2.0 1.5 ID = 25µA ID = 250µA ID = 1.0mA 1.0 ID = 1.0A 0.5 -75 -50 -25 0 175 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 13. Typical Threshold Voltage vs. Junction Temperature Fig 12. Maximum Drain Current vs. Case Temperature 300 EAS , Single Pulse Avalanche Energy (mJ) 80 Gfs, Forward Transconductance (S) 10 Fig 11. Maximum Safe Operating Area Typical VGS(th) Gate threshold Voltage (V) 50 25 1 VDS, Drain-to-Source Voltage (V) T J = 25°C 60 T J = 175°C 40 20 V DS = 15V 380µs PULSE WIDTH 2 ID 1.9A 3.0A BOTTOM 12A TOP 250 200 150 100 50 0 0 0 10 20 30 ID,Drain-to-Source Current (A) 40 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 14. Typ. Forward Transconductance vs. Drain Current Fig 15. Maximum Avalanche Energy vs. Drain Current www.irf.com 5 IRF6723M2DTR/TR1PbF 100 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse) Avalanche Current (A) Duty Cycle = Single Pulse 10 0.01 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 16. Typical Avalanche Current vs.Pulsewidth 80 TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 12A EAR , Avalanche Energy (mJ) 70 60 50 40 30 20 10 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 17. Maximum Avalanche Energy vs. Temperature 6 175 Notes on Repetitive Avalanche Curves , Figures 16, 17: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 19a, 19b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 16, 17). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav www.irf.com IRF6723M2DTR/TR1PbF Id Vds Vgs L VCC DUT 0 20K 1K Vgs(th) S Qgodr Fig 18a. Gate Charge Test Circuit Qgs2 Qgs1 Qgd Fig 18b. Gate Charge Waveform V(BR)DSS tp 15V DRIVER L VDS D.U.T RG + - VDD IAS 20V I AS 0.01Ω tp Fig 19a. Unclamped Inductive Test Circuit VDS VGS RG A RD Fig 19b. Unclamped Inductive Waveforms VGS 90% D.U.T. + - VDD V10V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 20a. Switching Time Test Circuit www.irf.com 10% VDS td(off) tf td(on) tr Fig 20b. Switching Time Waveforms 7 IRF6723M2DTR/TR1PbF D.U.T Driver Gate Drive + - - * D.U.T. ISD Waveform Reverse Recovery Current + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt RG • • • • di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer D= Period P.W. + V DD + Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent - ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 19. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Board Footprint, MA Outline (Medium Size Can). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. CL G = GATE D = DRAIN S = SOURCE D D 8 D G G S S D www.irf.com IRF6723M2DTR/TR1PbF DirectFET Outline Dimension, MA Outline (Medium Size Can). Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations DIMENSIONS METRIC CODE A B C D E F G H J K L M R P S IMPERIAL MAX MIN MAX MIN 0.250 6.25 6.35 0.246 0.199 4.80 5.05 0.189 0.156 3.85 3.95 0.152 0.018 0.35 0.45 0.014 0.024 0.58 0.62 0.023 0.020 0.48 0.52 0.019 0.044 1.08 1.12 0.043 0.020 0.48 0.52 0.019 0.017 0.38 0.42 0.015 0.059 1.40 1.50 0.055 0.118 2.90 3.00 0.114 0.616 0.676 0.0235 0.0274 0.020 0.080 0.0008 0.0031 0.007 0.08 0.17 0.003 0.008 0.155 0.195 0.006 DirectFET Part Marking GATE MARKING LOGO PART NUMBER BATCH NUMBER DATE CODE Line above the last character of the date code indicates "Lead-Free" www.irf.com 9 IRF6723M2DTR/TR1PbF DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. IRF6723M2D REEL DIMENSIONS STANDARD OPTION (QTY 4800) IMPERIAL METRIC CODE MIN MIN MAX MAX A 12.992 N.C 330.0 N.C B 0.795 20.2 N.C N.C C 0.504 12.8 0.520 13.2 D 0.059 1.5 N.C N.C E 3.937 100.0 N.C N.C F N.C N.C 0.724 18.4 G 0.488 12.4 0.567 14.4 H 0.469 11.9 0.606 15.4 LOADED TAPE FEED DIRECTION NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H DIMENSIONS METRIC IMPERIAL MIN MIN MAX MAX 0.311 0.319 7.90 8.10 0.154 0.161 3.90 4.10 0.469 0.484 11.90 12.30 0.215 0.219 5.45 5.55 0.201 0.209 5.10 5.30 0.256 0.264 6.50 6.70 0.059 1.50 N.C N.C 0.059 1.50 1.60 0.063 Data and specifications subject to change without notice. This product has been designed and qualified to MSL1 rating for the Consumer market. Additional storage requirement details for DirectFET products can be found in application note AN1035 on IRs Web site. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.12/2009 10 www.irf.com